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ABSTRACT  

In this paper we summarize enhancements to the Global Navigation Satellite System (GNSS)-software receiver ipexSR developed 

at the Universität der Bundeswehr München since 2004. The ipexSR was conceived as a multi-GNSS, multi-frequency software 

receiver and achieved very soon all-in-view real-time tracking capability with a reasonable geodetic quality of the produced raw 

data. Like other software receiver developments, it has been used in numerous GNSS research projects always allowing to do an in-

depth analysis of every GNSS signal processing aspect. However, during the last two years, it became obvious that several 

architectural changes are necessary to improve the usability and scope of this analysis tool. In current high-end receivers, GNSS 

signal processing is deeply fused with other sensor processing pipelines. The various processes influence each other, and a timely 

synchronized data analysis is necessary to gain in-depth insight when developing new algorithms. Therefore, Inertial and Light 

Detection and Ranging (LiDAR) processing has been included (to some extend also camera) in our software package and it was 

consequently renamed MuSNAT (MUlti-Sensor Navigation Analysis Tool). GNSS signal tracking has been reworked and verified 

and supports a fast and a precision mode on the Central Processing Unit (CPU). Signal processing on the Graphics Processing Unit 

(GPU) has been added and this paper discusses the chosen approach and limitations when porting the precision mode to a GPU. 

Standard GNSS-signals, AltBOC-signals and via the flexible GPU-language also new GNSS-signal candidates are easily supported. 

LiDAR processing currently targets relative navigation making use of the point-cloud library PCL. The integration filter merges 

GNSS, inertial and LiDAR data and is an extension of the Real-Time-Kinematic-Library (RTK-LIB). RTK-LIB is also used for RTK 

and Precise point Positioning (PPP) processing. The GNSS data flow can be inverted to use the receiver as a GNSS signal generator 

(transceiver concept). For ease of data analysis, a dedicated data visualization software named MuSNAT-Analyzer is developed 

which interfaces to the software receiver MuSNAT-Core via a Structured Query Language (SQL)-database. The SQL-database serves 

also as basis for further MATLAB based analysis. For complex receiver configurations, the demands on the SQL-performance are 

significant. An automated test framework ensures the stability of the software and is based on the Jenkins-environment. 

 

INTRODUCTION AND OVERVIEW 

Current navigation research faces several challenges due to the ever-increasing demands on navigation performance and the 

availability of new sensor technologies or ranging signals. To illustrate this with a few examples let’s start with navigation for 

autonomous driving. If GNSS is used for this purpose not only a carrier phase-based position method is used but also fusion with 

inertial data is considered to be essential to derive the required continuity and integrity [1]. LiDAR is also often mention in the 

context of autonomous cars not only for obstacle detection but also for relative navigation. In such a combined positioning system 

(GNSS+Inertial Measurement Unit (IMU)+LiDAR) the obtained positioning performance results from stable GNSS signal tracking, 

correct identification of outliers and carrier phase cycle slips, provision of RTK or PPP assistance data, calibration of inertial errors 

(e.g. gyro and accelerometer biases) and bridging PPP/RTK outages with inertial navigation or LiDAR odometry (which itself implies 

clustering and identification of point clouds). The processes are totally linked to each other as for example an undetected cycle-slip 

can not only cause an GNSS position outlier but can also invalidate inertial bias parameters. Integrity of the position is derived by 

comparing position solutions from individual sensors. Another relevant application case is the modernization of the GNSSs 

themselves. This is a continuously running process and currently signals for the 2nd generation of Galileo are defined but also other 

radio-navigation systems like the use of Low Earth Orbit (LEO) mega-constellations or the fusion of GNSS with 5G signals is 

discussed. There exists a canonical way to evaluate the performance of a new signal or a new constellation (e.g. ranging errors, 

Dilution of Precision (DOP)-factor, …) but it is often difficult to understand how those new signals impact an integrated multi-sensor 

navigation system. Those systems typically show in open-sky conditions already today a remarkable performance and achieve 

centimeter accuracy in an absolute sense [2]. The will benefit from new signals only in difficult (urban, canopy, indoor, …) conditions 

where all the different operation modes of an integrated navigation system are relevant. 

 

For those two and many more applications a dedicated analysis tool is needed to analyze and understand the complex positioning 

process. Such a tool has been designed at the Institute of Space Technology and Space Applications (ISTA) and is being actively 

developed since 2017. The design drivers for this tool are: 

 

• Realize all functions of an integrated navigation system with real-time capability 

• Provide in-depth analysis functions for all sensor streams and processing algorithms 

• Use of a conventional operating system for easy post-processing operation and use in teaching 

• Support of industry standards for data-input and output 

• High processing performance for real-time operation and fast scripted systematic data analysis 

 



Several approaches have been considered to develop such a tool including the use of high-level script languages like MATLAB or 

python, the use of a middleware like GNU radio, Simulink or the robot operating system (ROS). Finally, it was decided to base the 

tool on the existing GNSS software receiver ipexSR [3] mostly because this receiver is based on C++ and the direct use of C++ 

provides on one side enough structures and convenience to develop and maintain a large scale software project and is on the other 

side still performant and flexible enough to support the high bandwidth data streams that occur during GNSS signal processing. For 

C++ many software engineering tools are available for efficient development (Visual Studio IDE), debugging (Visual Studio and 

nVidia nSight), documentation (doxygen) and profiling (Intel Profiler). 

 

The existing software receiver ipexSR was realized as a Visual Studio 2013 project and used Qt for the graphical user interface. 

Especially the user interface had some hard constraints regarding flexibility and introduction of new data structures and thus the 

project was refactored and the user interface was developed from scratch in C# (see sect. “User Interface and SQL data storage”). 

Furthermore, the following key libraries are used to provide the necessary algorithmic and computing background: 

 

• Intel Performance Primitives for signal processing on the CPU 

• nVidia Compute Unified Device Architecture (CUDA) for signal processing on the GPU 

• RTK-LIB for RTK/PPP processing (and later for GNSS/IMU/LiDAR-filter) 

• Point cloud library (PCL) for LiDAR data management and processing 

• Eigen for generic for matrix operations  

• SQLite for data archiving 

 

Adding libraries to a larger software project is often a nontrivial task due to mutual conflicts between the libraries that are often hard 

to understand and to correct. For MuSNAT we made use of the Microsoft vcpkg system that ensures to a large extend the 

compatibility between various open source and commercial libraries but unfortunately not to 100 % and a few manual adaptations 

were necessary [4]. As development environment Microsoft Visual Studio 2017 was chosen and as primary target operating system 

Windows 10. The use of Windows 10 and the use of C# for the user interface implies various further libraries which are partly 

described in the sect. “User Interface and SQL data storage”.  

 

It was realized that the requirement of real-time operation and extensive post-processing analysis is better fulfilled when separating 

those features into two different programs: one doing the actual processing and the other one for visualizing and analyzing the logged 

data. The first one is called MuSNAT-Core and screenshots are shown in Fig. 1 and Fig. 2. The second one, MuSNAT-Analyzer,  is 

shown in Fig. 3. and Fig. 4. There is a unidirectional data flow from the Core to the Analyzer via an SQL database. For each 

processing run of the Core one individual database file is created which can then be selected by the Analyzer. 

 

MuSNAT-Core is configured by a configuration file which contains all processing parameters and by defining the output directory. 

The configuration files can be quite large and a help file provides a short explanation for each parameter. After loading the 

configuration file, the processing can be started. Depending on the input source, it is post-processing or real-time. If used in post-

processing the software behaves identical to real-time. During processing the relevant logging information is displayed in various 

tabs. Currently input data (Intermediate Frequency (IF) samples), acquisition and tracking results (e.g. Fig. 2) are displayed for the 

current epoch. The current frame of LiDAR data can also be displayed (Fig. 11). Further extensions are planned like e.g. multi-

correlator display.  

 
Fig. 1: Screenshot of MuSNAT-Core, start and configuration window 



 
Fig. 2: Screenshot of MuSNAT-Core, tracking window 

 

 

The analyzer reads the logged data from the SQL database and provide several different analysis windows for data at signal level 

(spectra), Position Velocity and Time (PVT) level, at ranging level, and tracking level and at sensor data level. The considered 

satellite signals can be selected, and the data is displayed in time-synchronized plots.  For example, Fig. 3 shows typical tracking 

data at channel level. The corresponding position on a map (e.g. Fig. 4), as well as the corresponding video image can also be selected. 

Further planned extensions are data analysis function for the selected graphs (mean, trend, root mean square (rms), …), multi-

correlator plots as well as waterfall plots for the GNSS spectra to identify interference events. 

 

To ensure software stability a build server has been setup which runs the Jenkins system for automated builds and tests after each 

new commit of source code or configuration parameters. MuSNAT-Core and the MuSNAT-Analyzer are finally produced as installer 

packages such that they can be used on any Windows 10 system without any prerequisites. They are delivered with the respective 

reference configuration that are also used for the automated tests.  

 



 
Fig. 3: Screenshot of MuSNAT-Analyzer (alpha-version) with correlator, Phase Lock Loop (PLL) discriminator and Delay Lock Loop (DLL) 

discriminator values for several GPS C/A signals 

 

 
Fig. 4: Screenshot of MuSNAT-Analyzer (alpha-version) with Map-View  

  



INPUT DATA 

The legacy software ipexSR used as input data only GNSS IF samples to acquire and track the signals and to compute the PVT 

solution. The number of input sources for MuSNAT has been extended considerable and not only includes data from other sensors 

like IMU, LiDAR or camera data but also (for a software receiver) nonstandard input sources like Receiver Independent Exchange 

Format (RINEX) observation data or trajectories. The input sources are described in the following sub-sections. 

 

Support of ION-Software Defined Radio (SDR) sample standard 

The current standard for IF samples [5] is now fully supported in addition to the legacy reading routines from separated IF sample 

files (one for each frequency band). This enhancement gives us the possibility to process data from virtually any GNSS signal source 

or from signals of opportunity like Long Term Evolution (LTE) signals. The ion-sdr reader is still slower than our internal reading 

routine but future work on it will also target the ion-sdr reader performance improvement. 

 

Generic real-time frontend interface via TCP/IP 

The legacy software receiver ipexSR provided real-time data access via hard-coded low-level Universal Serial Bus (USB) 2.0 

functions to one Radio Frequency (RF) frontend from Fraunhofer IIS and to the NavPort-4 frontend from IFEN. To increase the 

flexibility of the real-time operation a more generic Transmission Control Protocol/Internet Protocol (TCP/IP) based interface was 

introduced thus realizing an open real-time interface to virtually any frontend. The interface is implemented as TCP/IP client within 

MuSNAT-Core that connects to the signal source (i.e. the frontend) which realizes a TCP/IP-server. The server (SDR frontend) and 

the client (software receiver) can run both on one PC or can be separated on different locations via external TCP/IP connection. 

 

To start the development of the server a first TCP/IP sample server written C++ has been developed which reads its data from a file 

and this C++ code will serve as template for servers integrating Universal Software Radio Peripheral (USRP) SDRs from National 

Instruments. Thereby a dual-band 20 MHz/16-bit I/Q sampling rate capability will be established in the first step (Q4/2019). The 

server for the USRP frontend is programmed with LabVIEW and runs as one process in the background continuously. In later 

extensions, the USRP frontend will provide four bands with a I/Q sampling rate of up to 80 MHz each with a selectable bit-depth of 

2, 4, 8 or 16 bits. Also, other sample servers using low-cost frontends (Hack-RF or rtl-sdr) are planned. As primary RF frontend we 

focus on the USRP 2955 as it provides four phase-aligned RF-shielded superheterodyne receiver channels up to a frequency of 6 

GHz and each with an 80 MHz bandwidth. Furthermore, sensors can be attached to this frontend via a low-level hardware connection 

thus allowing a tight synchronization to the GNSS signals. To fully exploit all those features, further extensions of the server software 

are necessary, which is also including onboard Field Programmable Gate Array (FPGA) programming supported by LabVIEW 

directly to e.g. reduce the bit width for a lower data traffic to the Personal Computer (PC) or adding pre-correlation RF interference 

mitigation techniques. The USRP 2955 is connected to the processing PC via PCIe card (NI PCIe-8371) over an MXI-Express x4 

copper cable. The four channels will be fed by a 4-port splitter (Mini-Circuits® ZN4PD-272-S+) and a bias tee (Mini-Circuits® 

ZFBT-4R2GW-FT+), which gets the power supply for an active antenna from the GPS disciplined clock of the USPR itself (5V, 

max. 140 mA). The USRP connected to a PC and a schematic of the concept is given in Fig. 5. 

 

       
Fig. 5: NI USRP 2955 connected to a processing PC 

The sample server uses TCP/IP sockets to transfer the binary data stream of the requested file to the client. The server acts like a file 

on the file system. It supports the operations “Open File”, “Seek File”, “Read File” and “Disconnect”. The client within MuSNAT 

is implemented in C++ and uses the TCP socket from boost::asio [6]. The above mentioned prototype server was built in C#, using 

System.Net.Sockets from the .NET framework. 
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IF-sample-less operation of the receiver using RINEX-data as input 

As far as numerous standard post-processing tasks are concerned, IF samples are not always the type of data available, especially 

when it comes to data acquired by commercial off-the-shelf (COTS) receivers. To be able to evaluate GNSS raw data as RINEX 

files from any receiver in a feasible way (e.g. without the overhead in processing time caused by the IF signal processing 

compartment), IF sample processing is circumvented by simulating a dummy (empty) IF-Stream, signal processing is deactivated, 

and raw data is fed directly into the positioning modules. This is also the method of choice when using MuSNAT to analyze raw data 

from Android smartphones [7]. 

 

Support of LiDAR data via PCL 

The implementation of LiDAR 3D-data will enhance the navigation solution along with additional sources like GNSS/INS/camera. 

Additionally, it helps to estimate the position in GNSS-denied environments, as well as 3D mapping of the environment. The open 

source point-cloud-library (PCL) is currently integrated into the MuSNAT [8]. The current version of PCL in the MuSNAT is 1.9.1, 

which adds more features and stability with newer versions of CUDA, specifically with versions 9.x and 10.0. 

 

The specific LiDAR sensor supported by MuSNAT is the Velodyne VLP-16 [9]. The VLP-16 has 16 lasers that spin 360 degrees to 

scan the surrounding environment. It acquires information like range (up to 100 meters), calibrated reflectivities and the exact timing 

of the firing of each data point, among others. The VLP-16 can operate in different return modes, the dual return mode is not yet 

supported by MuSNAT. The VLP-16 is connected with ethernet to the PC running MuSNAT and a dedicated GNSS receiver is 

connected to the sensor allowing the synchronization within the software receiver. Future updates of MuSNAT target to remove this 

extra GNSS receiver and to synchronize the LiDAR data directly with GNSS samples via either via a hardware connection over the 

USRP frontend or via a low-level software connection. LiDAR data can also be read from a file having the same format as the real-

time data stream. The retrieval of the data can be done off- and on-line, which is particularly useful to test navigation algorithms both 

in post-processing and real-time. For this purpose, boost::asio and pcap libraries are used in order to read the streamed data from the 

sensor or from PCAP files.  

 

The data is clustered by frames and stored in point cloud objects for further processing (e.g. to be used in the relative navigation 

module). The point cloud object is a structure that represents a multidimensional point, traditionally Euclidean x,y,z coordinates, but 

it can also contain more values e.g. Red Green Blue (RGB), intensity, range, normal coordinates, etc. The software also has the 

capability of saving the data in PCD (Point Cloud Data) format. For the visualization of the LiDAR data OpenCV cv::viz [10] is 

used.  

 

In the near future, the capability of building intensity images (2D) as a separate channel for feature extraction is contemplated, as it 

has been proofed to be a useful alternative to conventional registration methods [11], especially when RGB data is not available. The 

implementation within the MuSNAT is planned to handle more than one LiDAR device at a time. In Fig. 6, one can see some of the 

parameters that can be configured for the retrieval of data and its processing. 

 

Support of camera data via OpenCV 

Long-term plans include navigation aiding with further visual sensors, e.g. cameras. The basic capability of time-tagging and storing 

video frames for GNSS-aligned epochs was already added, rendering them for further feature extraction and frame-to-frame relative 

navigation within the core navigation modules. Currently the data handling and storage routines are using the OpenCV library for 

efficiency [12]. Respective camera frames can be visualized in the MuSNAT-Analyzer respectively. This is a useful feature for data 

analysis and interpretation if respective video material (by e.g. a zenith looking fish-eye camera) is captured simultaneously.  

 

Inertial Data 

Inertial data may be provided to the MuSNAT to enable the GNSS/INS module(s). Currently a proprietary format for inertial data is  

required, consisting of the data packet counter, a Universal Time Control (UTC) time stamp, the accelerometer measurements as 

acceleration in [m/s²], the gyroscope measurements as turn rates in either [rad/s] or [deg/s] and magnetometer measurements, 

although the latter are not used yet but were included for possible further necessity. Data synchronization with respect to the GNSS 

measurements is done according to the UTC timestamp of the inertial data. Known hardware delays within the INS regarding the 

timestamping of the data, e.g. from sensor calibration, may be specified in the MuSNAT configuration as an offset of the inertial 

data timestamp and are corrected before the actual processing. 

 



 
Fig. 6: Example of the configuration parameters available in the LiDAR related modules. 

 

 

OUTPUT DATA 

MuSNAT-Core provides processing results at four different levels and formats: 

 

• Standard output formats like RINEX observation and navigation files or PVT solution in National Marine Electronics 

Association (NMEA) or Comma-separated values (CSV) format 

• Proprietary American Standard Code for Information Interchange (ASCII) formats for decoded navigation message or RTK, 

GNSS/IMU, … positioning solution  

• Low-level ASCII logging outputs like tracking logs (*.dumplog) or acquisition logs 

• Integrated logging of all data above into a SQL database 

 

Each data format has it advantages and provides different analysis options. In terms of GNSS signal processing capability the SQL-

database provides the most complete overview and is also easier to handle as only a single file is involved.  

 

 

 

GNSS SIGNAL PROCESSING 

For an integrated navigation system, a high quality of the GNSS signal processing is essential to obtain optimum results. Small 

ranging errors and robustness against cycle slips are for example essential for RTK or PPP processing. In the context of sensor fusion, 

tracking is considered to be more important than acquisition and thus the focus shall be laid on it in this paper. Already within the 

ipexSR a number of different signal tracking algorithms have been implemented and tested [3]. With various numerical optimizations 

and approximations, like e.g. use of an unsigned 8-bit representation of IF samples a standard desktop CPU could realize a huge 

number of tracking channels (>1000) for moderate signal bandwidths (like e.g. 20 MHz). [14] Using 1-bit correlators provides an 

even larger number of channels or allows use of the software on embedded devices. 

 



However, for MuSNAT we identified three design drivers for signal tracking that are partly incompatible of the above-mentioned 

approximate approaches: 

 

• Utmost precision 

• Textbook like implementation  

o to minimize implementation losses  

o for good traceability of the achieved performance 

• Ease of implementation for new GNSS signals  

 

It was therefore decided to focus within MuSNAT on a conventional correlator-based (early, prompt, late, very-early, ,…) tracking 

scheme and on a 16-bit representation for IF samples and replica signals. Correlator based tracking and its performance is described 

in [13]. To consolidate this performance a dedicated verification campaign with Galileo E1BC, E5a and E5b as well as GPS L1, 

L2CM and L5 signal has been conducted and the results are reported here. Furthermore a wide-band AltBOC tracking capability has 

been added. It also turned out that with this textbook like implementation the number of achievable real-time channels dropped down 

and thus an alternate processing unit for signal tracking was found in the GPU. The GPU implementation strategy and constraints 

are reported below. More enhanced signal analysis methods (e.g. chip estimation, ranging authentication) require GNSS signal 

samples to be logged after carrier wipe-off. This logging function is also described below. 

 

Verification of Tracking Accuracy with Zero-Baseline Tests 

The performance analysis of MuSNAT was realized by performing a zero-baseline test and then analyzing the code and phase 

residuals as functions of changing carrier-to-noise ratio. The experimental setup consisted of an IFEN SX3 RF frontend and a Trimble 

NetR9 receiver connected to the same receiving antenna located on the roof-top of the observatory building at ISTA. The SX3 

frontend recorded IF samples at a sampling rate of 20 MHz for four frequency bands (1.5754 GHz, 1.2276 GHz, 1.17645 GHz and 

1.20714 GHz) which allowed signal capture of GPS L1, L2CM and L5 as well as Galileo E1BC, E5a and E5b. The IF samples from 

SX3 were logged on a desktop PC through USB for later processing with MuSNAT to generate the RINEX observation file. The 

SX3 frontend and MuSNAT together can thus be considered as one receiver unit of this experimental setup with the other being the 

Trimble NetR9. Further verification tests are currently being conducted with the NI USRP frontend, and results will be presented on 

follow-up publications. For given similar sampling parameters we expect the results to be largely independent of the used frontend 

and they verify mostly the MuSNAT internal tracking algorithms. 

 

A data set of 1 hour was recorded for the experiment. For post-processing, double-difference measurements were computed using 

RTK-LIB from the RINEX observation files, obtained from both receiver units.  The RTK-LIB campaign was configured to be in 

static mode with the Trimble NetR9 set as the reference receiver and the frequencies were set to L1+L2+L5+E5b to utilize all 

available signals. Thereby, a position fix was achieved for 99.2 % of the complete duration. The code/phase residuals and carrier-to-

noise ratios were exported as text files for each signal and MATLAB was used to obtain the code/phase noise plots (see Fig. 13 - 

Fig. 16). Each point in the plots of Fig. 13 - Fig. 16 is the standard deviation of the code/phase residual time series against the average 

C/N0 over an interval of 30 s.   

 

Overall, the results illustrate a good tracking performance with similar tracking results for L1 and E1BC with code noise in the 

decimeter level for carrier-to-noise ratios greater than 43 dB-Hz. E5a and E5b exhibit even better performance with code noise below 

50 cm for carrier-to-noise ratios greater than 46 dB-Hz. Moreover, L5 exhibits the slowest rise in code noise with decreasing C/No 

that indicate best code noise performance. L2CM exhibits the steepest rise in phase noise with decreasing C/No that indicates worst 

phase noise performance. 

 

As part of receiver performance verification of MuSNAT a comparison between the measured and analytic code discriminator noise 

was also performed. MuSNAT provides the option of generating satellite specific data logs of various receiver related parameters 

including code, phase and frequency discriminator noise during the tracking process (Fig. 17). These can then be plotted for a given 

satellite and then can be compared against analytical values for the same Signal to Noise Ratio (SNR) level to verify the tracking 

performance of receiver loops. As part of the campaign, the code discriminator noise value of each signal, for a duration of 500 

epochs, was obtained from the log for one satellite. The analytic code discriminator noise value was then computed for each signal 

using the semi-analytic verification methodology presented in [13]. Fig. 17 shows the loop discriminator noise plots generated for 

each signal. Table 1 shows the comparison between measured and analytic values. 

 



Table 1: Code noise for the considered verification signals 

Signal Coherent Int 

Time (ms) 

SNR (dB) Code Disc. Noise 

Measured (m) 

Code Disc. Noise 

Analytic (m) 

Percentage 

Deviation (%) 

L1C/A 5 31.52 1.3066 1.2921 1.12 

L2C 20 32.51 1.1852 1.1621 1.99 

L5 10 34.6 0.2627 0.2762 4.89 

E1 BC 4 29.11 0.9656 0.9743 0.89 

E5a 4 27.94 0.7367 0.6027 22.23 

E5b 4 29.57 0.5986 0.4959 20.71 

 

As can be observed, the deviation from the analytic values fall within 5 % for L1 C/A, L2C, L5 and E1BC which indicates effective 

implementation of correlator-based tracking on MuSNAT. Given the same DLL bandwidth and correlator spacing assigned to the 

tracking loops of all signals, the larger deviations in E5a and E5b can be attributed to frontend related parameters but further 

investigation is required to validate this claim.   

 

True-AltBOC tracking capability 

In order to have an optimum tracking performance for wideband AltBOC tracking, a precise correlator implementation was 

implemented for Galileo AltBOC as a new feature in our receiver. This uses both pilot components of the powerful wideband E5 

signal. Based on the time synchronization to one of the secondary codes of the Galileo E5aQ or E5bQ components, the true AltBOC 

tracking can be initialized. Given the two secondary code symbols of E5aQ and E5bQ, the complex composite signal composed out 

of the E5 pilot components has four possible realizations of a primary period. Based on the timing information of the tracking, the 

AltBOC correlator can generate the current complex replica. For performance reasons raw replicas for the four possible primary 

periods are pre-computed including the subcarriers. This largely simplifies the processing and computational load of the AltBOC 

tracking without scarifying accuracy. In each update step the replicas are resampled based on the current Numerically Controlled 

Oscillator (NCO) values. 

 

Numerical Tracking Performance on CPU 

The correlator-based tracking scheme runs on the CPU of the PC running MuSNAT and utilizes optimized libraries (Intel Integrated 

Performance Primitives (IPP)) to compute the correlator values. The required dot-product operation is supported on an Intel x86 

CPU via SIMD multiply-and-add commands and is a standard function used in many signal processing algorithms.  Fig. 7 shows a 

screen shot of MuSNAT tracking GPS/Galileo L1/L2/L5/E1/E5a/E5b signals on the CPU in fast mode and in precise mode. The 

basic difference between fast and precise mode is that in precise mode the replica signals are for each integrate-and-dump interval 

generated newly based on the current NCO values. For the fast mode, replica signals are reused for several integrate-and-dump 

intervals if the replica signal parameters differ only by a small amount and this amount can be accounted for within the code 

discriminator value. Fig. 7 shows that the computational effort in precise mode (e.g. 1745 ms to process one 1 second of data) is 

roughly by a factor of 2.7 larger than in the fast mode (645 ms). This is in accordance with the well-known finding that the required 

look-up operations on a CPU to generate the signal replica cannot be vectorized [13]. For this test 17 dual-component channels 

(E1BC, L5, E5a and E5b) plus 9 single-component channels (L1C/A, L2CM) are used each with a sampling rate of 20 MHz and 3-

5 correlators. The CPU is an Intel i7-6800K running at 3.4 GHz. It should be noted that for the purposes of this paper no runtime 

optimization of the configuration has been carried out (compared to e.g. [14]) and the investigation serves merely to outline the 

relative difference between precise and fast mode. 

 



 

 
 

 
Fig. 7: Screenshot of MuSNAT tracking GNSS signals on the CPU in fast mode (upper) and precise mode (lower), both referring to the 

configuration shown in Fig. 2 

 

Precise correlator implementation on the GPU 

The computational performance of a GPU is typically much higher as for a CPU and thus porting the GNSS signal processing to the 

GPU can potentially provide a solution to realize an efficient implementation of the precise correlation mode. Using GPUs for GNSS 

signal processing has already been considered some years ago and several implementations have been reported [15-21]. GPUs have 

also found use within software GNSS simulators [22-23]. Due to the parallel nature of GPU processing they are particularly attractive 

for processing data from antenna arrays [23-24]. Other specialized use cases for GPUs are in time transfer [25] or the use of embedded 

GPUs [26]. 

 

Older GPU architectures provided direct hardware support only for 32-bit floating point numbers, which is an inefficient format to 

represent GNSS signal samples causing a significant memory bandwidth overhead. However, the Turing architecture of nVidia 

introduced 16-bit computing elements (mostly to support AI-algorithms) and graphics cards like the RTX 2080 Ti provide a 



computational power of 23.5 TFLOPS (16-bit, half-precision) at a competitive price [27]. The 16-bit float format is not exactly the 

same as the 16-bit integer format used for CPU signal processing, but due to the high number of bits a loss-less conversion from 16-

bit integer to 16-bit float samples can be expected. 

 

The GPU exhibits a highly parallel architecture. For example, on an RTX 2080 Ti a number of 68 so-called symmetric 

multiprocessors (SM) can be found each having 64 FP32 cores. One FP32 core can execute two 16-bit float multiply-and-add 

instructions per clock cycle. Assuming a base clock rate of 1350 MHz this yields 1350 MHz x 68 (#SM) x 64 (#FP32) x 2 (two FP16) 

x 2 (multiply-and-add) = 23.5 TFLOP. Expressed differently, a number of 17408 arithmetic units are running in parallel on that GPU. 

This high computational power can for example be fully utilized for algorithms which need only a few operands and to not require 

to access memory (e.g. computation of Mandelbrot sets). To which is extend this computing power can also be exploited for dot-

products (e.g. correlation) was assessed with a dedicated benchmark program. 

 

Dot-product computation requires to read the two input-vectors, compute the dot-product and to store the results. For the sake of 

GNSS signal processing, we have in principle three different locations where the received signal and the replica signal can be stored 

during the computation of the dot-product (and from where the 17408 compute elements can access the data): 

 

• CPU main memory 

• GPU main (global) memory 

• GPU (SM-wise) shared memory 

 

The first option would be the most convenient one, as the CPU memory is the standard storage area for all data, but the bandwidth 

of the GPU-CPU bus (PCIe x 16 ) is very limited (approx 15.76 GByte/s) and thus clearly not suitable. To assess the performance of 

the two other options two benchmark programs have been written and the relevant source code is shown in App. B.2 and B.3. The 

dot-product computation has been executed sufficiently often and has been repeated for different vector lengths (which corresponds 

for a certain sampling rate to the coherent integration time) and a different number of correlators (each correlator corresponds to two 

(I/Q) dot-products). The effective computational performance has been measured with timers and is shown in Fig. 8. It is clearly 

seen, that the performance increases for an increasing number of correlators. The use of shared memory clearly improves the 

performance, but the code also implies some restrictions as the shared memory architecture of the GPU is limited in size. For example, 

only a limited number of correlators (though up to 256) are supported with the shared memory code. With (from the GPU-point of 

view) optimal parameters around 3.5 TFLOP can be achieved but under more realistic conditions 1 TFLOP seems to be a maximum. 

We state here clearly that further algorithmic research is required to come up with algorithms which better utilize the highly parallel 

structure of a GPU for dot-product computation. It shall also be mentioned that currently non of the existing libraries (cuBLAS, 

thrust) provide suitable functions.   

 

After the dot-product performance assessment has been conducted, the code has been integrated into MuSNAT signal tracking. 

Therefore, a GNSS replica generation engine was developed which takes the current channel NCO parameters and produces a GNSS 

replica in the GPU global memory. The respective code is shown in App. B.1 and demonstrates one of the advantages of the CUDA 

based approach. With only a few lines the code and carrier replicas can be generated and multiplied. The code uses no approximations 

like look-up tables (as it is the case for the CPU implementation) and can be easily linked to the mathematical GNSS signal model. 

Thus, it is expected that the code is well maintainable and new signal processing methods like meta-signal processing or variable 

carrier frequency offsets are easily implemented as well as new GNSS/5G signal models.  

 

The resulting GPU-based signal tracking engine within MuSNAT is mathematically equivalent to the CPU based precise mode and 

produces identical results. The resulting timing including task division on GPU (and CPU) is shown in App. B.4. There a time span 

of 4 ms (in signal time) is shown while tracking 8 Galileo E1BC signals with 100 MHz sampling rate and 256 correlators per channel. 

For each signal component a separated GPU stream is created. All signals (IF samples and replicas) reside on the GPU but the 

tracking itself is controlled by the CPU. It can be seen that the processing performance is around real-time which is suitable for some 

dedicated specialized (e.g. signal quality monitoring) applications but can be considered as too low for generic multi-frequency multi-

GNSS tracking. Thus, we further investigated what the bottle-neck of this implementation could be. 

 



  
 

Fig. 8: Achieved TFLOP as a function of coherent integration time 𝑇𝑐𝑜ℎ and number of correlators for dot-product computation (left: GPU 

shared memory – App. B.3, right: GPU global memory – App. B.2), RTX 2080 Ti 

 

 

For GPU signal tracking, three different core tasks/criteria have been identified: 

 

• The CPU has to instruct the GPU to do something (launch-limit) 

• GPU to generate replica signals (replica limit) 

• GPU to correlate replica with received signal (correlator limit) 

 

For each criteria the number of achievable channels #N can be bounded by applying generic constraints. The launch limit says that 

the number of channels is smaller than the coherent integration time 𝑇𝑐𝑜ℎ  divided by the time 𝑇𝑘𝑒𝑟  to start one task (=kernel) on the 

GPU multiplied by the number of tasks 𝑘 required per each coherent integration, 

 

#𝑁 <
𝑇𝑐𝑜ℎ

𝑘𝑇𝑘𝑒𝑟
 . (1) 

 

In the presented test case we have a coherent integration time of 4 ms and we have to generate two replica signals (due to the IF 

sample packet structure), perform two correlations, need to provide for those two replicas the parameters and retrieve the results. 

These are in total k=7 tasks. As a low cost GPU, the RTX2080 Ti supports only the Windows Display Driver Model (WDDM) driver 

model (and not the TCC model) and thus the typical kernel launch time was estimated to be around 15 µs. With that parameters 

chosen, the number of channels is limited to be less than 38! The launch limit can be shifted to a higher number of channels if the 

GPU kernels are started simultaneously for all channels within one launch. This can be done in MuSNAT for all channels belonging 

to the same signal (e.g. to E1BC). If this is done (e.g. during the next software update in the year 2020) the launch limit increases by 

the number of signal-components-per-service, e.g. by 24 for 12 E1BC signals, and can then be considered as irrelevant. 

 

Replica generation on the GPU with the code shown in App. B.1 allows to generate replicas with a rate of 𝑓𝑔=25 GSamples/s. This 

figure has been extracted from App. B.4 showing that a signal time span of 4 ms at 100 MHz sampling rate is generated within 

approximately 16 µs. The number of channels is then limited by the replica limit given as the ratio of the generation rate divided by 

the sampling rate 𝑓𝑠, 

 

#𝑁 <
𝑓𝑔

𝑓𝑠
 . (2) 

 

For the used settings, the replica limit is 250 channels. If the replica code is further optimized a higher number of channels deems 

feasible, but further benchmarking would be required to confirm this conjecture. It could also be that the GPU signal generation is 



limited by the access to the global GPU memory and in that case the replica limit is independent of the specific code. This would 

have the advantage that more complex signal models (e.g. requiring more computations at sample level) have the same replica limit. 

 

The correlation limit is the ratio of the computational performance divided by the sample rate, the number of correlators and a factor 

of 4 accounting for the two multiplications and two additions per sample,  

     

#𝑁 <
𝐹

4𝑛𝑐𝑓𝑠
 . (3) 

 

If 1 TFLOP is available and assuming 32 correlators and 100 MHz sampling rate results in 78 channels. With the full 23.5 TFLOP 

available a (hypothetical) number of 1835 channels could be achieved. 

 

To conclude, it can be stated that a first operational GPU tracking engine has been implemented which achieves for a low number of 

channels real-time performance. It does this virtually independent of the number of correlators (e.g. the processing speed seems to 

be the same regardless if there are 5 or 200 correlators). This engine may have already now applications for specialized applications 

like signal-quality-monitoring (monitoring the shape of the correlation function for deformations), anti-spoofing measures via 

detecting multiple peaks or for Bayesian direct position estimation [28]. If a higher number of channels is sought, multiple GPUs 

can be installed in a PC, however, it is clearly understood that further code optimization is the way to go. If all the channels within 

one receiver are launched simultaneously on the GPU a multi-frequency and multi-GNSS configuration should be able to run in real-

time on the GPU (and still use many correlators). 

 

FPGA acceleration cards also become more common for use within standard PCs [29]. In principle they will allow a more efficient 

exploitation of hardware resources as for example for each channel and correlator exactly one multiplication and addition unit 

(accumulator) can be realized (and you don’t need to exploit dozens of them as for the GPU or utilize them in a time-shared manner 

as on the CPU). However, FPGA cards are more cost intensive, require more dedicated hardware and driver support and are way 

more complex to program as a GPU (especially data transfer and synchronization). For this reason they are currently not considered 

to be a cost efficient hardware extension to improve the GNSS signal tracking for MuSNAT. 

 

Extraction of baseband sample snippets 

The precise correlator has been modified to log the IF samples in regular intervals to a file after the carrier wipe off has been 

performed. This is useful for processing of signals where the spreading code is not known. Examples are e.g. GPS Y-code, Galileo 

Public Related Service (PRS) or signals considered for spreading code authentication [30]. This information can be extracted by 

using a third-party software, e.g. MATLAB, in order to analyze unknown spreading code sequences. For example, Fig. 9 shows the 

Galileo E1A signal that has been converted to baseband taking parameters from the respective E1BC channel. As the signal has been 

captured with a 2.4 m dish antenna, already in the raw logged signal the E1A spreading code sequence is visible. If further filtering 

is applied (convolution with the chip-form) the E1A chip values can be extracted. 

 

 

 
 

  
Fig. 9: Baseband signal snippet (left graph) for Galileo PRN 26 on E1 taken by a 2.4 m dish antenna. This data is used to estimate the E1-A chips 

(right graph). 



GNSS SIGNAL GENERATOR (TRANSCEIVER) 

Studying and testing new and possible future GNSS signals in combination with sensor fusion capabilities require a signal generator 

which is flexible and fully modifiable. To overcome the need of implementing a signal generator from scratch, the MuSNAT software 

receiver was extended to a GNSS-software transceiver to generate and process GNSS signals. The approach to modify the MuSNAT 

into a software transceiver is based on exploiting the vector tracking feature of the MuSNAT software receiver. The underlying 

architecture is sketched in Fig. 10. Due to the replacement of the position in the vector tracking loop, it is possible to manipulate the 

NCO and thereby force the code and carrier generator to generate a signal replica which fits to the induced position. Multiplying the 

replica with the desired symbol value and the desired amplitude yields an entire line of sight signal. The replica signals of all satellites 

in tracking match the predefined user trajectory. Saving the added replica signals results in a signal stream at IF-level which can then 

be converted to an analog RF signal. The MuSNAT-software-transceiver can track, generate, or re-generate tracked signals. A 

detailed description of the needed modifications of transforming a GNSS-software receiver into a GNSS-software transceiver was 

presented by Maier et al. [31] with an assessment on the achieved signal quality. 

 

 
Fig. 10: Sketch of MuSNAT signal generation architecture, using the vector tracking feature [31]. 

 

 

NAVIGATION PROCESSING 

MuSNAT provides all the navigation processing options as the ipexSR did and this includes the standard options like single point 

positioning, GNSS Kalman-filter positioning, Receiver Autonomous Integrity Monitoring (RAIM) (for GPS L1 only). More 

advanced features are signal quality monitoring (SQM) [32], ionospheric monitoring or Differential Global Navigation Satellite 

System (DGNSS) positioning. MuSNAT supports a serial navigation processing flow. A list of processing modules is specified 

which is executed in serial way for each measurement epoch. For example, a typical pipeline may look like: Single Point Positioning 

(SPP) (for outlier detection), RINEX output, RTK positioning, GNSS/INS filter. In the context of the change from ipexSR to 

MuSNAT a few advanced modules have been added which are described in the following paragraphs. Due to the modular software 

structure, extension with further modules is easily possible.   

 

RTK-LIB integration 

The MuSNAT Receiver software is now capable of performing RTK positioning. The RTK-LIB integrated in MuSNAT supports 

GPS/Galileo dual frequency RTK positioning feature [33]. The RTK positioning is supported for IF sample data streams and for 

direct RINEX 3.0 observation file input. This feature is for example used for the context of Android raw data analysis [7]. 

 

Support of inertial and GNSS/INS/LiDAR-integration 

With the transition of the ipexSR to the MuSNAT this software is no longer a pure GNSS-software receiver, but rather multi sensor 

PVT and navigation engine. The basic capability therefore also includes a state of the art Kalman-filter implementation currently 

consisting of 20 states for attitude, position, velocity, accelerometer- and gyro-biases, clock error, clock error drift, and GPS/Glonass 

respective GPS/Galileo clock offsets and inter-frequency-biases. Full INS error models can be provided to the filter. Additionally, 



founding on a cooperation between the Tokyo University of Marine Science (TUMSAT) and our Institute, a GNSS/INS module is 

being developed for RTK-LIB. It will fully comply with RTK-LIB standards, those being open accessibility, coding style, 

documentation and scientific basis. The module comprises of a 15 state loosely coupled GNSS/INS filter according to [34] resolved 

in the local navigation frame and is currently being evaluated. Future work aims at an additional close coupling and real time 

capability. After completion, the module will be incorporated into RTK-LIB by TUMSAT through a dedicated widget in the 

Graphical user Interface (GUI) for configuration and evaluation of the results. Furthermore, due to the nature of the RTK-LIB, the 

module will also be portable as it is part of an already portable software suite. This filter will also yield the basis for a 

GNSS/INS/LiDAR integration in the future.  

 

Relative Navigation with LiDAR  

Due to the implementation of the LiDAR support in the MuSNAT Receiver, now it is possible to process point cloud data, provided 

by the VLP-16. Relative navigation using LiDAR is based on estimating the ego-position of a moving platform by employing the 

not-moving objects around the agent [35]. As the latter moves, the position of the objects in the sensor’s reference frame changes in 

the same proportion as the agent’s movement. This apparent change in position of the fixed objects provides the real pose var iation 

of the sensor in the environment. In principle, the estimation of the relative navigation of a moving agent (e.g. a car) is based in three 

main tasks: 1) data preprocessing and object segmentation, 2) object recognition and association, and 3) point clouds registration. 

 

1) As the LiDAR produces raw data, it should be cleaned for a better outcome. Elimination of outliers is required to enhance the 

integrity of the navigation solution. Some data is purposely discarded for sake of better quality at the results, e.g. the ground 

point cloud could be eliminated, under the assumption that it is even. A range filter, based on considered distance thresholds in 

each sensor axis, encloses the most useful points. It is required to subdivide the scene scanned into smaller sets, called point 

clusters [36]. Each cluster is assumed to be one object in the surroundings. Euclidean segmentation method is employed, where 

the point cloud is subdivided into smaller sets based on the distance among the points, under a given threshold. A cluster is 

composed by all the points whose distance to their closest neighbors is lower than the settled limit. 

 

2) Global descriptors play a big role in the object recognition task. After the cluster segmentation at time 𝑡 = 𝑘, the Ensemble of 

Shape Functions (ESF) [37] descriptor is calculated for each of the clusters. The descriptors are stored for further matching 

against the signatures of the point cloud clusters obtained at time 𝑡 = 𝑘 + 1. In order to compare the likeliness of two descriptors, 

the Chi-square distance is calculated among all the stored signatures. There is a match, indicating that both descriptors belong 

to the same cluster observed at different epochs, when the calculated histogram distance is smaller than a given threshold. Under 

the certainty of having a cluster identified in two consecutive point data sets, the object association is required in order to link 

the same cluster in both scans. The latter is obtained by coupling the clusters’ centroids of the correspondent matched descriptors. 

 

3) Point clouds registration overlaps the scans in order to perform the most accurate possible alignment between them, finding the 

correspondent transformation matrix that allows the positioning estimation. The centroids association gives the initial step for 

the registration procedure based on Singular Value Decomposition (SVD) [38] finding the initial rotation matrix, and then the 

correspondent translation vector after the rotation transformation. Furthermore, fine alignment aids to reduce this error, making 

the registration more accurate. For that, the Iterative Closest Point (ICP) [39] algorithm reduces the rotation and translation 

values in a given number of iterations until the error is an admissible value for the correspondent application. The final estimated 

agent position in sensor coordinates can be written as 

 

𝑥𝑘+1 = [
𝑅ICP𝑅SVD 𝑅ICPtSVD + tICP

0 1
] 𝑥𝑘, (4) 

 

where the final translation vector 𝑡𝑓3×1
= 𝑅ICPtSVD + tICP indicates the estimated displacement, and the final rotation matrix 

𝑅𝑓3×3
= 𝑅ICP𝑅SVD shows the change in orientation. Those two elements are the input for the integration filter. For faster 

calculations, the rotation matrix 𝑅𝑓 is converted into a quaternion 𝑞𝑓 [40]. 

 

The algorithm has been implemented and is currently under test. In Fig. 11 the debugging output within MuSNAT is displayed 

for a test drive with the VLP16 mounted on the roof top of our measurement van while driving on a parking lot. Within the 

context of LiDAR processing it is important to understand which clusters have been identified and matched and thus a graphical 

debugging output was also added. 

 



 
Fig. 11: Receiver log showing relevant information related to the navigation module: number of frames per epoch, displacement and estimated 

velocity of the vehicle [Top]. Visualization of a point cloud after clustering (green points) at a certain epoch and the displacement vector (red 

line) computed between the current and previous frame [Bottom]. 

 

USER INTERFACE AND SQL DATA STORAGE 

The GUI framework was changed from C++ with Qt to C# with Windows Presentation Foundation (WPF). This allows faster 

development with modern frameworks and programming languages. The advantages of C# include modern language features, a 

managed address space that supports garbage collection and a larger collection of open-source libraries that can be used. The GUIs 

have been separated to provide a light weight installation for the analysis (MuSNAT-Analyzer) and a full installation for the 

processing (MuSNAT-Core). The analysis GUI can be installed on different working stations, without the core libraries, to read 

previously processed data files (SQLite). 

 

The legacy software stored all processing results in ASCII files, which were then analyzed with MATLAB. This approach was simple 

to use but had two major disadvantages. Longer processing runs created numerous files which were difficult to handle and 

establishing a common timeline could only be achieved with significant programming effort. Therefore, it was decided that the 

MuSNAT-Core stores all processing results (correlator values, discriminator values, sensor data, navigation message bits, GNSS raw 

data and the various PVT solutions) in a single SQL data base that can easily be accessed by Matlab tools and by the MuSNAT-

Analyzer. 

 

The SQLite [41] database provides a simple and fast way to store relational data. The processed data are stored in a single file, and 

no database server needs to be installed. This allows to store all results in an extra file that can be copied to other computers. For 



each processing run, a new output folder is created which contains the SQL database, the used MuSNAT configuration file and all 

legacy ASCII output files. 

 

SQLite is a rational database allowing to establish certain relationships between the entries. The time epoch is the most important 

relationship but also other exist. For example, a batch of DLL discriminator values is linked to a single code pseudorange and the set 

of all code pseudoranges is linked to a single position fix. There exist other database structures, like time a series databases, that 

might be more efficient in this context and this will be further evaluated. SQLite is an embedded database, i.e. running within the 

same process as MuSNAT and no further installation of a server is required. SQLite provides interfaces to many other programming 

languages and is widely spread. 

 

The process of extraction of the processing data until writing to the database has some complexity. It is based on an Object-Relational-

Mapper (ORM) which is a framework analyzing the relevant data structures within MuSNAT (C# classes based on C++ classes) and 

then generates automatically the SQL tables and rows. This ensures a homogeneous naming convention within the source code and 

the SQL database for the many types data elements. 

 

The following process is implemented in MuSNAT: 

 

• Backend of MuSNAT-Core to process data and continuously to produce processing results in the form of C++ objects. 

• This data is passed via callback functions synchronously to a consumer thread, that converts the C++ objects to C# 

(managed) objects and stores them in an array. 

• Another tread runs in parallel (at GUI level) and based on a timer it polls the data from the consumer thread. 

• The consumer thread is thread-safe and protected via a mutex from simultaneous read or write operations; all operations 

occurring in the consumer thread are very fast and do not block the navigation processing. 

• The C# objects are passed to a further thread that writes them asynchronously to the database applying the ORM 

• The write process is monitored and in case the write speed speed is too low, the whole processing needs to be paused in 

order to not run into a buffer overrun situation. Currently the buffer is set to 10 measurement epochs.  

 

The whole logging process has been implemented including GNSS raw data, tracking logs, acquisition functions, tracking multi-

correlator functions, GNSS IF sample spectra, camera images, and inertial sensor data. Currently extensive testing is performed to 

see if the performance is sufficient. LiDAR raw data as well as the raw GNSS IF samples are not logged into the database. 

 

 

 

AUTOMATED BUILD AND TEST ENVIRONMENT 

To guarantee the stability of the builds and the program logic, a build server was installed. This build server is based on Jenkins [42]. 

It uses batch files to build the program on a daily basis or a changed repository and start unit tests. The test results are stored for each 

build and failed tests can be monitored and analyzed. The current configuration of the Jenkins builds the release and the debug 

version of the MuSNAT to ensure a fast and total test framework. Until now the Jenkins runs 7 different tests two for the release and 

five for the debug version. Two routines check the integrated filters and their output. One routine checks the correct starting and 

stopping process. Another test verifies the sending and receiving process of the generated data. A further test inspects the behavior 

of the software and points out memory leaks. Additionally, one routine ensures the correct values and accuracy of the calculated data 

in a long-term test that runs the software for twenty times in a row. Finally, the last test checks the correct generation of the signal 

generator, this is a two staged test shown Fig. 12. In the first stage the stream file is generated and afterwards in the second stage this 

generated file is tested on accuracy and signal power. The output of all routines is stored in an Extensible Markup Language (XML) 

file that contains specific information which tests and substages succeeded or failed. On this basis the Jenkins server decides if the 

software is stable, unstable or a failure. The statistics and current building information is provided via a web interface of the Jenkins 

server. It is visualized and sorted to simplify the error detection process. 



 

 
Fig. 12: Test procedure for GNSS signal generator and receiver 

 

 

CONCLUSIONS AND LESSONS LEARNT 

The development of MuSNAT is currently in a late alpha/early beta phase. The software is fully operational but usability and stability 

still need improvement. Many ipexSR legacy processing modules are of course finished. MuSNAT is understood to be continuously 

updated as new modules and algorithms will be added over time. 

 

As for every large-scale software project maintaining code stability and development of high-performance modules are the core tasks 

that need to be fulfilled by the development team. Good communication and documentation form the basis for that. The early use in 

research projects and for teaching purposes demonstrated the already achieved “added value” to the researcher or to the student. 

 

Generally, it can be said that with CPU based signal processing real-time GNSS signal processing can be achieved for standard multi-

GNSS and multi-frequency configurations operating on signal-in-space. The fast correlation mode provides for many use cases 

sufficient accuracy. The use of a GPU seems promising but a few more steps need to achieved before the GPU will become the 

workhorse of GNSS signal processing.  

 

Regarding use of sensor data and navigation processing it was noted that only LiDAR processing (in this early version) seems to 

require a slightly higher computational effort. This has to be monitored and eventually be optimized. The use of the SQL database 

to store all processing data in a single file was highly appreciated and gives more concise processing results but the SQL writer 

routines clearly deserves some optimization.  

 

The number of external libraries has now been consolidated and for the foreseeable future no further libraries need to be added. But 

if this turns out not to be true (e.g. if a Simultaneous Localization and Mapping (SLAM) library shall be added) the use of the vcpkg 

system provides means for a hopefully easy integration.  

 

During the early development stages, it was also investigated if a platform independent software can be created which runs on PCs 

(Windows) and on mobile devices (Android). A number of ideas has been pursued starting from the Android support of Visual Studio 

to finally cmake-based solutions. It was found that Visual Studio 2017 seems not to cover the full range vcpkg libraries for Android, 

and the variety of dependences (low level Win32 calls, IPP, CUDA, pcl, …) renders creating of a cmake based toolchain a time-

consuming software engineering task. Finally, it was decided that for future navigation projects at ISTA related to smartphone 

positioning, the Android devices serve ‘only’ as data logger and the data is then analyzed via MuSNAT on a PC in post-processing. 

If key algorithms shall run in real-time on an Android device porting of those algorithms without the MuSNAT framework shall be 

considered.  
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APPENDIX A – TRACKING PERFORMANCE VERIFICATION 

 

 

Code/phase noise vs carrier-to-noise ratio 

 

 

Fig. 13:  L1/E1/L2CM Code Noise 

 

Fig. 14:  L1/E1/L2CM Phase Noise 

 

 

 

 



 

 

 

Fig. 15: - L5/E5a/E5b Code Noise 

 

 

Fig. 16: - L5/E5a/E5b Phase Noise 

 

 

 

 

  



Measured receiver loop discriminator noise plots 

 

 

 
 

Fig. 17: DLL, PLL and FLL discriminator logs for the considered verification signals 

 

 

 

 

 

 

 

 

 

  



APPENDIX B.1 – GPU CODE SNIPPET FOR REPLICA GENERATION 
// compute GNSS replica 
// replica signal as half2 (I/Q-signal) 
// basenband waveform real-values (as half) 
// fIniPhase ... initial carrier phase in [rad] 
// fDeltaPhase ... delta carrier phase in [rad] 
// fIniCodePhase ... intial code phase in [subchip] 
// fDeltaCodePhase ... delta code phase in [subchip] 
// N ... number of samples to compute 
__global__ void genGnssReplicaKernel(CUDA_SAMPLE_TYPE *replica, const half *baseband, const float fIniPhase, const float fDeltaPhase, const 
float fIniCodePhase, const float fDeltaCodePhase, const int N) 
{ 
 int index = blockIdx.x * blockDim.x + threadIdx.x; 
 int stride = blockDim.x * gridDim.x; 
 
 half2 hCarrier; 
 float fCodePhase; 
 float fCarrPhase; 
 int nSubchipIdx; 
 half2 hSubChipValue; 
 half2 hCarrOffset; 
 float f2Pi=6.28318530717959; 
  
 hCarrOffset.x = 1.5707963267949; 
 hCarrOffset.y = 0.0; 
 
 // CUDA loop over all samples 
 for (int k = index; k < N; k += stride) 
 { 
  // code replica 
  fCodePhase = fIniCodePhase + k * fDeltaCodePhase; 
  nSubchipIdx = floorf(fCodePhase); 
  hSubChipValue = __half2half2(baseband[nSubchipIdx]); 
 
  // carrier replica (cos in .x, sin in .y) 
  fCarrPhase = fIniPhase + k * fDeltaPhase; 
  fCarrPhase = (fCarrPhase - floorf(fCarrPhase))*f2Pi; // phase computation done with 32-bit float 
  hCarrier = h2sin( // carrier NCO 
      __hadd2(  
       __half2half2(  
        __float2half(fCarrPhase) // convert 32-bit phase to 16-bit  
       )  
      , hCarrOffset ) // apply pi/2 offset for cosine 
     ); 
   
  // product 
  replica[k] = __hmul2(hSubChipValue, hCarrier ); 
 } 
} 

 

  



APPENDIX B.2 – GPU CODE SNIPPET CORRELATION (DOT-PRODUCT, DIRECT VERSION WITH GLOBAL MEMORY) 
// parallel computation of dot-products 
// x ... list of first vectors 
// y ... list of second vectors 
// dot ... list of resulting dot products 
// n ... list of vector lengths  
// maxn ... maximum length 
// N ... number of vectors 
__global__ void superDotProductKernel(const CUDA_SAMPLE_TYPE **x, const CUDA_SAMPLE_TYPE **y, float *dot, unsigned int *n, const unsigned int 
maxn, const unsigned int N  ) 
{ 
 half2 temp = __float2half2_rn(0.f); 
 const half2   *myx; 
 const half2   *myy; 
 unsigned int myn; 
 int corridx = blockIdx.x, s2, s = STRIDE; 
 __shared__ half2 _dot[STRIDE]; 
 
 // init part-sums to 0.0 
 _dot[threadIdx.x] = __float2half2_rn(0.f); 
 __syncthreads(); 
 
 myn = n[corridx]; // length of product 
 myx = x[corridx]; // input 1 
 myy = y[corridx]; // input 2 
 
 // do part sums (note: there is only one warp per correlator I or Q) 
 for (int i = (threadIdx.x); i < myn; i += STRIDE ) temp = __hfma2(myx[i], myy[i], temp);  // temp += myx[i]*myy[i] 
 
 // sum correlator I/Q values in _dot (one warp per value) 
 _dot[threadIdx.x] = __hadd2( _dot[threadIdx.x],  temp ); 
 __syncthreads(); 
 
 // horizontal summation over all _dot values within on warp to obtain resp. correlator I/Q value  
 while (s > 1) 
 { 
  s2 = s >> 1; 
  if (threadIdx.x < s2) 
   _dot[threadIdx.x] = __hadd2( _dot[threadIdx.x], _dot[threadIdx.x + s2] ); 
  __syncthreads(); 
  s = s2; 
 } 
 
 // finally convert correlator value from FP16 to FP32 
 if (threadIdx.x == 0) 
 { 
  dot[2 * corridx] = float(_dot[0].x); 
  dot[2 * corridx + 1] = float(_dot[0].y); 
 } 
} 
 
 
 
 
 
 



APPENDIX B.3 – GPU CODE SNIPPET CORRELATION (DOT-PRODUCT, SHARED MEMORY VERSION) 
// x ... first signal 
// y ... second signal (plus SUPERDOTPRODUCTKERNEL_BARRIER zeros padded at beginning and end) 
// dot ... list of resulting dot products 
// len ... correlation length 
// off ... list of offsets 
// N ... number of correlators 
// stride ... internal parameter to distribute among kernels 
__global__ void superDotProductSharedKernel(const half2  *x, const half2  *y, float *dot, const unsigned int len, const int *off, const 
unsigned int N) 
{ 
 __shared__ half2 reg_dot[SUPERDOTPRODUCTKERNEL_MAX_THREAD]; // dot-product values for one region and one correlator values 
 __shared__ half2 reg_x[SUPERDOTPRODUCTKERNEL_REGION_SIZE]; // region copy of vector x 
 __shared__ half2 reg_y[SUPERDOTPRODUCTKERNEL_REGION_SIZE + 2 * SUPERDOTPRODUCTKERNEL_BARRIER]; // region copy of vector y (plus 
barrier) 
 
 // compute required number of regions 
 int no_regions = (len + SUPERDOTPRODUCTKERNEL_REGION_SIZE - 1) / SUPERDOTPRODUCTKERNEL_REGION_SIZE; 
 int reg_offset; 
 
 // init correlation products to 0.0 
 if (blockIdx.x == 0) 
 { 
  for (int n = threadIdx.x; n < 2 * N; n += blockDim.x) 
  { 
   dot[threadIdx.x] = 0.0; 
  } 
 } 
 __syncthreads(); 
 
 // loop over all regions 
 for (int region_idx = blockIdx.x; region_idx < no_regions; region_idx += gridDim.x) 
 { 
  // copy samples from device global memory to shared memory 
  reg_offset = region_idx * SUPERDOTPRODUCTKERNEL_REGION_SIZE; 
 
  for (int n = threadIdx.x; n < SUPERDOTPRODUCTKERNEL_REGION_SIZE; n += blockDim.x) 
  { 
   reg_x[n] = x[n + reg_offset]; 
   reg_y[n] = y[n + reg_offset]; 
   reg_y[n + SUPERDOTPRODUCTKERNEL_REGION_SIZE] = y[n + reg_offset + SUPERDOTPRODUCTKERNEL_REGION_SIZE]; 
  } 
  __syncthreads(); 
 
  // define correlator/thread layout 
  int stride = blockDim.x / N; 
  int corr_no = threadIdx.x / stride; // correlator number 
  int loc_thread_idx = threadIdx.x % stride; 
 
  // compute correlation value "corr_no" in that region 
  half2 temp = __float2half2_rn(0.f); 
  int myoff; 
 
  if (corr_no < N) myoff = off[corr_no]; 
 
  // thread-local loop for one correlation value and one region and one stride value 



  int reg_length = min(len - reg_offset, SUPERDOTPRODUCTKERNEL_REGION_SIZE); 
  if (corr_no < N) 
  { 
   for (int i = loc_thread_idx; i < reg_length; i += stride) 
   { 
    temp = __hfma2(reg_x[i], reg_y[i + myoff + SUPERDOTPRODUCTKERNEL_BARRIER], temp); 
   } 
   reg_dot[loc_thread_idx + stride * corr_no] = temp; // assume atomic add 
  } 
  // put stride-wise sums into shared memory 
 
  __syncthreads(); 
 
  // stride-wise summation 
  int s = stride; 
  int s2; 
  while (s > 1) 
  { 
   s2 = s >> 1; 
   if (loc_thread_idx < s2 && corr_no < N) 
    reg_dot[loc_thread_idx + stride * corr_no] = reg_dot[loc_thread_idx + stride * corr_no] + 
reg_dot[loc_thread_idx + stride * corr_no + s2]; 
   __syncthreads(); 
   s = s2; 
  } 
 
  // sum-up regions to obtain full correlation values 
  if (loc_thread_idx == 0 && corr_no < N) 
  { 
   atomicAdd(dot + 2 * corr_no, float(reg_dot[stride * corr_no].x)); 
   atomicAdd(dot + 2 * corr_no + 1, float(reg_dot[stride * corr_no].y)); 
  } 
  __syncthreads(); 
 } 
} 
 

  



APPENDIX B.4 – GPU TIMING OF MUSNAT WHILE TRACKING GNSS SIGNALS WITH GPU  

 
 


