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ABSTRACT  

 

This work is composed by two main sections. Firstly, the paper presents how our system, consisting of a GNSS receiver 

antenna, an IMU and a LiDAR, is used in order to obtain high precision maps through the georeferencing of LiDAR point 

clouds. An accuracy assessment of the system is conducted, which also gives us insights on the quality of LiDAR range 

measurements for autonomous driving applications. The assessment is done by georeferencing the obtained point clouds of 

extracted buildings and comparing them against a supporting measuring system like a total station. The building extraction is 

done by performing an approximation of the mathematical model of a plane to the facades that composes the building in both, 

the LiDAR and the supporting measurement system data.  

 

Additionally, the paper also indicates the proposed pose determination method of a mobile agent using LiDAR data. Thanks to 

the advantages of active, 3D sensors, diverse objects in the environment can be detected as individual point sets, or clusters. 

Each of segmented objects can be used as a landmark to figure how the agent is located with respect to those structural elements. 

The algorithm is capable of detecting the clusters in one point cloud, and finding the most alike point set on a subsequent scan. 

This is achieved by comparing global descriptors for point cloud data. The Ensemble of Shape Functions (ESF) is selected as 

the cluster descriptor. The cluster matching is performed by comparing the clusters one-to-one, calculating the minimum Chi-

squared distance among their descriptors. Smaller this distance, greatest the probability of being the same cluster in distinct 

epochs. The resultant cluster correspondences for the whole point cloud allow finding the rigid transformation between the 

point clouds. An initial coarse alignment among the clouds based on the centroids of each matched cluster was performed, 

followed by a fine alignment in order to reduce errors by the use of the Iterative Closest Point (ICP) algorithm. This approach 

is valid for urban environments, or for those where many objects can be segmented as clusters. 

 



Finally, a practical case is described in order to show how it is planned to use the outcome of the highly precise georeferenced 

point clouds and the pose estimation method using LiDAR. 

 

INTRODUCTION  

 

Precise localization for autonomous driving is a highly important topic due to the requirements of the application itself. It brings 

robustness to the driving assisting functions, aids safety features like collision avoidance and is intended to be used for 

controlling and improving traffic conditions, among other advantages [1]. The Global Navigation Satellite Systems (GNSS) 

position solution is universally used for this purpose and although this technology continues under development, it still has the 

disadvantage of having outages or signal degradation (intentional/unintentional) in certain environments (forests, tunnels, cities 

or indoor areas). Inertial Navigation Systems (INS) have played an important role to decrease this effect, nevertheless, due to 

the nature of the sensor, its navigation solution tends to drift after a short time [2].  

 

To correct the measurement errors from the INS, different researcher groups have tried to include information provided by 

other sensors, e.g. [3], [4], [5]. The most common sensors used are based on feature extraction from visual and LiDAR systems 

[6]. Although visual systems are more mature and cheaper than LiDAR, they have the disadvantage of being passive sensors, 

i.e. they extensively rely on the lighting conditions of the environment. Instead, LiDAR, an active sensor, operates 

independently of the availability of natural or artificial light. Moreover, the fast improvements in LiDAR technology are making 

it more promising because its initial drawbacks are being solved. For example, LiDAR is switching from being a mechanical 

device (steering mirrors) to an electronic one (steering electronically the lasers), which in turn will make it smaller, cheaper 

and more robust.   

 

The scope is to model and understand how LiDAR data can be used for absolute and relative positioning. As for further studies, 

it is intended to use this outcome to achieve a deep sensor fusion that integrates GNSS, INS and LiDAR measurements in order 

to provide a precise and robust position for autonomous navigation. 

 

ABSOLUTE POSITIONING  

 
The key aspect to discuss within the current section is to conclude if the accuracy achieved in the implemented direct 

georeferencing method of the LiDAR point clouds can be used for autonomous driving. The georeferencing is done by a sensor-

driven approach, according to the classification in [7], it is also worth to mention that the procedure does not use control points 

information as suggested in [8]. Moreover, the intention is to use the georeferenced data to compute the absolute position of 

the LiDAR sensor and give it as an initial state to the relative navigation algorithm to keep computing the absolute position of 

the car, when the estimated position error provided by the GNSS-INS system exceeds a certain threshold. 

 

For this section, a short description of the sensors and its function is presented. Additionally, the implemented direct 

georeferencing procedure is explained. Moreover, the reference system used to assess the accuracy of our system is detailed, 

and to conclude, the results are shown.  

 

GNSS-INS-LiDAR system 

 
The LiDAR selected to be mounted in our vehicle is the Velodyne Puck VLP-16. With this sensor, range measurements up to 

100 meters can be achieved. It consists of 16 lasers with a 903 nm wavelength, separated vertically by 2°. The vertical FOV is 

30° and the horizontal FOV is 360° as shown in Figure 1[left].  

 

 
 

Figure 1. Velodyne Puck VLP-16 channel configuration scheme [left] and its spherical coordinate frame [right] (courtesy of Velodyne 

LiDAR, Inc.) 



For each laser point an azimuth angle, α, and an elevation angle, ω, are decoded as well as the range measurement, 𝑅. A detailed 

scheme is shown in Figure 1 [right]. Those extracted values are used to compute the coordinates of the laser point in the sensor’s 

local reference frame by following the given equations:  

 

𝑥 = 𝑅 ∗ cos(𝜔) ∗ sin(𝛼) 

𝑦 = 𝑅 ∗ cos(𝜔) ∗ cos(𝛼) 

𝑧 = 𝑅 ∗ sin(𝜔) 

(1) 

 

The interface box of the LiDAR is connected to a patch antenna to use the GPS timestamp extracted from the NMEA message 

and it is used to synchronize the LiDAR measurements with other sensors. In order to give an absolute position and orientation 

to the point clouds, a GNSS antenna receiver and a MEMS IMU are installed as well on the top of the vehicle (See Figure 2 

[right]). The sensors used for this purpose are a Trimble R10 and an Xsens MTi-G-710, respectively. The IMU had connected, 

like the LiDAR, a patch antenna for time synchronization. A scheme of the interface setup between the sensors can be seen in 

Figure 2[left]. 

 

The data obtained from the GNSS antenna and the IMU is introduced to a post-processing tool that allows their integration. 

The IMU supports the navigation solution when there are signal outages. Having the integration of the IMU will allow us to 

compare in our future work the navigation solution of a) GNSS+INS versus b) only GNSS plus the LiDAR correction. 

Correction data from a close reference station was obtained, the baseline is approximately 9.2 km. The tool uses a loosely 

coupled integration architecture and the overall solution can achieve an accuracy of 2-3 cm. Nevertheless one must consider 

that it highly depends on certain factors like signal obstructions, multipath, satellite geometry, atmospheric conditions, among 

others.  

 

 
Figure 2. Scheme of the interface setup [left] and the mounting of the sensors [right] 

 

Direct Georeferencing of LiDAR point clouds 

 

Direct georeferencing through the use of GNSS-INS systems has been very popular and has been used greatly in airborne 

surveys [9], as it has demonstrated to achieve a good level of accuracy using a minimum of ground control [10] [11]. Especially 

for the mobile mapping industry, this method has opened the opportunity to access a wide variety of uses of the data. Moreover, 

this method has not only been used with the traditional airborne systems but as well in other mobile agents like cars or drones. 

The attention in combining direct georeferencing with LiDAR measurements has increased due to the benefits that technology 

brings over the traditionally used camera. 

As described in the previous section the sensors are mounted on plates on top of the car. The assembly is carried out in such a 

way that the local frames of the IMU and the LiDAR follow the X-Y-Z axis definition of the vehicle frame, which means that 

the Y-axis points to the driving direction, X-axis points to the right side of the car and Z-axis points up.  

 

 



Table 1. Lever arm offset 

IMU to GNSS antenna 
(Xsens center to the L1 Phase center) 

x = -0.180 m 

y = -0.058 m 

z =   0.165 m 

LiDAR to GNSS antenna  
(VLP-16 mounting point to L1 phase center) 

x = -0.530 m 

y = -0.058 m 

z =   0.178 m 

 

All the laser points that constitute the point cloud are referred to the optical center of the LiDAR, where the origin of its 

body frame is defined. In order to transform the measurements from the LiDAR body frame to a global reference frame, 

first one has to compensate the difference between the position of the L1 phase center of the GNSS antenna and the optical 

center of the LiDAR, where the measurements are referred to. During the post-processing, the tool that integrates the 

information of the IMU and the GNSS receiver, estimates the lever arm, 𝐿𝐴, and it is consistent with the one measured and 

shown in Table 1. 

𝐷𝑃𝑉𝐿𝑃 = 𝐷𝑃𝑉𝐿𝑃 − 𝐿𝐴 + 𝑂𝐶 
 

(2) 

The LiDAR and the IMU are rigidly mounted on the same plate (next to each other) to avoid any type of distortion due to 

stress. After the above translation, the following rotation has to be applied to give the correct orientation to the laser points.  

 

𝑅 =  𝑅𝑧(−𝑦𝑎𝑤) ∗ 𝑅𝑥(𝑝𝑖𝑡𝑐ℎ) ∗ 𝑅𝑦(𝑟𝑜𝑙𝑙) 

𝐷𝑃𝑛 = 𝑅 ∗ 𝐷𝑃𝑉𝐿𝑃  
(3) 

 

 

 

 
Figure 3. Geodetic, ECEF and local ENU coordinate systems 

 

After obtaining 𝐷𝑃𝑛, which is the laser point in the ENU coordinate system shown in blue on Figure 3, one can transform the 

coordinates to ECEF and then to any other mapping reference frame by  

 

𝑃𝑒 = (𝑅𝑒/𝑛 ∗ 𝐷𝑃𝑛) + 𝑃𝑒,𝑟𝑒𝑓 , 

 
(4) 

where 𝑅𝑒/𝑛 is the rotation matrix from local ENU to ECEF and  𝑃𝑒,𝑟𝑒𝑓  is the position in ECEF coordinates of the origin of the 

local ENU frame.  The value given to 𝑃𝑒,𝑟𝑒𝑓  is the position we get from the GNSS-INS integration process, which has to be 

transformed to the ECEF coordinate system.  

Finally 𝑃𝑒 is transformed to WGS84 𝑃𝑊𝐺𝑆84 = (
𝜆
𝜑
ℎ

) according to [12]. 

Figure 4 and Figure 5 show the results of the procedure. In the first image, just 3 different scans from the LiDAR are shown 

and superposed on Google Earth. On the second image, one can see more scans plotted that correspond to different epochs 

along the same trajectory followed by the car. Each scan is plotted with a different color and in a light blue square, one can also 

see the position of the car w.r.t. the GNSS receiver antenna at the moment in which the data is georeferenced. 



 

 
Figure 4. Rendering of 3 georeferenced LiDAR point clouds on Google Earth 

 

 

 

 
Figure 5. Direct-geo-referencing of LiDAR data at different times 

 

Accuracy Assessment  

 
To assess how accurate the system performs, including the LiDAR in terms of range accuracy, a supporting measurement 

system is used. This is done by acquiring data with our system in a measurement campaign and processing it according to the 

explanation given in the previous section. The georeferenced data is compared with the data coming from the reference system 

allowing us to conclude the overall performance of the system and thus the LiDAR measurements’ accuracy.    

  

According to [7], the most accurate and conventional method for the georeferencing of terrestrial laser scanning data is using 

a total station. Therefore, the Multistation MS60 is used as a reference system. The MS60 provides precise long-range scanning 

with range accuracy of 2mm + 2ppm when the target is between 0m to 500m. 

  

Figure 6 shows the place in which the measurements with our system were done. The measurement campaign consisted of the 

following steps: 1) 15 minutes waiting time for the GNSS receiver antenna to solve ambiguities and get a fixed position; 2) 8-

shapes trajectories for the IMU kinematic calibration (used in the forward processing of the GNSS-INS integration); 3) two 



rounds driving with the car around the testing area for the sensors’ data collection; 4) 8-shape trajectories for IMU kinematic 

calibration (used in the reverse processing of the GNSS-INS integration). The trajectory is depicted with green points in Figure 

6. From that trajectory, 3 epochs were chosen to compare the georeferenced LiDAR data with the reference data.  

 

The comparison consisted of choosing the same target in both datasets (the building marked with the red ellipse in Figure 6) 

and computing the difference in translation and rotation w.r.t. the GNSS antenna. In Figure 7 can be seen how, after the 

measurement campaign with our system, the MS60 was set up. It is worth to mention that the data coming from the MS60 is 

obtained in the UTM coordinate system. This is due to the setup performed before scanning the target with the Multistation, in 

which the absolute position of the MS60 (measured with the R10) is given to the instrument as well as two back sights 

measurements (obtained with the R10 as well) so that the MS60 can compute the right position and orientation of the scan data. 

This pre-step allow us to have the data in a global coordinate system instead of the instrument’s local coordinate system. 

 

 
Figure 6. The testing area in the facilities of the University of the German Federal Armed Forces (UniBwM).  

The red ellipse points the chosen target to extract from the LiDAR point clouds. The green dots show the trajectory done with the car. 

 

 
Figure 7. Scanning of the target with the reference system (MS60) 

The data coming from the Multistation is dense and equally distributed along the façade of the targeted building. The 

sensor is capable of retrieving structural ornaments of the façade or other elements like windows, frames or even surface 

reliefs of the target. On the other hand, the lasers of the LiDAR VLP16 may not intersect the whole target at certain epochs, 

the scan data follows the geometry of the sensor and it is not capable to retrieve millimeter-level details of the façade. 

Therefore, basic shapes like planes and cylinders were extracted from both sets of data in order to compare them. In the 

case of the MS60, when trying to find the plane that best fits the data corresponding to the wall, a maximum distance of 

1cm from an inlier point to the plane is allowed. For the LiDAR VLP16, the maximum allowed distance is set to 10 cm. 

The restriction tries to ensure that most of the data points belong to the wall rather than any other structural ornaments. 



The same criteria and values were used for the cylinder extraction. After the data is filtered and only the points 

corresponding to the plane that best describes the wall of the building are obtained (see Figure 8), Iterative Closest Point 

(ICP) algorithm [13] is used in order to obtain the affine transformation between both point clouds.     

 
Figure 8. Comparison between VLP-16 and MS60 (filtered point clouds) 

In Table 2 is presented the obtained results. As said before, different sets of georeferenced data at different epochs are 

examined. In Figure 9 is shown the approximate position in which the evaluated data was acquired. For P1 and P2 the 

results are quite similar, the errors in North and East do not exceed the decimeter level. The difference seen in the 

results could come from the position accuracy of the GNSS-INS solution which does not exceed 2cm along the whole 

trajectory or it could be as well errors in the range measurements of the VLP16, which should be in the range of 2cm-

3cm. For the attitude, roll and pitch are in the range of the expected values according to the specifications of the sensor 

in dynamic scenarios (Typ|Max: 0.3°|1.0°); the heading value is the one showing a greater difference as a typical 

variation of 1° should be expected. 

The acquired data in P3 did not allow a fair comparison with the reference due to the perspective in which it was 

taken. The cylindrical structure marked with a pink square, as it is shown in Figure 9, occlude the view of the 

LiDAR, meaning that not many measurements were taken from the remaining part of the wall and therefore resulted 

in a poor plane description of the wall. This is reflected in the results shown Table 2 in for P3.  

 

 
Figure 9. The approximate position of the LiDAR data acquisition along the car trajectory (P1, P2, and P3) 



 
Table 2. Error in position and attitude of our system according to the accuracy assessment 

Perspective East error [m] North error [m] Roll [deg] Pitch [deg] Yaw [deg] 

P1 -0.0629 0.0029 -0.4762 0.5133 -1.1443 

P2 0.0244 -0.0524 -0.7519 0.0129 -1.7418 

P3 -0.5521 0.2256 2.1439 2.0584 -1.4359 

 

RELATIVE POSITIONING 

 
For the second part of our work, a method for the position estimation of a mobile agent (a car) is presented. The method is 

divided into the following steps: 1) preprocessing and object segmentation; 2) object recognition and association and 3) point 

cloud registration and fine alignment 

 

Point cloud preprocessing and object segmentation 

 

The LiDAR is used to capture the surface of the surrounding objects. The agent (e.g. a car) moves, and the sensor records the 

environment. Data should be cleaned for a better outcome. Elimination of outliers is required to enhance the integrity of the 

navigation pipeline. For each point, the mean distance to the nearest neighbors is computed [14]. Those neighbor points whose 

mean distances are outside a general distance mean threshold and standard deviation threshold are removed from the point 

cloud. Some deliberate data discard is necessary for sake of better quality at the results, i.e. very far points may provide useless 

information. The ground could also be eliminated, under the assumption it is even, and it provides no advantages for the 

application. A range filter, based on considered distance thresholds in each sensor axis, encloses the most useful points. 

 

It is possible to subdivide the scene scanned into smaller sets, called clusters. Each cluster is assumed to be one object in the 

surroundings. Different methods are used for clustering point clouds [15]. In this approach, the Euclidean segmentation method 

[14] is employed, where the point cloud is subdivided into smaller sets based on the Euclidean distance among the points, under 

a distance threshold. A cluster is composed by all the points whose distance to their closest neighbors is lower than the limit. 

In Figure 10, the result of clusters segmentation is shown. 

 

 
Figure 10. Computed centroid of each cluster 

Object recognition and association  

 

Global descriptors [16] play a big role in the object recognition task. In this research, the Ensemble of Shape Functions [17] is 

a global descriptor that does not require the normal vectors estimation of the surfaces sensed, improving the processing speed. 

After the cluster segmentation at time 𝑡 = 𝑘, the ESF descriptor is calculated for each of the clusters. The descriptors are stored 



for further matching against the signatures of the point cloud clusters obtained at time 𝑡 = 𝑘 + 1. In order to compare the 

likeliness of two descriptors, the Chi-square (𝜒2) distance is calculated among all the stored signatures using the relationship 

𝜒2 =
1

2
∑

(𝑥𝑖 − 𝑦𝑖)2

𝑥𝑖 + 𝑦𝑖

640

𝑖=1

 (5)  

 

Those descriptors, whose distance is smaller than a given threshold, are considered as nearest neighbors. That is, both 

descriptors belong to the same cluster calculated for different epochs. The Chi-square distance is calculated [18] by means of 

brute force: each cluster descriptor from the point cloud measured at 𝑡 = 𝑘 + 1 is compared against all the stored cluster 

descriptors from the point cloud recorded at 𝑡 = 𝑘. Those distances greater than the threshold produce unmatched descriptors, 

which are discarded from both clusters lists. Two matched ESF descriptors are shown in Figure 11, as nearest neighbors using 

the calculation of the Chi-square distance. 

 

 
Figure 11.Matching of two ESF descriptors from the same cluster in different epochs. 

Under the certainty of having a cluster identified in two consecutive point data sets, the geometric association is required in 

order to link the same object in both scans. The centroid of a point set is just the average value for the 3D coordinates of all the 

points, by means of 

 

�̅� =
1

𝑁
∑ 𝑃𝑖

𝑁

𝑖=1

 (6)  

 

 

With the centroids, each coupled signature leads to the correspondent cluster association, as shown in Figure 12. 

 



 
Figure 12. Association of clusters centroids based on descriptor matching. Orange cloud recorded at t=k, green cloud recorded at t=k+1. 

Point cloud registration and fine alignment 

 

It is intended to overlap the consecutive scans in order to perform the most accurate possible alignment between them, finding 

the correspondent transformation matrix that allows such positioning. The centroids association gives the initial step for the 

registration procedure. Singular Value Decomposition (SVD) [19] is useful in point cloud processing in order to align two point 

clouds, finding the rotation matrix between them. For this particular case, two new point clouds, 𝑃′ and 𝑄′, are composed by 

the correspondent centroids found in 𝑃 and 𝑄, respectively. The centroid of each new cloud is calculated, and a covariance 

matrix is formed using the clusters’ centroids, as follows 

 

𝐶 =
1

𝑁
∑(𝑃′𝑖 − 𝑃′̅)(𝑄′𝑖 − 𝑄′̅)

𝑁

𝑖=1

 (7)  

 

The SVD procedure is applied then to find 3 matrices that multiply each other: 
 

𝐶 = 𝑈𝑆𝑉𝑇 (8)  

 

The purpose is to find the matrices 𝑈 and 𝑉, because the rotation matrix between the two point clouds is defined by the product 

 

𝑅SVD = 𝑉𝑈𝑇  (9)  

 

Using the resultant matrix, the translation between the clouds is 

 

𝑡SVD = 𝑄′̅ − 𝑅SVD𝑃′̅ (10)  

 

The obtained rotation matrix and translation vector are then employed along with the original cloud 𝑄 at 𝑡 = 𝑘 + 1, to make 

an initial coarse alignment between this and 𝑃: 

 

𝑄IA = 𝑅SVD𝑄 + tSVD (11)  
 



The previous process helps to reduce the distance and rotation between the point clouds, although the overlapping is far from 

optimal. Fine alignment aids to reduce this error, making the registration more accurate. The employment of the ICP algorithm 

[13] is the crucial method to obtain this enhancement. ICP reduces the rotation and translation values in a given number of 

iterations until the error is an admissible value for the correspondent application. When any of the boundary conditions are met, 

the algorithm should provide the rotation matrix, 𝑅ICP, and translation vector, tICP, matching the two point clouds as best as 

possible 

 

𝑄FA = 𝑅ICP𝑄IA + tICP (12)  
 

Using Equations 11 and 12, the final transformation matrix can be written in homogeneous coordinates as 

 

𝑇 = [
𝑅ICP𝑅SVD 𝑅ICPtSVD + tICP

0 1
] (13)  

 

And the result of the registration process can be seen in Figure 13. 

 

 
Figure 13. Point clouds final registration after coarse and fine alignments 

 
Detection of cylindrical objects 

 

Detecting the fixed objects in the environment provides better ancillary elements. These objects do not change their position, 

in comparison to cars, motorcycles, pedestrians, bikes, among others. This object detection is usually performed using the 

whole point cloud, taking a lot of time for the processing. Trees and poles are the desired objects to be detected, due to their 

cylindrical shape, and the symmetry axis is generally vertical, almost matching the Z-axis of the sensor. The method used for 

cylinder detection is known as RANdom SAmple Consensus – RANSAC [20], although it can also detect planes, spheres, and 

other 3D geometric primitives. The drawback of this algorithm is the requirement of the normal vectors estimation of the sensed 

surface because it evaluates the orientation of those vectors to determine if the intended geometrical model can be fitted on the 

point set. 

 

The clusters as independent clouds could reduce the processing time because the number of points per cluster is much smaller 

than those of the entire point cloud. The RANSAC algorithm is applied for each cluster, giving as a result if a cylindrical model 

could be fitted to the data set or not, i.e. it detected a tree/pole. Figure 14 illustrates the detection outcome for some trees in the 

surroundings. 



 
Figure 14. Detected cylinders from individual clusters. The red axis of the sensor reference frame is aligned with the car’s longitudinal 

axis. 

 

Experiment results 

 

The main purpose of this workflow is to obtain the displacement vector of the agent based on solely LiDAR measurements. 

The multiplication of the initial position of the sensor with the final transformation matrix shown in Equation 13 provides the 

estimated final position. The expected result is the generation of the agent’s trajectory based on consecutive scans from the 

LiDAR sensor. Figure 15 illustrates the sensor displacement after the processing of two consecutive point clouds. However, 

bad cluster matching may provoke poor results in the final position estimation of the sensor. Additionally, a registration drift 

exists when ca. 15-20 frames has been continuously processed, producing a position error in the vertical orientation as can be 

seen in Figure 16. The reasons for this drift may be caused for the absence of the ground, filtered in the first stages of the 

procedure and used to enhance the algorithm’s processing speed. The absence of ancillary points in the z-axis of the LiDAR 

may produce this error accumulation. 

 

 
Figure 15. Point Clouds registration and LiDAR sensor displacement between consecutive measurements. Arrow's tail is the initial 

position, and the head is the final position. 

 



 
Figure 16. The vertical drift of LiDAR position after ca. 15-20 frames. The black line is the nominal path and the blue line is the actual 

path. 

On the other hand, the cylindrical objects detection is behaving as planned, although the variation in the estimation on the 

normal vectors may affect the procedure from time to time. For those identified objects, a point in the symmetry axis is recorded 

in order to provide the position of the cylinder’s centerline in the sensor reference frame. Adding the measurements of the 

[GNSS/IMU], the georeferencing of the detected objects allows declaring their position in world coordinates, making possible 

to construct a map meanwhile the position of the agent is also estimated, being the final objective of this method. 

 
PRACTICAL CASE  

 
As said before, it is of our interest to detect fixed structural elements of the environment that the LiDAR is sensing. Fixed 

objects in the environment provide ancillary elements that can be trusted to compute the displacement vector as they do not 

change of position as compared with cars, pedestrians, bikes among others. On the other hand, with the first part of the work 

described in the paper, we are able to georeference accurately point clouds as long as the GNSS-INS system is not in a 

challenging environment. When the GNSS-INS navigation solution cannot provide the level of accuracy that the application 

needs due to the different adversities that technology has to face, the position estimation algorithm (using only LiDAR) is 

triggered to compute the displacement vector between one scan and another. At the same time, the displacement vector can be 

used to correct the last trusted position of the car. Although it has been shown in the previous section that a vertical drift has 

been founded through the LiDAR processing, the error can be minimized with the addition of ground detection. The proposed 

method appears to be a good supporting system for GNSS denied environments (especially suited for urban environments) as 

it is very likely to find fixed objects that can be segmented in the point clouds. 

The example below show images of a measurement campaign done in an urban area. One can see the detection of cylindrical 

objects and its given absolute position at different epochs (see the left side of Figure 17, Figure 18 and Figure 19) superposed 

in Google Earth. The corresponding scan from the LiDAR measurements shows how those elements were seen by the sensor 

(see right side of Figure 17, Figure 18 and Figure 19). As the car continued its trajectory, some elements that appeared in the 

scan of a certain epoch are seen in the next epoch due to the sensor is still able to get measurements of it. For example, in Figure 

18 and Figure 19 is marked with a red circle, elements that must belong to the same object but that have been slightly given a 

different position. 

Further investigation of the errors in the estimated position after a vertical drift correction is needed in order to conclude the 

quality of the solution. 

 

 



  
Figure 17. Georeferencing of cylinder's centroid (Frame 1787).  

 

  
Figure 18. Georeferencing of cylinder's centroid (Frame 1792). 

 

  
Figure 19. Georeferencing of cylinder's centroid (Frame 1795). 

 
CONCLUSIONS 

 
In this paper is proposed how LiDAR could be used for absolute and relative positioning. First, highly accurate georeferenced 

point clouds obtained with our system and the accuracy assessment of the results are presented. The accuracy obtained is the 

sub-decimeter level, although one must keep in mind that the problem encounter with occlusion of targets in real-time 

applications can lead to errors in the object detection procedure and therefore in the position estimation.  

A relative navigation method was also proposed. The method can successfully detect objects with a cylindrical shape, which is 

our main interest as we are interested to detect no moving objects (trees, traffic signs, and post lights) from the LiDAR point 

clouds. When computing the displacement vector, a drift in the vertical component has been detected. 

Finally, a practical case is shown in order to depict the idea of using the computed displacement vector and correct the car’s 

absolute position when the estimated error of the GNSS-INS navigation solution crosses a certain threshold. 



FUTURE WORK 

 

Our future tasks will focus on assessing the quality of the shown practical case as well as the correction of the vertical drift. As 

said at the beginning of the paper, our goal is to develop a deep sensor fusion between GNSS-INS and LiDAR. Currently, we 

are working on the development of interfaces to our self-developed GNSS software receiver, which will allow us to keep 

researching and testing different integration solutions. Also, a more intelligent approach to detect no moving objects in the 

environment from the LiDAR data by means of machine learning is desirable. 
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