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ABSTRACT

This work is composed by two main sections. Firstly, the paper prasanmt®ur system, consisting of a GNSS receiver
antema, an IMU and a LIiDAR, is used in order to obtain high precision maps through the georeferencing of LIDAR point
clouds. An accuracgssessmentf the systemis conducted, which also gives us insights on the quality of LIDAR range
measurements for autonoasdriving applications. The assessmisrmione by georeferencing the obtained point clouds of
extracted buildings and comparing them against a supporting measuring system like a total station. The building extraction is
done by performing an approximatiohthe mathematical model of a plane to the facades that composes the building in both,
the LIDAR and the supporting measurement system data.

Additionally, the paper also indicates the proposed pose determination method of a mobile agent using laDRtucks to

the advantages of active, 3D sensors, diverse objects in the environment can be detected as individual point sess, or cluster
Each of segmented objects can be used as a landmark to figure how the agent is located with respect toufad sdestrets.

The algorithm is capable of detecting the clusters in one point cloud, and finding the most alike point set on a sutzsequent s
This is achieved by comparing global descriptors for point cloud data. The Ensemble of Shape Functions¢ESEdsas

the cluster descriptor. The cluster matching is performed by comparing the clustémsooee calculating the minimum Ghi

squared distance among their descriptBraallerthis distance, greatest the probability of being the same clustéstinct

epochs. The resultant cluster correspondences for the whole point cloud allow finding the rigid transformation between the
point clouds. An initial coarse alignment among the clouds based on the centroids of each matched cluster was performed,
followed by a fine alignment in order to reduce errors by the use of the Iterative Closest Point (ICP) algorithm. This approach
is valid for urban environments, or for those where many objects can be segmented as clusters.



Finally, a practical case is dedoed in order to show how it is planned to use the outcome of the highly precise georeferenced
point clouds and the posstimation method using LIiDAR.

INTRODUCTION

Precise localization for autonomous driving is a highly important topic due tegb#ements of the application itself. It brings
robustnesgo the driving assisting functions, aids safety featuites collision avoidanceand isintended to be used for
controlling and improving traffic conditions, among other advantftjesThe Global Navigation Satellite Systems (GNSS)
position solution is universallysed for this purpose and although this technology continues under development, it still has the
disadvantage of having outages or signal degradation (intentional/unintentional) in certain environments (foreststiesnels, ¢
or indoor areas). Inertial digation Systems (INS) have played an important role to decrease this effect, nevertheless, due to
the nature of the sensor, its navigation solution tends to drift after a shofR}jime

To correct the measurement errors from the INS, different researcher groups have tried to include informationbyyrovided
other sensor®.9.[3], [4], [5]. The most common sensors used are based on feature extiractisisualand LIDAR systems

[6]. Although visual systems are moretor@ and cheaper than LIDAR, they hakie disadvantagef being passive sensors,

i.e. they extensively rely on the lightingonditions of the environmeninstead, LIDAR, an active sensor, operates
independently of the availability of natural or artifidight. Moreover thefast improvements in LIDAR technology are making

it more promising because its initial drawbackslzeig solvedFor example, LiDAR is switching from being a mechanical
device (steering mirrors) to alectronicone Eteering eleconically the lasers), which in turn will make it smaller, cheaper
and more robust.

The scope is to model and understand how LiDAR data can be used for absolute and relative positimnifugthes studies,
it is intended to use this outcome to achieve a deep sensor fusion that integrates GNB8 LINSR measurements in order
to provide a precise and robust position for autonomous navigation.

ABSOLUTE POSITIONING

The key aspect to discuss it the current section is to conclude if the accuracy acthi@vehe implemented direct
geaeferencingnethodof theLIDAR point clouds can be usddr autonomous driving. The gesdferencing is done by a sensor
driven approach, according to the classifion in[7], it is alsoworthto mention that the procedure does usdcontrolpoints
informationassuggestedn [8]. Moreover, thantention is to use the gesferenced dattbo compute the absolute position of
the LIDAR sensor and give &saninitial stae tothe relativenavigation algorithmo keepcompuing the absolute position of
the car when the estimated position error provided by the GNESsystem exceedscertainthreshold

For this sectiona short description of the sensors and its functiopresentedAdditionally, the implemented direct
geaeferencing procedure is explainddoreover thereference system used to assess the acgwf our system is detailed,
andto concludethe results arshown

GNSSINS-LIDAR system

The LIiDAR selected to be mounted in our vehicle is the Velodye& FuP-16. With this sensor,ange measurements up to
100 meters can be achieved. It consistd6lases with a 903 nm wavelengtiseparated vertically by 2°. The vertical FQV
30° and the horizont®OV is 360° as shown iRigurel[left].
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Figure 1. Velodyne Puck VL-B6 channel confE;uration scherfleft] and its spherical coordinate frame [right] (courtesy of Velodyne
LIDAR, Inc.)
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scheme is shown fRigurel [right]. Those extracted valuase used to compute the coordinates ofdkerpointinthes e nsor 6 s

local reference frame by following tlygvenequations:
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The interface box of the LIDAR is connected to a patch antenna to use the@Btampextracted from the NMEA message
andit is useal to synchroniz¢he LIDAR measurementsith other sensordn order to give an absolupmsition and orientation
to the point cloudsa GNSS antenna receiver and a MEMS Idit¢installed as well on the top of the vehi¢f&eeFigure2
[right]). The sensors usédr this purpose ara Trimble R10 andn Xsens MT-G-710, respectivelyThe IMU had connected
like the LIDAR, a patchantenna for time synchronizatiof scheme of the interface setup between the senanrBe seeim
Figure2[left].

The data obtained from the GNSS antenna and theiBMbtroduced to gostprocessingool that allows their integration.
The IMU supports the navigation solution when there are signal outdgeisig the integration of the IMWiill allow us to
comparein our future work the navigation solution of a) GNSS+INS versus b) only GNSS plusDid Lcorrection
Correction data from a close reference station was obtathedaseline is approximately 9.2 Kithe tool uses a loosely
coupled integration architectueand the overall solution cantdeve anaccuracyof 2-3 cm. Nevertheles®ne must onsider
thatit highly depends ogertain factors like signalbstructions, multipath, satellite geometry, atmospheric condjtioneng
others
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Figure 2. Scheme of the interface seflgff] and the mounting of the sensrghf]

** Car cigaretne ghter socket

Direct Georeferencing ofLiDAR point clouds

Direct georeferencinghrough the use of GNSIBIS systemshasbeenvery popularand has been used greatly in airborne

surveyq9], as it has demonstrated to achieve a good level of accuracy using a minimoeommof gwntro[10] [11]. Especially

for themobile mappingindustry, this method has opdthe opportunity to access a wide variety of uses of the data. Moreover,

this method has not only been used with the traditional airlsystemsut as well in other mobile agents like cars or drones.

The atentionin combining direct geeferencing with LIDAR measurements has increased due to the benefiectivadlogy
brings over the traditionally used camera.

As described in the previous section the sensors are mounted on plates on top of the car. The sissernduyout in such a
way that he local frames of the IMU and the LiDARIlow the X-Y-Z axisdefinition of the vehicle frame, which means that
the Y-axis points tdhe driving direction, Xaxispointsto the right side of the car andaxis points up.



Tablel. Lever arm offset

IMU to GNSS antenna v ooeem

(Xsens center to the L1 Phase center z= 0.165m
LIDAR to GNSS antenna o o oeem
(VLP-16 mountirg point toL1 phase centpr| 7 =~ 00

All the laser points that constitutee point cloud are referred to the optical center oLiDAR, where the origin of its
body frameis defined In order to transform the measuramtsefrom theLiDAR body frame to a global reference frame,
first one hado compensate the difference between the position of the L1 phase center of the GNSS antenna and the optical
center of the LIDAR, where the measurements are referreduting the posprocessing, the tool that integrates the
information of the IMU and the GNSS receiver, estimates the lever @rimand it is consistent with the one measured and
shown inTablel.

00 00 006 06

(2)

The LIiDAR and the IMU are rigidly mounted on teame platénext to each othgto avoid any type of distortion due to
stressAfter the above translation, the followingtationhas to be applied to give the correct orientation to ter faoints.
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Figure 3. Geodetic, ECEF and local ENU coordinate systems

After obtainingO 0, which is the lasepoint in the ENU coordinate systeshown inblue onFigure3, one can transform the
coordinates to ECEF and then to any other mapping reference frame by

0 YyzOO0 0 ,
T h (4)

where'Y 5 is the rotation matrix from local ENU to ECEF alid;, is the position in ECEF coordinates of the origin of the

local ENU frame. The value given @by is the position we get from the GNSISS integrationprocess, which has to be

transformed to the ECEF coordinate system.

Finally 0 is transformed t&WGS840 . according td12].

Q
Figure4 andFigure5 show the results of the procedure. In the first imagst 3 differentscans from the LiDARare shown
and superposed on Google Earth. On the second jroagecan see moeansplotted that correspond to differeepochs
along the same trajectory followed by the.&ach scan is plotted with a different color and light bluesquareone can also
see the position of the car w.r.t. the GNSS receiver antennarabthent in which the data is gederenced.
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Figure 5. Direct-gecreferencing of LIDAR data at different times

Accuracy Assessment

To assess how accurate the system performs, including the LIDAR in terms ofa@mgacy a supporting measurement
system is usedrhis is done by aquiring data with our system in a measurement campaign and processiogrdingto the
explanation given in the previous sectidhegeoreferencedatais compared with thdata coming from theeference system
allowing us to conclude the overall performance of the system and thus the bii#ARs ur e ment sd® accuracy

According to[7], the most accurate and conventional methodHegeoreferencing of terrestrial laser scanning tatesing
atotal station Thaefore,theMultistation MS60is used as a reference systdine MS60 provides preciseng-rangescanning
with range accuracgf 2mm +2ppmwhen the target is between Om to 500m

Figure6 shows the place in which the measurements with our system wereTtlermaeasurement campaign consisitthe
following steps: 115 minutes waiting time for the GNS$&ceiverantenna to sok ambiguities and get a fixed position; 2) 8
shapes trajectories for the IMkinematiccalibration (ised in theorward processing of the GNSHSS integration); 3) two



rounds driving with the car around the testing aredfes e n s or s 6 d a)B-shape vdjettaies tfor IMinematic
calibration (ised in theeverse processing of the GNBES integration)The trajectory is depicted witreen points ifrigure
6. Fromthat trajectory3 epochs were chosen to compare the georeferenced LIDAR data with the reference data.

The comparison consisted choosing the same target in both data@éts buildng marked with the red ellipse Figure6)

and computinghe difference in translation and rotation w.r.t. the GNSS antdnrféigure 7 can be seen how, after the
measurement campaign with our system, the MS60 was sktisivorth to mention that the data coming from the MS60 is
obtained inthe UTM coordinate system. This is due to the setup performed b&farming the target with the Mtation, in

which the absolute position of the MS&feasuredwith the R10)is given to the instrument as well ago back sights
measurements (obtained wihe R10 as welBo that the MS60 cazompute the righposition and orientation of the scan data.

This prestep allow us to have the data in a gladmdrdinates y st em i nstead of the instrument

Figure 6. The estingarea in the facilities of the University of the German Federal Armed Forces (UniBwM).
The redellipsepoints the chosen target to extract from the LiDAR point clouds. The green dots show the trajectory done with the car.

gure7. Scanning of the ta

The data coming from the Multistation is dense and equally distributed along the facade of the targeted building. The
sensor is capable of retrievistructural ornaments dlfie fagade or other elements like windows, frames or even surface
reliefs of the target. On the other hand, the lasers of the LIDAR VLP16 may not intersect the whole target at ceain epoch
the scan data follows the geometifythe sensor anit is not @pable taretrievemillimeter-level detaik of the facade
Therefore, basic shapes like planes and cylinders were extracted from both setsrobrigato compare thenn the

case of the MS6Qyxhen trying tofind the plane that best fithke data corsponding to the wall, a maxum distance of

1cm from an ifier point b the plands allowed For the LIDARVLP16, the maximum allowed distance is set to 1Q cm

The restriction tries to ensure that most of the data points belong to the wall rather than any other structural ornaments.



The same criteria and values were used for the cylinder extraétfter. the data is filtered and only the points
corresponding tohe plane that best describes the wall of the building are eltésed-igure8), Iterative Closest Point
(ICP) algorithm[13] is used in order to obtain the affine transformation between both point clouds.
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Figure 8. Comparison between VEB6 and MS60 (filtered point clouds)

In Table2 is presentedhe obtained results. As said befatiferentsets ofgeoreferenced datd different epochare
examinedIn Figure9 is shown the approximate positiamivhich the evaluated data was acquired.FFband P2 the
results are quite similar, the errors in North and East do not exceed the decimetérHe\diference seen in the
results could come from the position accuracy of the GNN&Ssolution whichdoesnot exceed 2cm along the whole
trajectory orit could be as wekrrors in the range measurements ofMh&16, which shouldein the range o2cm+
3cm For the attitude, rokindpitcharein the range otheexpectedraluesaccordingo the specifications of the sensor
in dynamic scenarios (Typ|Max: 0.3°|1.0°); the heading value is thshlmwing agreater differencas a typical
variation of 1° shoulde expected.

The acquired data in P3 did not alloiax comparison with the reference due to the perspective in which it was
taken.The cylindrical structure marked with a pink square, asshivn inFigure9, occlude the view of the

LIDAR, meaning that not many measurements were taken from the remaining part of the wall and therefore resulted
in a poor plane description of the wall. This is refiél in the resultshownTable2 in for P3.

Al Bedioaiy M

Figure9. The apprxiatostioh 0 iDAR data acquisition alaﬁa'the car traject(gt, P2 andP3)



Table2. Error in position and attitude of our system according to the accuracy assessment

Perspective| East error [m] | North error [m] Roll [deg] Pitch [deg] Yaw [deg]
P1 -0.0629 0.0029 -0.4762 0.5133 -1.1443
P2 0.0244 -0.0524 -0.7519 0.0129 -1.7418
P3 -0.5521 0.2256 2.1439 2.0584 -1.4359

RELATIVE POSITIONING

For the second part of ownrk, a method for the position estimation of a mobile agent (a car) is pres€hgenhethod is
dividedinto the following steps: 1) preprocessing and object segmentation; 2) object recognition and association and 3) point
cloud registration and fine alignment

Point cloud preprocessing and object segmentation

The LIiDAR is used to capture the surface of the surroundingtsbjehe agent (e.g. a car) moves, and the sensor records the
environment. Data should be cleanedddretteroutcome. Elimination of ou#rs is required to enhance the integrity of the
navigation pipeline. For each point, the mean distance to the nearest neighbors is cfimputadse neighbor points whose
mean distances are outside a general distamean threshold and standard deviation threshold are removed from the point
cloud. Some deliberate data discard is necessary for sake of better quality at the results, i.e. very far points masefgswide
information. The ground could also be elimedt under the assumption it is even, and it provides no advantages for the
application. A range filter, based on considered distance thresholds in each sensor axis, encloses the most useful points.

It is possible to subdivide the scene scanned into snsats, called clusters. Each cluster is assumed to be one object in the
surroundings. Different methods are used for clustering point c[@G§idn this approach, the Euclidean segmentation method

[14] is employed, where the point cloud is subdivided into smaller sets based on the Euclidean distance among the points, under
a distance threshold. A cluster is composed by all the points whose distance to their closest neightsorthen thdimit.

In Figure 10, the resulbf clusters segmentation is shown.

Figure 10. Computecatentroid of each cluster

Object recognition and association

Global descriptorfl6] play a big rolan the object recognition taska this research, the Ensemble of Shape Funcfibfiss
a global descriptor that does not require the normal vectors estimation of the surfaces sensed, improving the prockssing spee
After the cluster segmentation at time 'Q the ESF descriptor is calculated for each of the clusters. The descriptors are stored



for further matching against the signatures of the point cloud clusters obtained at tiffee p. In order to compare the
likeliness of two descriptors, the Céjuare ... distance is calculated among all the stored signatures using the relationship
p W W
- = (5)

C W W

Those descriptors, whose distance is smaller than a given threshold, are considered as nearest neighbors. That is, bott
descriptors belong to the same cluster calculated for different epochs. Feguaht distance is calculatdd] by means of

brute force: each cluster descriptor from the point cloud measured  p is compared against all the stored cluster
descriptors from the point cloud recordeaat 'Q Those distances greater than the threspriduce unmatched descriptors,

which are discarded from both clusters lists. Two matched ESffigers aresshown inFigurell, as nearesteighbors using

the calculation of the Ckdquare distance.
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Figure 11.Matching of two ESF descriptors from the same cluster in different epochs.

Underthe certainty of having a cluster identified in two consecutive point data sets, the geometric association is required in
order to link the same object in both scans. The centroid of a point set is just the average value for the 3D cooatlitfates of
points, by means of

7p 5
6 = 0 (6)

With the centroids, each coupled signature leads to the correspchdsteat association, as shownFigure12.
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Figure 12. Association of clusters centroids based on descriptor matching. Orange cloud recorded at t=k, green cloud recorded at t=k+1.

Point cloud registration and fine alignment

It is intended to overlap the consecutive scans in order to perform the most accurate possible alignment between them, findin
the correspondent transformation matrix that allows such positioning. The centroids association giveal thiepnior the
registration procedure. Singular ialDecomposition (SVIL9] is useful in point cloud processing in order to align two point
clouds, finding the rotation matrix between them. For this particular case, two new point oloaddp aeare composed by

the correspondent centroids founddirard O, respectively The centroid of each new cloud is calculated, and a covariance
matrix is formed using the clustersdé centroids, as follo

8 UB b Goebee oo 7)

The SVD procedure is applied then to find 3 matrices that multiply each other:
6 Y (8)
The purpose is to find the matricé&andc, becausghe rotation matrix between the two point clouds is defined by the product
IYS VD (bTY (9)
Using the resultant matrix, the translation between the clouds is
0vp D& Ysypee (10)

The obtained rotation matrix and translation vector are then employed along with the original eloid Q p, to make
an initial coarse alignment between this and

01a Ysvd tsvo (11)



The previous process helps to reduce the distance and rdiatiseen the point clouds, although the overlapping is far from
optimal. Fine alignment aids to reduce this error, making the registration more accurate. The emplayrasZ®Pafgorithm

[13] is the crucial method to obtain this enhancement. ICP reduces the rotation and translation values in a given number of
iterationsuntil the error is an admissible value for the correspondent application. When any of the boundary conditions are met,
the algorithm should provide the rotation mati, c,;and translation vectot, c,pmatching the two point clouds as best as
possible

ol

Oka Yicha tice (12)
Using Equations 11 and [lthe final transformation matrix can be writterhmmoge®ouscoordinates as

. Y oc Vot t
v ICT:‘SVD ICB\L{)D I CP (13)

And the result of theegistraton process can be seerfigurel3.

Figure 13. Point clouds final registrationfeer coarse and fine alignments

Detection of cylindrical objects

Detecting the fixed objects in the environment provides better ancillary elements. These objects do not change their position
in comparison tacars motorcycles, pedestrians, bikes, among others. This object detection is usually performed using the
whole point cloud, taking a lot of time for the processing. Trees and poles are the desired objects to be detected, due to their
cylindrical shape, and the symmetry axis is generally vertical, almost matchinepttie @ the sensor. The method used for
cylinder detection is known as RANdoBAmple ConsenstisRANSAC [20], although it can also detect planes, spheres, and

other 3D geometric primitives. The drawback of this algorithm is the requirement of the normal vectors estimation @fthe sens
surfacebecause it evaluates the orientation of those vectors to determine if the intended geometrical model can bbditted on t
point set.

The clusters as independent clouds could reduce the proctssiigecause the number of points per cluster is much smaller
than those of the entire point cloud. The RANSAC algorithm is applied for each cluster, giving as a resuitdfiaalytnodel
could be fitted to the data setrt, i.e. it detected a tree/pokégure 14 illustrates thaletection outcome f@ome trees in the
surroundings.






