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Introduction

• Asteroids are in focus of planetary researchers
• Understanding of the early solar system

• Planetary protection

• Asteroid mining

In situ measurements and sample return missions

• Challenges:
• Autonomously GNC and hazard detection

• Development of new algorithm is simulation dependent

Easy to use and cost-efficient hardware-in-the-loop
emulation with multicopter UAVs in relevant environments

Increasing Technical Readiness Level

[1]

[2]

Rosetta & Philae
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Introduction

• Multicopter UAV-based satellite emulator

• Payload up to 6 kg

• Flight time up to 30 minutes

• Open-Source Pixhawk flight controller and the 
MRS UAV System [3]

• ublox F9P RTK as reference navigation

• Asteroid Navigation Sensors

• Two automotive LiDARs to mimic a space-
grade Flash-LiDAR
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UAV-based emulation platform 
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UAV-based emulation platform 

• Emulation performance 𝐸𝑟𝑟𝑜𝑟𝑃𝑜𝑠 is better than 30cm (95%)

𝐸𝑟𝑟𝑜𝑟𝑃𝑜𝑠 = 𝑃𝑜𝑠𝑆𝑎𝑡 − 𝑃𝑜𝑠𝑈𝐴𝑉
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Emulation environment

Bennu’s bolder covered surface [6]

Surface morphology of emulation area 
on Pag Island, Croatia
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LiDAR Odometry and Terrain-Relative-Navigation
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Navigation filter and sensor fusion

• The navigation filter is implemented as 6-state Linear Kalman Filter 
(position and velocity) using a constant-velocity dynamic model

• As the attitude could not be emulated, it was neglected in the 
navigation filter (but included within the spacecraft control-part)

• Local asteroid coordinate frame corresponds to the UAV-ENU 
coordinate system

• Observations:
• LiDAR Odometry

• LiDAR Relative Position 
Updates

• LiDAR Altimetry

• External Forces:
• Thruster commands

• Gravity 
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ICP-based LiDAR Odometry and Altimetry

• Plane-based feature extraction of original point clouds:

 Terminal decent uses full point cloud

• Point-to-Point ICP by LibPointMatcher library [7]

ICP-process with extracted 
feature point cloud
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ICP-based LiDAR Odometry and Altimetry

• LiDAR-Odometry:

 Average velocity of spacecraft between two point clouds

 Dead-reckoning lead to random walk

• LiDAR-relative position updates:

 ICP-process between base and current point cloud

 Long-baseline visual odometry

 Inspired by NASA’s MAVeN algorithm [8]

 Performance and dynamic based logic for resetting the 
base point cloud Base and Search frames within NASA’s 

Ingenuity Mars UAV navigation system [8] 
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ICP-based LiDAR Odometry and Altimetry

Extracted feature PC

Base-PC new base-PC

LiDAR 
Odometry

LiDAR 
Odometry

LiDAR 
Odometry

LiDAR 
Odometry

𝑧𝑛,𝑣 =

 𝑝𝑛𝑥 𝛥𝑡

 𝑝𝑛𝑦 𝛥𝑡

 𝑝𝑛𝑧 𝛥𝑡

𝑧𝑛,𝑝 =

𝑝𝑛𝑥 + 𝑝𝑥,𝑟𝑒𝑓
𝑝𝑛𝑦 + 𝑝𝑦,𝑟𝑒𝑓
𝑝𝑛𝑧 + 𝑝𝑧,𝑟𝑒𝑓

𝑝𝑛,𝐼𝐶𝑃 =

𝑝𝑛𝑥
𝑝𝑛𝑦
𝑝𝑛𝑧

ICP Translation:

LiDAR Odometry:

LiDAR rel. 
position updates:

𝑝𝑛,𝐼𝐶𝑃
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ICP-based LiDAR Odometry and Altimetry

Extracted feature PC

Base-PC new base-PC

Logic for base-PC reset:

• ICP RMSE
• traveled distance
• relation of

numbers of
extracted points

𝑝𝑛,𝐼𝐶𝑃

travelled distance
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LiDAR Altimetry

• Transforming point cloud to local coordinate system

• Conic Field-of-View filter to extract points of the 
spacecraft footprint

• Calculating the altitude by the mean of all Euclidean 
distances of each point within the footprint

 Compensating inclined terrain

 Compensating possible boulders
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Navigation Performance

• Example landing approach on Bennu
 No re-targeting

 Free-Fall until terminal decent

 Error-free initial position

• Compared to the RTK-reference trajectory

• Emulation performed on Pag Island
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Navigation Performance

• Example landing approach on Bennu
 No re-targeting

 Free-Fall until terminal decent

 Error-free initial position

• Compared to the RTK-reference 
trajectory

• Performed in emulation area on Pag 
Island
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Navigation Performance

• How do the relative position updates 
improve the horizontal navigation 
performance?
 It reduces the drift in the higher 

dynamic eastern component

 No significant impact for the less 
dynamic northern component

 Without updates the spacecraft would 
have reached hazardous regions 
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Navigation Performance

The ICP-process is altitude dependent

The RMSE clusters and their outlieres suggest that the base PCs 
are not chosen/reset in an optimal manner
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Navigation Performance

Altimeter performance is very accurate

Altitude dependent (“scale factor”)
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Navigation Performance

The used automotive LiDAR suffers from large reflection losses in 
altitudes > 70 m

The standard sensor simulation models did not include this error 
behavior for long range measurements

Original simulated PC Real PC Adopted simulated PC
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Hazard detection

• Hazard detection is necessary for full autonomous navigation

 The landing area should not have slopes of > 15°

 Calculating normal vectors of all points

 Clustering hazardous areas

 Projection into 2D hazard maps  
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Hazard detection
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Hazard detection

Hazard point cloud Updated hazard map
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Conclusions & Future Work

• The UAV-based emulation system allows representative 
Hardware-in-the-loop asteroid landing emulations

• A prototype LiDAR-based navigation system for end-to-
end testing was presented

• Transfer of UAV-emulation system from an asteroid 
environment to a Mars environment

• More sophisticated navigation system

 Visual-LiDAR-Inertial factor graph-based system

 Using a space-rated computational platform

• Validation of a swarm-simulation system with real 
sensor data from our emulation system

https://www.vamex.space/

https://www.vamex.space/
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UAV-based emulation platform 

• Trajectory set-points are extrapolated (constant velocity assumption)

• Smooth trajectory for UAV controller

• Robustness for lost setpoint in decentralized setup
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Used LiDARs:

[4]
[5]

• Using one Ouster OS-128 and one Ouster OS-64
• Orthotogolal arangement to mimic space-rated flash LiDAR (OSIRIS-Rex)
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Performance Summery

Emulation performance

Emulation performance (3D) < 0.3 m

Current max. Emulation velocity < 0.75 m/s

Payload for emulating sensors < 6 kg

TRN and HDA performance

Max. altitude TRN 75 m

Horizontal max. navigation error per 
distance traveled

< 20 %

Vertical position accuracy < 0.3 m

Max. altitude HDA 50 m
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Hazard detection
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Hazard detection
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Hazard detection


