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Introduction

* Asteroids are in focus of planetary researchers
* Understanding of the early solar system
* Planetary protection
* Asteroid mining
> In situ measurements and sample return missions

* Challenges:
* Autonomously GNC and hazard detection e B0
* Development of new algorithm is simulation dependent Rosetta & Philae [1]

»Easy to use and cost-efficient hardware-in-the-loop
emulation with multicopter UAVs in relevant environments

»Increasing Technical Readiness Level

OSIRIS-REX

ASTEROID SAMPLE RETURN MISSION

[2]
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Introduction

* Multicopter UAV-based satellite emulator
* Payload up to 6 kg
* Flight time up to 30 minutes

* Open-Source Pixhawk flight controller and the
MRS UAV System [3]

* ublox FOP RTK as reference navigation

* Asteroid Navigation Sensors

* Two automotive LiDARs to mimic a space-
grade Flash-LiDAR
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UAV-based emulation platform
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Error [m]

UAV-based emulation platform

* Emulation performance Errorp,s is better than 30cm (95%)

Errorp,s = P0Sgqt — POSy 4y
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Emulation environment

Surface morphology of emulation area
Bennu’s bolder covered surface [6] on Pag Island, Croatia

LiDAR-Based Autonomous Landing on Asteroids: Algorithms, Prototyping and End-to-End 6 @
Testing with a UAV-Based Satellite Emulator



LIDAR Odometry and Terrain-Relative-Navigation
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Navigation filter and sensor fusion

* The navigation filter is implemented as 6-state Linear Kalman Filter
(position and velocity) using a constant-velocity dynamic model

* As the attitude could not be emulated, it was neglected in the
navigation filter (but included within the spacecraft control-part)

* Local asteroid coordinate frame corresponds to the UAV-ENU
coordinate system

* Observations: * External Forces:
* LiDAR Odometry * Thruster commands
* LiDAR Relative Position * Gravity
Updates

* LiDAR Altimetry
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|ICP-based LIDAR Odometry and Altimetry

* Plane-based feature extraction of original point clouds: e® ©
© O
» Terminal decent uses full point cloud Distance threshokd ®e "
@
* Point-to-Point ICP by LibPointMatcher library [7] Estimated plane 202 0%,
L._ 1* Distance threshold

ICP-process with extracted
feature point cloud
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|ICP-based LIDAR Odometry and Altimetry

* LiDAR-Odometry:
» Average velocity of spacecraft between two point clouds

» Dead-reckoning lead to random walk e Sewen
* LiDAR-relative position updates: S%/ \%/ lyk \l,k
» ICP-process between base and current point cloud .. / L
» Long-baseline visual odometry X/
> Inspired by NASA’s MAVeN algorithm [8] » ¢
» Performance and dynamic based logic for resetting the ,‘f 7 7 "
base point cloud Base and Search frames within NASA’s

Ingenuity Mars UAV navigation system [8]
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|CP-based LiDAR Odometry and Altimetry

LiDAR LiDAR LiDAR LiDAR .
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|CP-based LiDAR Odometry and Altimetry

travelled distance

Extracted feature PC

Logic for base-PC reset:

 |CP RMSE

* traveled distance

* relation of
numbers of
extracted points

new base-PC

Base-PC g
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LIDAR Altimetry

* Transforming point cloud to local coordinate system

* Conic Field-of-View filter to extract points of the
spacecraft footprint

 Calculating the altitude by the mean of all Euclidean
distances of each point within the footprint

» Compensating inclined terrain

» Compensating possible boulders

LIDAR Preprocessing

—> Py P | P o A hi
Concatenation —23%y, el kd o) Outliers | Phe o} £oy fiter Py » Altimeter ———
Downsampling Removal
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Navigation Performance

Reference Velocity [m/s]

* Example landing approach on Bennu T
> NO re'targeting —0.050 A //
» Free-Fall until terminal decent 5
» Error-free initial position

* Compared to the RTK-reference trajectory \

* Emulation performed on Pag Island o Tt T
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Navigation Performance

* Example landing approach on Bennu
» No re-targeting
» Free-Fall until terminal decent
» Error-free initial position

 Compared to the RTK-reference
trajectory

* Performed in emulation area on Pag
Island
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Navigation Performance

* How do the relative position updates

im prove the horizo ntal naVigation Odometry performance compared to the abcence of updates
performance? 1 error oren /
. ] ] —-= Error East (no updates) 4
» It reduces the drift in the higher —+=_Error North (no updates) e

o
\-

dynamic eastern component

» No significant impact for the less
dynamic northern component

East/North [m]

» Without updates the spacecraft would
have reached hazardous regions
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Emulation Time [s]
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Navigation Performance

»The ICP-process is altitude dependent
»The RMSE clusters and their outlieres suggest that the base PCs

ICP RMSE [m]

are not chosen/reset in an optimal manner
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Navigation Performance

» Altimeter performance is very accurate

» Altitude dependent (“scale factor”)

Filter performance in Up-component (Altimeter)
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Navigation Performance

»The used automotive LiDAR suffers from large reflection losses in
altitudes > 70 m

> The standard sensor simulation models did not include this error
behavior for long range measurements

=
= %:
Original simulated PC Real PC Adopted simulated PC
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Hazard detection

* Hazard detection is necessary for full autonomous navigation
» The landing area should not have slopes of > 15°
» Calculating normal vectors of all points
» Clustering hazardous areas
» Projection into 2D hazard maps

Hazard Detection
_N). C F >
P No{rmals Clustering 1,200 n, Normals
Estimator | —— Filter >
H
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Hazard detection
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Hazard detection

n

Hazard point cloud Updated hazard map

LiDAR-Based Autonomous Landing on Asteroids: Algorithms, Prototyping and End-to-End @
Testing with a UAV-Based Satellite Emulator

22



Conclusions & Future Work

* The UAV-based emulation system allows representative
Hardware-in-the-loop asteroid landing emulations V

* A prototype LiDAR-based navigation system for end-to-
end testing was presented

* Transfer of UAV-emulation system from an asteroid
environment to a Mars environment

* More sophisticated navigation system
» Visual-LiDAR-Inertial factor graph-based system

https://www.vamex.space/

» Using a space-rated computational platform

 Validation of a swarm-simulation system with real
sensor data from our emulation system
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UAV-based emulation platform

* Trajectory set-points are extrapolated (constant velocity assumption)
* Smooth trajectory for UAV controller
* Robustness for lost setpoint in decentralized setup
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Used LiDARSs:

GoldenEye in the OSIRIS-REx Configuration

[5]

e Using one Ouster 0S-128 and one Ouster OS-64
* Orthotogolal arangement to mimic space-rated flash LiDAR (OSIRIS-Rex)
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Performance Summery

TRN and HDA performance
Emulation performance Max. altitude TRN 75 m
Emulation performance (3D) <0.3m Horizontal max. navigation error per <20 %
Current max. Emulation velocity <0.75m/s distance traveled
Payload for emulating sensors <6 kg Vertical position accuracy <03m
Max. altitude HDA 50 m
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Hazard detection
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Hazard detection
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Hazard detection
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