Modeling of the Thermoforming Process for Long-Fiber-Reinforced Thermoplastics

Sameer Kulkarni, Prof. Dr.-Ing. habil. Alexander Lion, Prof. Dr.-Ing. habil. Michael Johlitz

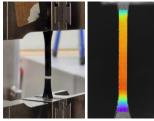
Dynamic Mechanical

Analysis

Thermal expansion mesurement

Universität der Bundeswehr München Institut für Mechanik

Motivation


This research project focuses on developing a novel material model for a composite made of unidirectional fiber-reinforced thermoplastic tapes (UD-tapes), intending to correctly simulate the thermoforming process, which shall prevent a time- and cost-expensive "trial and error" process design.

Objectives

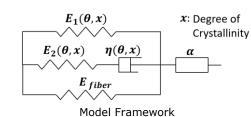
- Investigate experimentally visco-elastic, thermal and caloric properties of the material in its solid and melt state
- Develop a thermodynamically consistent, thermo-mechanically coupled, phenomenological constitutive model for the composite material at large strains
- Simulate the thermoforming process

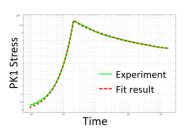
Experimental Investigation

 The key aspect of this investigation is to measure the influence of the degree of crystallinity on the mechanical and thermal properties of the composite. Various tests include-

Tension test

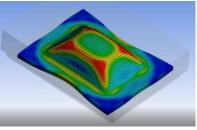
Differential Scanning Calorimetry (DSC)




Thermal conductivity measurement

Acknowledgment

The financial support of the project "Modeling of the thermoforming process of long-fiberreinforced thermoplastics" by the German Research Foundation (DFG) under the grant number LI 696/ 21/1 is gratefully acknowledged.


Material Modeling, Parameter Identification and Simulations

Parameter identification of finite-strain viscoelasticity based on relaxation test

Simulation of Crystallinity evolution in laminate during cooling

Simulation of thermoforming process

References

[1] Lion A, Johlitz M (2016) A thermodynamic approach to model the caloric properties of semicrystalline polymers. Continuum Mech Thermodyn 28:799–819

[2] Felder S, Holthusen H, Hesseler S, Pohlkemper F, Gries T, Simon W, Reese S (2019) Incorporating crystallinity distributions into a thermo-mechanically coupled constitutive model for semi-crystalline polymers. Int J Plast 132:102751