3. Übung

Victor C. Chaim fufgabe 3.1: $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), B=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ $\exp (A t), \exp (B t), \exp ((A+B) t)$?

$$
\cdot \exp (A t)=\sum_{n=0}^{\infty} \frac{(A t)^{n}}{n!}=i d+A t+\frac{A^{2} t^{2}}{2}+\cdots
$$

$$
A^{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
8 & 0
\end{array}\right) \Rightarrow A^{m}=0 \text { (nipestent) }
$$

$\therefore \exp (A t)=i d+A t=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)+\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)^{t}=\left(\begin{array}{ll}1 & t \\ 0 & -1\end{array}\right) /$
$\cdot \exp (B t)=\sum_{n=0}^{\infty} \frac{B t)^{n}}{n!}=i d+B t+\frac{B^{2} t^{2}}{2}+\cdots$
$B^{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)=B \Rightarrow \begin{aligned} & B^{m}=B \\ & m \geqslant 1\end{aligned}$
$\exp (B t)=i d+B \sum_{n=1}^{\infty} \frac{t^{n}}{n!}=i d-B+B \sum_{n=0}^{\infty} \frac{t^{n}}{n!}$
$e^{t}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} \therefore \quad \exp (B t)=i d-B+B e^{t}$
$\exp (B t)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)-\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+\left(\begin{array}{ll}e^{t} & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}e^{t} & 0 \\ 0 & 1\end{array}\right) /$
$-\exp ((A+B) t)=\sum_{n=0}^{\infty} \frac{(A+B)^{n} t^{n}}{n!}$

$$
\begin{aligned}
(A+B)=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) \rightarrow(A+B)^{2} & =\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) \\
& =(A+B)
\end{aligned}
$$

$$
\begin{aligned}
&(A+B)^{n}=(A+B)-n \geqslant 1 \\
& \exp ((A+B) t)=\sum_{n=0}^{\infty} \frac{(A+B)^{n} t^{n}}{n!}=I+(A+B) \sum \frac{t^{n}}{n!}= \\
&=I-(A+B)+(A+B) e^{t}=\left(\begin{array}{cc}
e^{t} & e^{t} 1 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

$$
\exp (A t) \exp (B t)=\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{t} & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
e^{t} & t \\
0 & n
\end{array}\right) \neq \exp (A+B C t)
$$

* Wenn $A B=B A$, dann giet: $\exp (A+B)=\exp (A) \exp (B)$

$$
\begin{gathered}
x_{0}=-1 u(t)=\left[\begin{array}{rr}
t, & 0 \leqslant t \leqslant 1 \\
-2 t, & 1<t \leqslant 2 \\
0 & \text { andernfolls }
\end{array}\right. \\
\dot{x}=a x+b u:
\end{gathered}
$$

$$
\varphi\left(t, x_{0}, u\right)=e^{a t} x_{0}+\int_{0}^{t} e^{a(t-z)} b u(z) d z
$$

$$
\therefore a=1, b=1
$$

$$
\begin{aligned}
& \varphi\left(t, x_{0}, u\right)=\left\{\begin{array}{l}
\varphi_{1}\left(t, x_{0}, u_{1}\right), 0 \leqslant t \leqslant 1 \\
y_{2}\left(t, x_{1}, u_{2}\right), 1<t \leqslant 2 \\
\varphi_{3}\left(t, x_{3}, u_{3}\right) \text { andurnfalls }
\end{array}\right. \\
& \varphi_{1}\left(t, x_{e}, u_{1}\right)=e^{t} e_{0}+\int_{0}^{t} e^{t(-\tau)} u(\tau) d \tau=-e^{t}+e^{t} \int_{0}^{t} e^{c} \tau d \tau
\end{aligned}
$$

Integration devrch Tule: $\int u d v=u v-\int v d u$

$$
\begin{aligned}
& \int e^{-z} \tau d z \rightarrow\left\{\begin{array}{l}
u=z \\
d v=e^{-} \tau d z
\end{array} / \begin{array}{l}
d u=d \varepsilon \\
v=-e^{z}
\end{array}\right\rangle \\
& \int e^{-z} c d z=-e^{-z} z+\int e^{-z} d z=-e^{-z}-e^{-z}=-e^{-z}(z+1)+k \\
& p_{1}\left(t, x_{0}, u_{1}\right)=-e^{t}+e^{t}\left(\left.\left(-e^{2}(c+1)\right)\right|_{0} ^{t}\right)= \\
& =-e^{t}+e^{t}\left(-e^{-t}(t+1)+e^{0}(0+1)\right) \\
& =-e^{t}+e^{t}\left(-e^{-t}(t+1)+1\right) \\
& =-e^{t}+e^{t}-(t+1)=-(t+1)_{1} \\
& x_{1}=p_{1}\left(1, x_{0}, u_{1}\right)=-(1+1)=-2
\end{aligned}
$$

$$
\begin{aligned}
& y_{2}\left(t, x_{1}, u_{2}\right)=e^{(t-1)} \cdot x_{1}+\int_{1}^{t} e^{t-\tau)}(c) d \tau \\
& =-2 e^{(t-1)}+e^{t} \int_{1}^{t} e^{-\tau}(-2 \tau) d \tau \\
& =-2 e^{(t-1}-2 e^{t} \int_{4}^{t} e^{t} c d t \\
& =-2 e^{(t-1)}-\left.2 e^{t}\left(-e^{2}(t+1)\right)\right|_{1} ^{t} \\
& =-2 e^{t-1}-2 e^{t}\left(-e^{-t}(t+1)+e^{-1}(2)\right) \\
& \left.=-2 e^{(t-1)} 4 e^{t-1}+2(t+1) e^{t t}\right) \\
& =-6 e^{(t-1)}+2(t+1) / \\
& x_{2}=\varphi_{2}\left(2, x_{1} u_{2}\right)=-6 e+z_{2}-6(1-e) \\
& \varphi_{3}\left(t_{1} x_{2}, u_{3}\right)=e^{(t-2)} \cdot x_{2}+\int_{2}^{t} e^{(t-2)} u_{5}(c) d c=x_{2} e^{(t-2)} \\
& \varphi_{3}\left(t_{1}-x_{2} \cdot \mu_{3}\right)=e^{(t-2)} \cdot x_{2}=6(1-e) e^{(t-2)} \\
& \varphi(t, x o, u)=\left\{\begin{array}{l}
-(t+1), 0 \leq t \leq 1 \\
\left.-6 e^{t-5}\right), 2(t+1), \quad<t \leqslant 2 \\
\left.6(1-t) e^{t}-2\right), \text { andimfolls. }
\end{array}\right.
\end{aligned}
$$

Aufgabe 3.3

$$
\begin{aligned}
& \dot{x}=A x+B u \rightarrow x=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]^{\top} \\
& \dot{x}=\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{ll}
\frac{1}{0} & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t)
\end{aligned}
$$

$$
\begin{aligned}
& 0 \leqslant t \leqslant 1: \quad u_{1}(t)=t \\
& \varphi_{1}\left(t, x_{0}, u_{1}\right)=e^{A t} \cdot x_{0}+\int_{0}^{t} e^{A(t-c)} B \cdot \tau \cdot d \tau \\
& \begin{array}{cc}
\exp \left(\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) t\right)=\left(\begin{array}{cc}
e^{t} & e^{t}-1 \\
0 & 1
\end{array}\right)\binom{0}{1}+e^{A t} \int_{0}^{t} e^{-A Z} \mathrm{~B} \tau d \tau
\end{array} \\
& \text { Aufgabe }{ }^{\downarrow} 1 \\
& =\left(\begin{array}{cc}
e^{t} & e^{t}-1 \\
0 & 1
\end{array}\right)\binom{0}{1}+\left(\begin{array}{c}
e^{t} \\
0
\end{array} e^{t}-1\right) \int_{0}^{t}\binom{e^{-t} e^{-}-1}{0}\binom{0}{1} z d z \\
& =\binom{e^{t}-1}{1}+\left(\begin{array}{cc}
e^{t} e^{t}-1 \\
0 & 1
\end{array}\right)\binom{\int_{0}^{t}\left(e^{-}-1\right) z d z}{\int_{0}^{t}(1) \tau d z} \rightarrow \\
& \rightarrow \int_{0}^{t}\left(e^{-c_{1}}\right) \tau d \tau=\int_{0}^{t} e^{t} c d z-\int_{0}^{t} z d z=-\left.e^{-\tau}(\tau+1)\right|_{0} ^{t}-\left.\frac{z^{2}}{2}\right|_{0} ^{t} \\
& =-e^{-t}(t+1)+1 \frac{-^{2}}{2}
\end{aligned}
$$

Thile: Sration dube 3.2

$$
\left.\begin{array}{rl}
\varphi_{1}\left(t, x_{0}, u_{1}\right) & =\binom{e^{t}-1}{1}+\left(\begin{array}{c}
e^{t} \\
0
\end{array} e^{t} 1\right.
\end{array}\right)\binom{1-t^{2} / 2-e^{t}(t+1)}{t 2 / 2}
$$

$$
\begin{aligned}
& =\binom{\left(x_{1}+x_{12}\right) e^{(t-1)}-x_{12}}{x_{12}}-2\binom{e^{t} e^{t}-1}{0}\binom{\int_{1}^{t}\left(e^{t}-1\right) z d z}{\int_{0}^{t} z d z} \\
& =\left(\left(x_{1}+x_{12}\right) e^{(t-1)}-x_{12}\right)-2\left(\begin{array}{cc}
e^{t} & e^{t}-1 \\
0 & 1
\end{array}\right)\binom{-\left.e^{z}(z+1)\right|_{1} ^{t}-v_{2}^{2}}{\left.z^{2}\right|_{1} ^{t}} \\
& =\binom{\left(x_{11}+x_{12}\right) e^{(t-1)}-x_{12}}{x_{12}}-2\left(\begin{array}{cc}
e^{t} & e^{t, 1} \\
0 & 1
\end{array}\right)\binom{-e^{-t}(t+1)+e^{-1}(1+1)-t / 2-1 / 2}{t^{2} / 2-1 / 2} \\
& =\binom{\left(x_{11}+x_{12}\right) e^{(t-1)}-x_{12}}{x_{i 2}}-2\binom{e^{t} e^{t}-1}{0^{1}}\left(-e^{t} \cdot t-e^{t}+e^{-1} \cdot 2-t / 2-1 / 2\right) \\
& =\binom{\left(x_{1}+x_{2}\right) e^{(t-1)}-x_{1}}{\partial t_{2}}-2\left(-t-1+e^{t-1} \cdot \frac{e^{2}+e^{t} / 2 / 2-e^{t / 2}}{t^{t} / 2+e^{t}+2 / 2}-e^{t / 2} \frac{-t^{2}}{2}+\frac{1}{2}\right) \\
& =\binom{\left(x_{1}+x_{2}\right) e^{(t-1)}-x_{2}}{x_{12}}-2\left(-t-1 / 2+e^{(t-1)}-e^{t}-t^{2} / 2\right) \\
& =\binom{\left(x_{1}+x_{22}\right) e^{(t-1)}}{x_{2}}+\binom{2 t+1-4 e^{(t-1)}+2 e^{t}+t^{2}}{-t^{2}+1} \\
& =\binom{\left(x_{1}+x_{12}-4\right) e^{(t-1)}+2 e^{t}+t^{2}+2 t+\left(1-x_{12}\right)}{-t^{2}+\left(1+x_{12}\right)} \text { Konstante } \\
& x_{2}=\varphi_{2}\left(2, x_{1}, u_{2}\right)=\binom{\left(u_{1}+x_{1}-4\right) e^{1}+2 e^{2}+4+4+1-x_{12}}{-4+1+x_{1}}\binom{x_{21}}{x_{2}} \\
& t>2: \quad u_{3}(t)=0 \\
& \varphi_{3}\left(t, x_{2}, u_{3}\right)=e^{A \cdot(-2)} \cdot x_{2}+\int^{t} e^{A(t \cdot y)}(0) d \tau=e^{A(-2)} \\
& \left.\varphi_{3}\left(t_{1} x_{2}, u_{3}\right)=\binom{e^{(t-2)}\left(k_{1}-2\right.}{0}\binom{x_{21}}{x_{22}}=\left(x_{21}+x_{22}\right) e^{(t-2)} x_{22} x_{22}\right) \text { / } \\
& \therefore \quad q\left(t, x_{0,} u\right)=\left\{\begin{array}{c}
\binom{2 e^{t}-t^{2} / 2-t-2}{1+t^{2} / 2}, 0 \leqslant t \leqslant 1 \\
\binom{\left(x_{1}+x_{12}-4\right) e^{(t-1)}+2 e^{t}+t^{2}+2 t+\left(1-x_{12}\right)}{-t^{2}+\left(1+x_{12}\right)}, 16 t \leqslant 2 \\
\left(\left(x_{21}+x_{22}\right) e^{(t-2)}-x_{22}\right), \text { andunfall } \\
x_{22}
\end{array}\right.
\end{aligned}
$$

whi: $\left\{\begin{array}{l}x_{11}=2 e-7 / 2 \\ x_{21}=3 / 2\end{array}\right.$ and $\left\{\begin{array}{l}x_{21}=\left(x_{1}+x_{12}-4\right) e+2 e^{2}+9-x_{12} \\ x_{22}=-3+x_{12}\end{array}\right.$

