Victor Cheidde Chaim
\Rightarrow Probe klausurauf gaben
5. Aufgabenblatt
5.4) Alle Zustandssignale dus Zustandssystem haben dosselbe stabilitätsverkalton.
(6.2 Satz , Seite 503, Vorlesing 5) 1 Punkt
5.5) $\lim _{t \rightarrow \infty} \Phi(t)=0, \Phi(t)$: Hauptfundomentalmatrix von Zustandssystem zur Anfangszuit 0 . 1 Punkt
(6.45atz (ii), seite 505 Valesung 5)
5.6) Das Polynom p(s) ist Hurwitz, wenn c_{1} und C_{2} gräß er als O sind, da $C_{0}=1$ positiv ist. Das ist aine himeridende Bedingung, wal p(s) von 2. Ondming $(n=2)$ ist. 1Pumet
5.7) $p(s)=s^{4}+2 s^{3}+s^{2}+s+(k-1)$

1. Bedingung: $(k-1)>0$, da $c_{4}, c_{3}, c_{2}, c_{1}>0$. (Alle koffitientem mit)

$$
k-1>0 \Leftrightarrow k>1,1 \text { Punkt }
$$

Z Bedingung: Hauptabschnittsdeterminaute von $H>0$.

$$
\begin{aligned}
& C_{0}=(k-1), c_{1}=1, C_{2}=1, c_{3}=z_{1}, C_{4}=1, \\
& H=\left[\begin{array}{llll}
c_{1} & c_{3} & c_{5} & c_{7} \\
c_{0} & c_{2} & c_{4} & c_{6} \\
0 & c_{1} & c_{3} & c_{5} \\
0 & c_{0} & c_{2} & c_{4}
\end{array}\right]=\left[\begin{array}{ccccc}
D_{1} & D_{2} & D_{3} & \nabla_{4} \\
\frac{1}{k-1} & 2 & 0 & 0 \\
\frac{k}{0} & 1 & 1 & 0 \\
\hline 0 & 1 & 2 & 0 \\
\hline 0 & k-1 & 1 & 1 & 1
\end{array}\right]^{2} \\
& \text {. } D_{1}=1>0 \text { ak } \checkmark \quad 1 \text { Punkt } \\
& \text {. } D_{2}=1-2(k-1)=1-2 k+2=3-2 k>0 \Leftrightarrow k<3 / 2 \\
& \text {. } D_{3}=1 \cdot 1 \cdot 2-1 \cdot 1 \cdot 1-2 \cdot 2 \cdot(k-1)=2-1-4 k+4=5-4 k>0 \Leftrightarrow k<\frac{5}{4} \\
& \text {. } D_{4}=1 \cdot(-1)^{4+1} \cdot \nabla_{3}=\nabla_{3} \cdot \\
& 1 \text { Punkt }
\end{aligned}
$$

$p(s)$ ist Hurwitz, wenn $1<k<5 / 4$. 1 Punkt
2. Bedingung
5.8) $\quad u(t)=e^{\alpha t} \cdot \sin \left(e^{2 t}\right): \quad\|u(t)\|=\| e^{e^{t}} \sin \left(e^{\left(e^{t}\right)}\|\leqslant\| e^{2 t} \| \cdot 1\right.$, weil $\|\sin (\cdot)\| \leqslant 1$. wenn $\alpha<0: \quad\left|\lim _{t \rightarrow \infty} e^{\alpha t} \cdot \sin \left(e^{2 t}\right)\right| \leqslant\left|\lim _{t \rightarrow \infty} e^{\alpha t}\right|=0, u(\infty)=0$, wenn $\alpha<0$

$$
\text { 5.9) }\left\{\begin{array}{l}
x=A x+B u \\
y=C x+D u
\end{array}, \quad A=\left[\begin{array}{ccc}
-4 & 0 & 0 \\
3 & -2 & 1 \\
-3 & 0 & -1
\end{array}\right], B=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right], C=\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right], D=0\right.
$$

1 Punkt
i) Eigenwerte von $A:(\operatorname{det}(A-\lambda i \lambda)=0) \operatorname{det}\left(\begin{array}{ccc}-4-\lambda & 0 & 0 \\ 3 & -2-\lambda & 1 \\ -3 & 0 & -1-\lambda\end{array}\right)=(-4-\lambda)(-2-\lambda)(-1-\lambda)=0$
$\lambda_{1}=-4, \lambda_{2}=-2, \lambda_{3}=-1 \rightarrow$ Das Zustandssystem ist asymptotisch stalsil, da fuir alle Eigenwerte λ von $A \operatorname{Re}(\lambda)<0$ gilt.
ii) Stationäre Endwerte: $\varphi\left(\infty, x_{0}, u\right)=-A^{-1} \cdot B \cdot u(\infty)$

$$
\begin{aligned}
& u(\infty): u(t)=1-\frac{1}{1+t^{2}}, u(\infty)=\lim _{t \rightarrow \infty} u(t)=\lim _{t \rightarrow \infty} 1-\frac{1}{1+t^{2}}=\lim _{t \rightarrow \infty} 1-\lim _{t \rightarrow \infty} \frac{1}{1+t^{2}}=1 / \\
& A=\frac{1}{\operatorname{det}(A)} \cdot\left(\begin{array}{lll}
C_{11} & C_{4} & C_{31} \\
C_{12} & C_{22} & C_{32} \\
C_{13} & C_{23} & C_{33}
\end{array}\right) \quad 1 \\
& \text { 1 } C_{11}, C_{12}, \ldots \text { Kofaktoren: } C_{11}=2, C_{12}=0, C_{13}=-6 \\
& C_{21}=0, \quad C_{22}=4, C_{23}=0 \\
& C_{31}=0, C_{32}=4, C_{33}=8 \\
& \operatorname{det}(A)=(-4)(-2)(-1)=-8 \quad \therefore \quad A^{-1}=-\frac{1}{8}\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 4 & 4 \\
-6 & 0 & 8
\end{array}\right) \quad 2 \text { Punkte }
\end{aligned}
$$

$$
\varphi\left(\infty, x_{0}, u\right)=-\frac{1}{A} B u(\infty)=\frac{1}{8}\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 4 & 4 \\
-6 & 0 & 8
\end{array}\right)\left(\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right)=\frac{1}{8}\left(\begin{array}{l}
2 \\
0 \\
2
\end{array}\right) \mathbb{2} \text { Punkte }
$$

