Seminarübungen-Dozent: Victor C. Chaim

Universität der Bundeswehr München Fakultät für Luft- und Raumfahrttechnik Inst. f. Steuer- und Regelungstechnik (LRT-15)

85577 Neubiberg

Steuer- und Regelungstechnik, WT 2022

2 Übung, 24.01.2022

Die Aufgaben 2.1 und 2.2 werden im Rahmen des Übungsseminars gelöst.

2.1 Aufgabe. Modellieren Sie das in Abb. 1 dargestellte System des Fliehkraftreglers und der Dampfmaschine in der linearen Zustandsraumform.

Nehmen wir an, dass es eine Drehmoment-Dämpfung $M_r = -b\dot{\varphi}(t)$ auf dem Fliehkraftregler gibt und dass das Getriebeverhältnis zwischen den Wellen S_1 und S_2 durch die Konstante n gegeben ist, so dass die Winkelgeschwindigkeiten $\theta(t)$ und $\Omega(t)$ durch $\theta(t) = n\Omega(t)$ zusammenhängen. Das Trägheitsmoment der Scheibe D ist I_D und das Ventil V ist verantwortlich für den Eingang $u(t) = k(x(t) - x_{ref})$, wo k und die gewünschte Position x_{ref} Konstanten sind. Die Punktmassen m können sich frei auf und ab bewegen, und ihre Stützen der Länge l bilden einen Winkel $\varphi(t)$ mit der Welle S1.

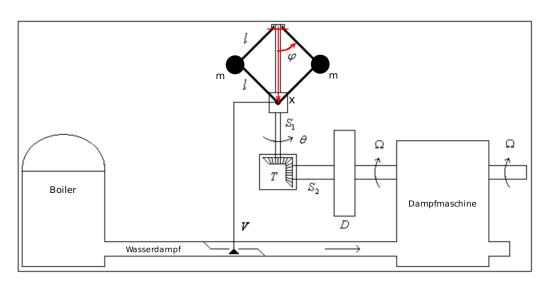


Abbildung 1: System: Dampfmaschine und Fliehkraftregler. Quelle (bearbeitet von V. Chaim): Bifurcation Analysis of the Watt Governor System, Sotomayor, J.; Mello, L. F.; Braga, D. C.; Computational and Applied Mathematics, Vol. 26, N.1, pp 19-44, 2007.

2.2 Aufgabe. Modellieren Sie das System "Umgekehrtes Pendel" auf einem Wagen, das in Abbildung Abb. 2 dargestellt ist, als lineares Zustandssystem.

Betrachten Sie die Kraft F als Eingang und gehen Sie davon aus, dass es keine Reibung zwischen dem Wagen und dem Boden gibt. Die Masse des Wagens ist M und die Punktmasse m des Pendels ist an einem Stab der Länge L befestigt. Die Variable x(t) gibt die Position des Wagens an und $\theta(t)$ ist der Winkel zwischen der Welle und der vertikalen Achse.

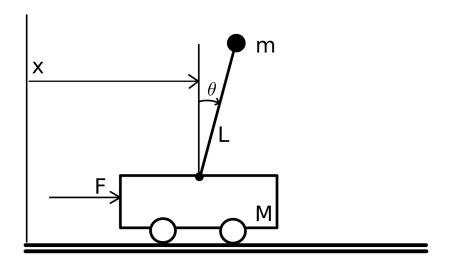


Abbildung 2: System: Umgekehrtes Pendel auf einem Wagen.