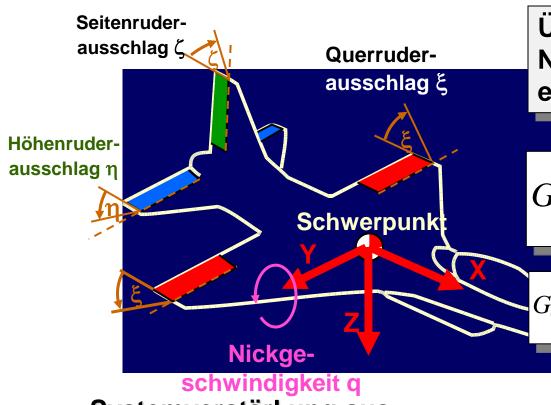


WOK: Beispiel Nickdämpfung

Verbesserung der Nickdämpfung eines Flugzeuges durch Rückführung der Nickgeschwindigkeit q auf den Höhenruderausschlag η



Übertragungsfunktion des Nickverhaltens für die Daten eines F104G im Landeanflug*:

$$G_S(s) = 4.81 \frac{s + 0.565}{s^2 + 0.97s + 2.11}$$

$$G_0(s) = K_R G_S(s) = 4.81 \frac{s + 0.565}{s^2 + 0.97s + 2.11}$$

Systemverstärkung aus

$$K_0 = G_0(s)\big|_{s=0} =$$

$$\left| \frac{4,81 \cdot 0,565}{2,11} = 1,288 \right|$$

für $K_R = 1$.

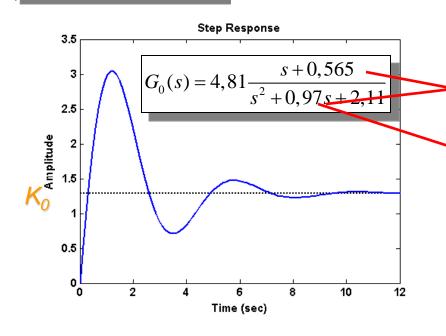
*Brockhaus: Flugregelung, 2001, Springer-Verlag, S. 505

WOK-Verstärkung k_o

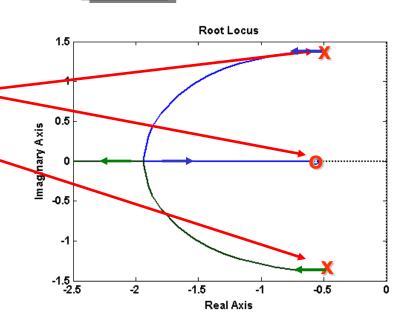
Regelungstechnik

WOK: Beispiel Nickdämpfung (3)

Sprungantwort



WOK



Strecken-Eigenschaften:

Dämpfungsgrad D = 0.337

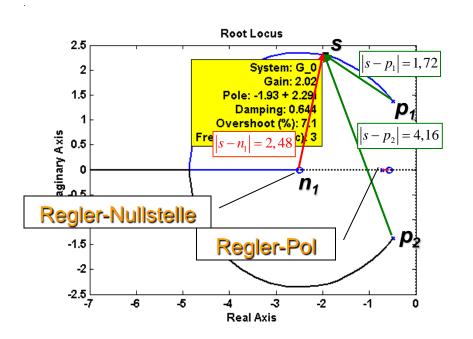
Eigenfrequenz $\omega_0 = 1.44$

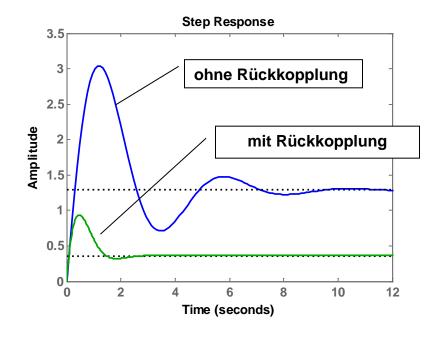
Gewünschte Eigenschaften:

Dämpfungsgrad D: 0,5 - 1

Eigenfrequenz ω_0 : 2 - 4

WOK: Beispiel Nickdämpfung (9)





$$K_R = Gain = 2.02$$
 \Rightarrow $k_0 = 1.37 K_R = 1.37 \cdot 2.02 = 2.77$

Graphische Ermittlung mit Regel 12:

$$k_0 = \frac{\prod_{i=1}^{m} |s - p_i|}{\prod_{i=1}^{n} |s - n_i|}$$

$$k_0 = \frac{1,72 \cdot 4,16}{2,48} = 2,89$$

WOK: Beispiel Nickdämpfung (7)

Die gewünschten dynamischen Eigenschaften können mit einem P-Regler nicht erzielt werden!

Lösung:

Kompensation der Streckennullstelle bei -0,565 sowie Einfügung einer neuen Nullstelle, die weiter links liegt.

Einsatz eines PDT₁-Regler mit den Parametern:

$$T_D = 0.4$$
 und $T_1 = 1.4$

Strecke: $n_1 = -0.565$

und der Übertragungsfunktion:

$$G_R(s) = \frac{1 + T_D s}{1 + T_1 s}$$

Nullstelle:

$$n_1 = -\frac{1}{T_D} = -\frac{1}{0.4} = -2.5$$

Regierpol:
$$p_1 =$$

$$p_1 = -\frac{1}{T_1} = -\frac{1}{1,4} = -0.71$$

WOK: Beispiel Nickdämpfung (10)

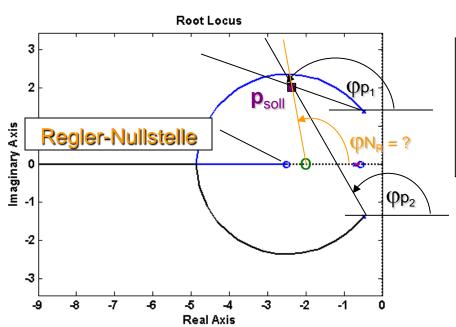
Vorgabe:

$$D = 0.75$$
 $\omega_0 = 3$ \Rightarrow

Pole p₁,p₂ des geschlossenen Kreises

Re
$$(p_{1.2}) = D \omega_0 = 0.75 \cdot 3 = 2.25$$

Im
$$(p_{1,2}) = \pm \sqrt{\omega_0^2 - (D\omega_0)^2} = \pm 1,95$$



Mit Hilfe der Phasenbedingung die Regler-Nullstelle so festlegen, dass der Punkt p_{soll} auf der WOK liegt.

$$\varphi_{n_{P}} - \varphi_{P_{1}} - \varphi_{P_{2}} = 180^{\circ}$$

$$\varphi_{n_R} = 180^{\circ} + \varphi_{P_1} + \varphi_{P_2}$$

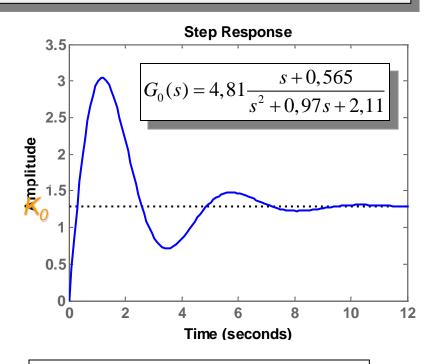
$$\varphi_{n_R} = 180^{\circ} + 162^{\circ} + 118^{\circ}$$

$$= 460^{\circ} = 360^{\circ} + 100^{\circ}$$

Regier-Nullstelle: $n_R = -2,05$

WOK: Beispiel Nickdämpfung (11)

Sprungantwort (ohne Rückführung)

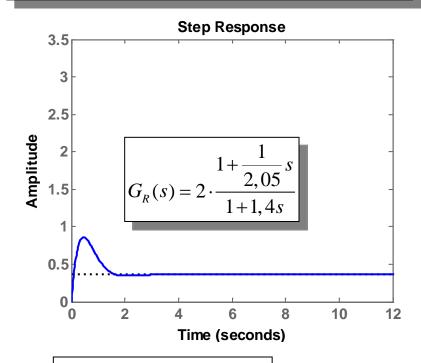


Strecken-Eigenschaften:

Dämpfungsgrad D = 0.337

Eigenfrequenz $\omega_0 = 1.44$

Sprungantwort (mit Rückführung)



Eigenschaften:

Dämpfungsgrad D ≈ 0,75

Eigenfrequenz $\omega_0 \approx 3$

Normalformen (3)

Eigenschaften der Regelungsnormalform

- Die Regelungsnormalform lässt sich sofort angeben, wenn die Übertragungsfunktion G(s) eines dynamischen Systems bekannt ist.
- Die Regelungsnormalform existiert dann und nur dann, wenn das System (A,b) vollständig steuerbar ist.

Die Regelungsnormalform erhält man durch eine Zustandstransformation

$$oldsymbol{x}_R(t) = oldsymbol{T}_R^{-1} oldsymbol{x}(t)$$

mit der Transformationsmatrix

$$egin{array}{lll} m{A}_R & = & m{T}_R^{-1} m{A} m{T}_R \ m{b}_R & = & m{T}_R^{-1} m{b} \ m{c}_R^T & = & m{c}^T m{T}_R \ m{x}_{R0} & = & m{T}_R^{-1} m{x}_0 \; . \end{array}$$

letzte Zeile der inversen Steuerbarkeitsmatrix

Stabilitätsanalyse im Zustandsraum

Definition 3.2 (Stabilität eines linearen Systems)

Ein lineares, zeitinvariantes System, das durch die Zustandsgleichungen (3.1) beschrieben wird, heißt asymptotisch stabil, wenn die Lösung $\boldsymbol{x}(t)$ der homogenen Zustandsdifferentialgleichung

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t)$$

für einen beliebigen Anfangszustand \boldsymbol{x}_0 für $t \to \infty$ gegen Null geht.

Aus der Bewegungsgleichung

$$oldsymbol{x}(t) = oldsymbol{\Phi}(t) oldsymbol{x}_0 + \int\limits_0^t oldsymbol{\Phi}(t- au) oldsymbol{b} u(au) \mathrm{d} au$$

erhält man für u(t) = 0

$$\boldsymbol{x}(t) = \boldsymbol{\Phi}(t)\boldsymbol{x}_0$$
.

$$\lim_{t\to\infty} \mathbf{x}(t) = 0$$

kann für beliebige x₀ nur dann erfüllt werden, wenn

$$\lim_{t\to\infty} \|\Phi(t)\| = 0$$
 gilt.

