

## Lösung der Zustandsgleichung

### Kontinuierliche Systeme

Lösung der homogenen Differentialgleichung

$$\mathbf{x}(t) = e^{At} \mathbf{x}_0$$

### mit der Matrixexponentialfkt.

$$e^{At} = \mathbf{I} + At + \frac{A^2}{2!}t^2 + \frac{A^2}{3!}t^3 + \dots$$

### Transitionsmatrix

$$\boldsymbol{\Phi}(t) \!=\! e^{At}$$



Prof. Dr.-Ing. Ferdinand Svaricek

Zeitdiskrete Systeme

Lösung der homogenen Differenzengleichung

$$\mathbf{x}(k+1) = A\mathbf{x}(k)$$
,  $\mathbf{x}_0 = \mathbf{x}(0)$   
,  $k = 0, 1, 2, 3, ...$ 

$$k=0: x(1) = Ax(0)$$
  
 $k=1: x(2) = Ax(1)$   
 $= A^{2}x(0)$ 

Allgemein:

$$\mathbf{x}(k) = \mathbf{A}^k \mathbf{x}(0)$$

Transitionsmatrix:

$$\boldsymbol{\Phi}(k) = \boldsymbol{A}^k$$

**Digitale Regelung** 



## Frequenzgang PT<sub>1</sub>-System (2)



Prof. Dr.-Ing. Ferdinand Svaricek

Regelungstechnik



#### Direktangetriebene elektrische Drosselklappe der Firma Hella



Einsatz:

BMW 6-Zylindermotoren 1998 -2002

#### Vorteil:

Entkopplung von Fahrer und Motor Motormanagement



#### Fahrpedalsensor

Kontaktloser Induktivsensor



Prof. Dr.-Ing. Ferdinand Svaricek



Versuchsaufbau

### Elektrische Drosselklappe (2)

Elektronisches Steuergerät (Rapid Control Prototyping)





Prof. Dr.-Ing. Ferdinand Svaricek



## Elektrische Drosselklappe (3)

### dSPACE MicroAutoBox



#### Technische Daten (2002):

- 200 MHz Motorola PowerPC
- 8 MB Hauptspeicher
  - 16 MB Flashspeicher

- 4 MB Speicher für Kommunikation zwischen MicroAutoBox und Host-PC
- 16 A/D-Umsetzer (0 5 Volt)
- 8 D/A-Umsetzer (0 4.5 Volt)

#### **Technische Daten MicroAutoBox II (2015):**

- 900 MHz IBM PowerPC
- 16 MB Hauptspeicher
- 16 MB Flashspeicher
  - 6 MB Speicher für Kommunikation zwischen MicroAutoBox und Host-PC



## Rapid Control Prototyping with dSPACE



**Design and Analysis with Matlab** 



Implementation of Control Algorithms as Simulink Block Diagrams





Prof. Dr.-Ing. Ferdinand Svaricek



### Elektrische Drosselklappe (4)

### Experimentelle Modellierung





Prof. Dr.-Ing. Ferdinand Svaricek



### Elektrische Drosselklappe (5)



Prof. Dr.-Ing. Ferdinand Svaricek



- Eine Stabilitätsreserve ist notwendig, um Modellunsicherheiten und Parameteränderungen zu berücksichtigen.
- Die Nyquist-Orstskurve zeigt an, wie weit die Ortskurve vom kritischen Punkt (Stabilitätsrand) entfernt ist.
- Ein Maß für die Stabilitätsreserve (robuste Stabilität) ist der Amplituden- bzw. der Phasenrand.
- Der Amplitudenrand gibt an, wieweit die Verstärkung des offenen Kreises erhöht werden kann, bevor der geschlossene Kreis instabil wird.
- Der Phasenrand gibt an, wie groß eine zusätzliche Phasenverschiebung im offenen Kreis sein darf, bevor der geschlossene Kreis instabil wird.





## Stabilitätsreserve (2)



Amplituden- und Phasenrand in der Ortskurvendarstellung

**Amplituden-** und **Phasenrand** im Bode-Diagramm

Durchtrittsfrequenz ω<sub>D</sub>: Frequenz, bei der die Amplitudenkennlinie die 0-dB-Linie schneidet.



Regelungstechnik

## **Einstellung eines PID-Reglers**

# Ein PID-Regler besteht aus einer Parallelschaltung eines P-, I- und D-Gliedes:









### Für m (Grad Z(s)) > n (Grad N(s)) gilt

$$G(s) \;=\; rac{Z(s)}{N(s)} \;=\; rac{Z_1(s)}{N(s)} + k_0 + rac{k_1 s}{k_1 s} + \ldots + rac{k_{m-n} s^{m-n}}{k_m s^{m-n}}$$

mit Grad  $Z_1(s) = n - 1$ 

Prof. Dr.-Ing. Ferdinand Svaricek







Prof. Dr.-Ing. Ferdinand Svaricek

Regelungstechnik



