

Zusammenfassung der 5. Vorlesung

Zeitdiskretes Zustandsraummodell

- Zustandsdifferenzengleichung, algebraische Ausgangsgleichung.
- Blockschaltbild.
- Zustandsraummodell aus Übertragungsverhalten.
- Lösung der Zustandsgleichung.
 - Transitionsmatrix.
 - Bewegungsgleichung.
- Zusammenhang zwischen Gewichtsfolge und Zustandsraummodell.

Zusammenfassung der 5. Vorlesung

Äquivalentes zeitdiskretes Zustandsraummodell

$$\mathbf{A}_{d} = e^{\mathbf{A}T} \qquad \mathbf{b}_{d} = \int_{0}^{T} e^{\mathbf{A}\tau'} \mathbf{b} d\tau'$$

$$\mathbf{c}_{d}^{T} = \mathbf{c}^{T}$$

$$\mathbf{d}_{d} = d$$
Abtastzeit

Steuerbarkeit zeitdiskreter Systeme

Erreichbarkeit

Ein zeitdiskretes System (A,b) heißt vollständig erreichbar, wenn es vom Ursprung $\mathbf{x}_0 = \mathbf{0}$ durch eine endliche Eingangsfolge $u(0), \dots, u(N)$ in einen beliebig vorgebenen Endzustand $\mathbf{x}(N) = \mathbf{x}_e$ überführt werden kann.

Steuerbarkeit

Ein zeitdiskretes System (A,b) heißt vollständig zustandssteuerbar, wenn es von jedem beliebigen Anfangszustand \mathbf{x}_0 durch eine endliche Eingangsfolge $u(0), \dots \underbrace{u(N)}$ in den Nullzustand $\mathbf{x}(N) = \mathbf{0}$ überführt werden kann.

Steuerbarkeit zeitdiskreter Systeme (2)

Steuer- und Erreichbarkeit kontinuierlicher Systeme

Wenn ein kontinuierliches System vollständig steuerbar ist, dann existiert für jeden Anfangswert \mathbf{x}_0 eine geeignete Eingangsgröße $u(t), 0 \le t \le t_e$, so daß

$$0 = \Phi(t_e)\mathbf{x}_0 + \int_0^{t_e} \Phi(t_e - \tau)\mathbf{b}u(\tau)d\tau$$

gilt.

strebt für stabile Systeme nur asymptotisch gegen Null.

Für ein vollständig erreichbares System existiert für jedes beliebiges $\mathbf{x}(t_e)$ eine Eingangsgröße $u(t), 0 \le t \le t_e$, die die Gleichung

$$\mathbf{x}(t_e) = \int_0^{t_e} \Phi(t_e - \tau) \mathbf{b} u(\tau) d\tau$$

erfüllt.

Steuerbarkeit zeitdiskreter Systeme (3)

Steuer- und Erreichbarkeit kontinuierlicher Systeme

Ist ein kontinuierliches System vollständig steuerbar ist, dann muß offensichtlich gelten:

$$-\Phi(t_e)\mathbf{x}_0 = \int_0^{t_e} \Phi(t_e - \tau)\mathbf{b}u(\tau)d\tau$$

für beliebige x_0 .

Steuerbarkeit impliziert Erreichbarkeit, da $\Phi(t_e)$ immer invertierbar ist.

Steuerbarkeit zeitdiskreter Systeme (4)

Erreichbarkeitskriterium von Kalman

Ein zeitdiskretes System (\mathbf{A},\mathbf{b}) ist genau dann vollständig erreichbar, wenn für die Steuerbarkeitsmatrix \mathbf{Q}_S gilt:

Rang
$$Q_S$$
 = Rang $[\mathbf{b}, \mathbf{Ab}, ..., \mathbf{A}^{n-1}\mathbf{b}] = n$.

Beweis:

$$\boldsymbol{x}(k+1) = \boldsymbol{A}\boldsymbol{x}(k) + \boldsymbol{b}\boldsymbol{u}(k)$$

$$x(k) = A^{k-1}bu(0) + A^{k-2}bu(1) + ... + bu(k-1)$$

$$k = 0$$
: $x(1) = bu(0)$

$$k=1$$
: $x(2) = Ax(1) + bu(1)$

$$= \mathbf{A}\mathbf{b}u(0) + \mathbf{b}u(1)$$

$$\mathbf{x}(k) = \begin{bmatrix} \mathbf{A}^{k-1}\mathbf{b} & \mathbf{A}^{k-2}\mathbf{b} & \cdots & \mathbf{b} \end{bmatrix} \cdot \begin{bmatrix} u(0) \\ u(1) \\ \vdots \\ u(k-1) \end{bmatrix}$$

$$k=2$$
: $\mathbf{x}(3) = A\mathbf{x}(2) + b\mathbf{u}(2)$
= $A^2b\mathbf{u}(0) + Ab\mathbf{u}(1) + b\mathbf{u}(2)$
Prof. Dr.-Ing. Ferdinand Svaricek

Kann nur nach u aufgelöst werden, wenn Q_s invertierbar ist.

Steuerbarkeit zeitdiskreter Systeme (5)

Erreichbarkeitskriterium von Kalman

Dieses Kriterium ist zwar hinreichend für die Steuerbarkeit eines zeitdiskreten Systems aber nicht notwendig!

Beispiel:
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 $b = 0 \Rightarrow Rang Q_S = 0$

$$\mathbf{x}(k+1) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \mathbf{x}(k)$$

$$x_1(k+1) = x_2(k)$$
 $k=0$: $x_1(1) = x_2(0)$

$$x_2(k+1) = 0 x_2(1) = 0$$

k=1:

 $x_1(2) = x_2(1) = 0$

 $x_2(2) = 0$

$$\Rightarrow$$
 $\mathbf{x}(k+1) = \mathbf{0}$ für $k \ge 1$

für beliebige

Anfangswerte

Prof. Dr.-Ing. Ferdinand Svaricek

Digitale Regelung

Steuerbarkeit zeitdiskreter Systeme (6)

Ein nicht erreichbares aber steuerbares zeitdiskretes System kann immer in 2 Teilsysteme aufgeteilt werden:

- Einen erreichbaren Teil, dessen Zustandsvektor mit Hilfe von u(t) in den Ursprung überführt werden kann.
- Einen nicht erreichbaren Teil mit Eigenwerten bei Null, dessen Zustand von alleine in wenigen Schritten in den Ursprung geht. / nicht erreichbar

Beispiel:
$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
 $b = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ \Rightarrow Rang $Q_S =$ Rang $\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ $= 1$ $x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $u(k) = ?$ $k = 0$ $x_1(1) = 0$ $x_2(k+1) = x_2(k) + u(k)$ $x_2(k+1) = x_2(k) + u(k)$ Respired Surjective Positive Respired Surjective Respired Surject

Steuerbarkeit zeitdiskreter Systeme (7)

Steuerbarkeitskriterium

Ein zeitdiskretes System (\mathbf{A},\mathbf{b}) ist genau dann vollständig steuerbar, wenn das Hautus-Kriterium

Rang
$$[\lambda_i \mathbf{I} - \mathbf{A} \ \mathbf{b}] = n$$

für alle von Null verschiedenen Eigenwerte λ_i erfüllt ist.

Beobachtbarkeit zeitdiskreter Systeme

Bei zeitdiskreten Systemen muß man auch zwischen Beobachtbarkeit und Rekonstruierbarkeit unterscheiden:

Beobachtbarkeit

Ein zeitdiskretes System (\mathbf{A}, \mathbf{c}) heißt vollständig beobachtbar, wenn der Anfangszustand \mathbf{x}_0 aus dem bekannten Verlauf der endlichen Eingangsfolge u(0),...,u(N) und der endlichen Ausgangsfolge y(0),...,y(N) berechnet werden kann.

Rekonstruierbarkeit

Ein zeitdiskretes System (\mathbf{A},\mathbf{c}) heißt vollständig rekonstruierbar, wenn aus dem bekannten Verlauf der endlichen Eingangsfolge u(0),...,u(N) und der endlichen Ausgangsfolge y(0),...,y(N) der Zustand $\mathbf{x}(N)$ berechnet werden kann.

Beobachtbarkeit zeitdiskreter Systeme (2)

Beobachtbarkeitskriterium von Kalman

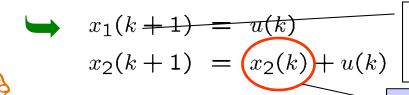
Ein zeitdiskretes System (${f A},{f c}$) ist genau dann vollständig beobachtbar, wenn für die Beobachtbarkeitsmatrix ${f Q}_B$ gilt:

Rang
$$Q_B = \text{Rang } [\mathbf{c}, \mathbf{A}^T \mathbf{c}, ..., (\mathbf{A}^T)^{n-1} \mathbf{c}] = n.$$

Dieses Kriterium ist zwar hinreichend für die Rekonstruierbarkeit eines zeitdiskreten Systems aber nicht notwendig!

Beispiel:
$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} b = \begin{bmatrix} 1 \\ 1 \end{bmatrix} x(N) = ? u(k) = {1 \ 1 \ 1 \ ...}$$

$$\mathbf{c}^T = \begin{bmatrix} 0 & 1 \end{bmatrix} \quad \text{nicht beobachtbar}$$



nicht beobachtbar aber nur von u(k) abhängig!!

Prof. Dr.-Ing. Ferdinand Svaricek

y(k)

Beobachtbarkeit zeitdiskreter Systeme (3)

Rekonstruierbarkeitskriterium

Ein zeitdiskretes System (\mathbf{A},\mathbf{c}) ist genau dann vollständig rekonstruierbar, wenn das Hautus-Kriterium

Rang
$$\begin{bmatrix} \lambda_i \mathbf{I} - \mathbf{A} \\ \mathbf{c}^T \end{bmatrix} = n$$

für alle von Null verschiedenen Eigenwerte λ_i erfüllt ist.

Fragestellung

Kann die Steuer- und Beobachtbarkeit durch Abtastung verloren gehen?

Antwort:

Ja !!!

Beobachtbarkeit zeitdiskreter Systeme (4)

Steuer- und Beobachtbarkeit des kontinuierlichen und des zeitdiskreten Systems

Das zeitdiskrete System (A_d,b_d,c_d) , das aus dem kontinuierlichen System (A,b,c) durch Abtastung mit der Abtastzeit T entsteht, ist genau dann vollständig steuer- und beobachtbar

- wenn das kontinuierliche System (A, b, c) vollständig steuer- und beobachtbar ist und
- wenn für zwei verschiedene Eigenwerte λ_i und λ_j (λ_i $\neq \lambda_i$) der Matrix A die Bedingung

$$e^{\lambda_i T} \neq e^{\lambda_j T}$$

erfüllt ist.

Beobachtbarkeit zeitdiskreter Systeme (5)

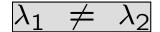
Steuer- und Beobachtbarkeit des kontinuierlichen und des zeitdiskreten Systems

Beispiel:
$$\mathbf{A} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \quad \mathbf{c}^T = \begin{bmatrix} c_1 & c_2 \end{bmatrix}$$

$$\det \mathbf{Q}_B = \det \begin{bmatrix} \mathbf{c}^T \\ \mathbf{c}^T \mathbf{A} \end{bmatrix} = \det \begin{bmatrix} c_1 & c_2 \\ \lambda_1 c_1 & \lambda_2 c_2 \end{bmatrix}$$
$$= c_1 c_2 \lambda_2 - c_1 c_2 \lambda_1 = c_1 c_2 (\lambda_2 - \lambda_1)$$

$$\neq$$
 0 für $\lambda_1 \neq \lambda_2$

Das kontinuierliche System ist beobachtbar für



Das zeitdiskrete System ist beobachtbar für

$$e^{\lambda_1 T} \neq e^{\lambda_2 T}$$

Beobachtbarkeit zeitdiskreter Systeme (6)

Steuer- und Beobachtbarkeit des kontinuierlichen und des zeitdiskreten Systems

$$e^{\lambda_1 T} = e^{\lambda_2 T}$$

kann für verschiedene λ_1 und λ_2 nur für 2 komplexe Eigenwerte der kontinuierlichen Matrix A auftreten, die folgende Bedingungen erfüllen:

$$\operatorname{Re}\{\lambda_1\} \ = \ \operatorname{Re}\{\lambda_2\}$$

$$(\operatorname{Im}\{\lambda_1\} - \operatorname{Im}\{\lambda_2\})T \ = \ \pm 2\pi m, \ m = 1, 2, \dots$$

$$(\omega_1 - \omega_2)T \ = \ \pm 2\pi m, \ m = 1, 2, \dots$$

T darf nicht so gewählt werden, daß diese Gl. erfüllt ist !!!!

Für
$$\omega_2=-\omega_1$$
 und $m=1$ folgt $2\omega_1T=2\pi$ bzw. $2\omega_1=\frac{2\pi}{T}$ bzw. $\omega_1=\omega_A/2$

$$\omega_A > 2\omega_1 \quad ext{mit} \quad \omega_A = rac{2\pi}{T}$$
 Prof. Dr.-Ing. Ferdinand Svaricek

stellt Steuer- und Beobachtbarkeit des diskreten Systems sicher.

Entwurf auf endliche Einstellzeit (Dead-Beat Regelung)

Mit dem Entwurf auf endliche Einstellzeit besteht bei zeitdiskreten Systemen eine Möglichkeit, die keine Entsprechung bei zeitkontinuierlichen Systemen hat.

Gesucht ist eine Zustandsrückführung

$$u(k) = \mathbf{k}^T \mathbf{x}(k) \quad ,$$

die das System

$$x(k+1) = Ax(k) + bu(k)$$
, $x_0 = x(0)$

in den Endzustand

$$\mathbf{x}_e = \mathbf{x}(n) = 0$$

überführt.

n = Anzahl der Zustandsgrößen

Entwurf auf endliche Einstellzeit (2)

Satz:

Ein vollständig steuerbares System (A,b) wird durch eine Zustandsrückführung in endlicher Zeit - und zwar spätestens nach n Zeitschritten - von jedem beliebigen Anfangszustand in den Nullzustand überführt, wenn die Rückführung so gewählt wird, daß das rückgeführte System den n-fachen Eigenwert

$$\lambda = \mathbf{0}$$

hat.

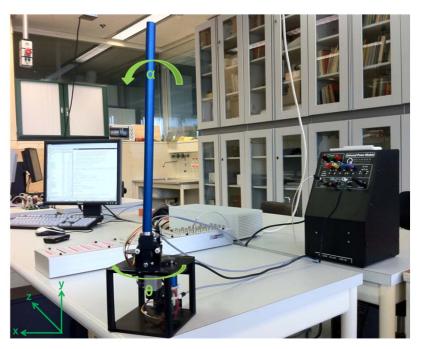
Regelgesetz:

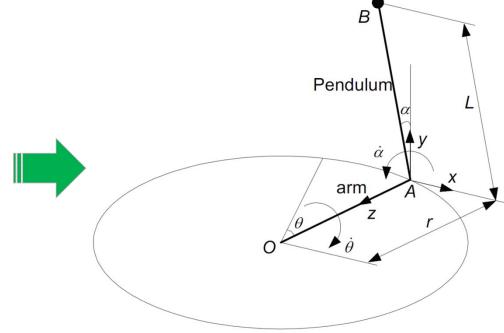
$$u(k) = -[0 \ 0 \dots 0 \ 1][b \ Ab \dots A^{n-1}b]^{-1}A^n \ x(k)$$

Letzte Zeile der inversen Steuerbarkeitsmatrix

Entwurf auf endliche Einstellzeit (3)

Stabilisierung eines aufrechten Pendels





Entwurf auf endliche Einstellzeit (4)

Ergebnisse für α = 0,1 rad (5,8 grad) und T = 50 ms:

