

Digitale Regelung

Vorlesung:

Dozent: Professor Ferdinand Svaricek

Ort: 33/1231

Zeit: Di 15.00 – 16.30 Uhr (2. Vorlesung am 7. Mai 2019)

Seminarübungen:

Dozenten: Felix Goßmann M.Sc., Carsten Herzog M.Sc.

Ort: 33/2331

Zeit: Mo 9.45 – 11.15 Uhr (Beginn: 15.04.2019 oder 29.04.2019)

Vorlesungsskript:

https://www.unibw.de/lrt15/lehre/vorlesungen-1/unterlagen-digreg/skript-digitale-regelung.pdf/download

- Die reale Welt ist überwiegend analog und kontinuierlich.
- Die meisten Regler werden aber inzwischen mit Hilfe von Computern realisiert, die nur zeitdiskrete und amplitudenquantisierte Signale verarbeiten können.
- Einfache Realisierung komplexer Regelungs-, Steuerungs- und Überwachungsalgorithmen.
- Realisierung in Software anstatt Hardware ist kostengünstiger.
- Flexibilität (einfache Anpassung und Änderung der Algorithmen).
- Kürzere Entwicklungszeiten (Rapid Prototyping).

- Die Vorlesung Digitale Regelung befasst sich mit den Grundlagen der Regelung zeitabgetasteter Systeme (Synonyme: zeitdiskrete Regelung oder Abtastregelung).
- Die digitale Regelungstechnik befasst sich mit der Analyse und der Synthese zeitdiskreter Regelkreise.
- Sowohl in modernen Kraftfahrzeugen als auch in modernen Flugzeugen werden Steuerungen und Regelungen heutzutage überwiegend digital realisiert.

Voraussetzungen

Steuer- und Regelungstechnik

- Gewichts- und Übergangsfunktion,
 Übertragungsfunktion, Pole und Nullstellen,
 Stabilität, PT₁, PT₂,..., Zustandsraummodelle,...
- Grundlagen der Messtechnik
 - Analog-/Digital-Umsetzer
 - Fourier-Transformation
 - Spektralanalyse
- Mathematik
 - Komplexe Zahlen
 - Laplace-Transformation
 - Matrizenrechnung

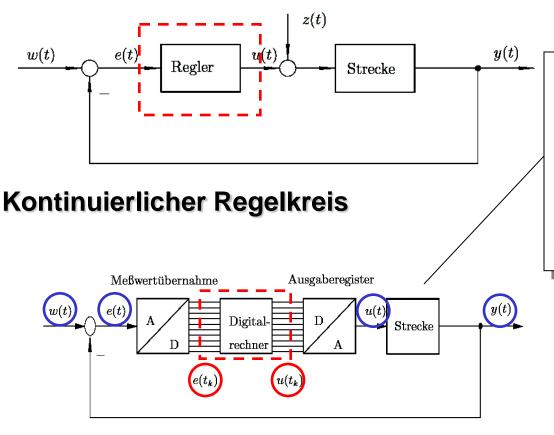
- Diskrete Signale und Systeme
 - Signalarten, Quantisierung, Periodische Signalabtastung, Halteglieder, Impulsfolge, Sprungfolge
- Beschreibung von dynamischen Systemen im Zeitbereich durch Differenzengleichungen
- Spektrum diskreter Signale
- Abtasttheorem
- Frequenzfaltung, Aliasing

- Beschreibung von dynamischen Systemen im Frequenzbereich durch die z-Transformation
 - Vergleich mit dem s-Bereich
 - z-Übertragungsfunktion
 - Pole und Nullstellen
- Zeitdiskrete Zustandsraumdarstellung
- Stabilität zeitdiskreter Systeme
- Entwurf digitaler Regler

Historischer Hintergrund

Die Entwicklung der digitalen Signalverarbeitung und der Regelungstechnik ist eng mit der technischen Entwicklung der Digitalrechner verknüpft.

- 1954 Hughes Aircraft Company setzt erstmals einen Digitalrechner zur Überwachung eines Autopiloten ein.
- 1958 Louisiana Power & Light Company setzt erstmals einen Digitalrechner zur Überwachung eines Kraftwerks ein.
- 1959 Imperial Chemical Industries (ICI) erprobt digitale Regelung (Direct Digital Control) bei der Produktion von Sodaasche.
- 1965 Etwa 1000 Digitalrechner sind im industriellen Einsatz. Digital Equipment Corporation (DEC) bringt den Minicomputer PDP-8 (Kosten \$18000) auf den Markt.



Regelkreis mit Digitalrechner als Regler

Abtastregelung bzw. zeitdiskretes Regelungssystem

Im Regelkreis sind Elemente enthalten, die Signale nur zu diskreten Zeitpunkten übertragen.

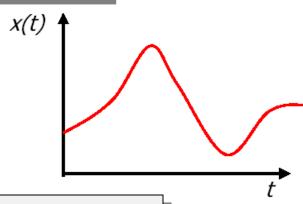
Unterscheidung:

- Analoge Signale
- Digitale Signale

Beschreibung von Signalen

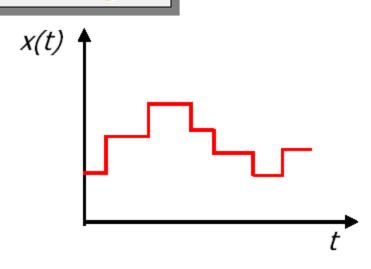
Definition: Kontinuierliches analoges Signal

Ein kontinuierliches analoges Signal kann jeden beliebigen Wert auf der Amplituden- bzw. Zeitachse annehmen.



Definition: Kontinuierliches quantisiertes Signal

Ein kontinuierliches quantisiertes Signal kann jeden beliebigen Wert auf der Zeitachse, aber nur bestimmte Amplitudenwerte annehmen.



Quantisierung

Bei der gleichförmigen Quantisierung wird der Quantisierungsbereich in 2^w gleichgroße Intervalle aufgeteilt. Hierbei ist w die Anzahl der zur Verfügung stehenden Bits, man spricht hier auch von der Wortlänge.

Beispiel:

Quantisierungsbereich: 0 – 10 Volt

Wortlänge: 3 bit

Anzahl der Intervalle: $2^3 = 8$

Intervallbreite: 10/8 = 1,25 Volt

2 ²	2 ¹	2 ⁰
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

0

1,25

2,5

3.75

6,25

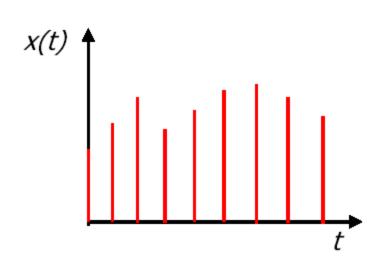
7,5

8,75

Beschreibung von Signalen (2)

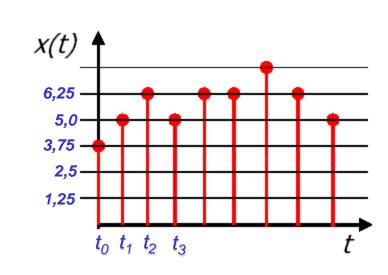
Definition: Zeitdiskretes Signal

Ein zeitdiskretes Signal kann nur zu bestimmten Zeitpunkten einen beliebigen Wert auf der Amplitudenachse annehmen.



Definition: Digitales Signal

Ein digitales Signal kann zu bestimmten Zeitpunkten nur einen quantisierten Amplitudenwert annehmen.



Beschreibung von Signalen (3)

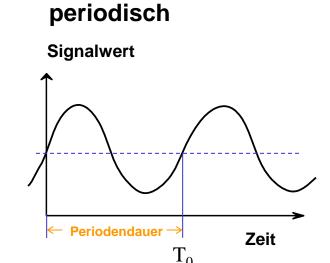
Definition: Deterministisches Signal

Ein deterministisches Signal lässt sich in seinem zeitlichen Verlauf mathematisch beschreiben und ist daher exakt bestimmbar.

Definition: Periodisches Signal

Ein periodisches Signal wiederholt sich in gleichbleibenden Zeitintervallen T_0 : $x(t) = x(t+k \cdot T_0)$

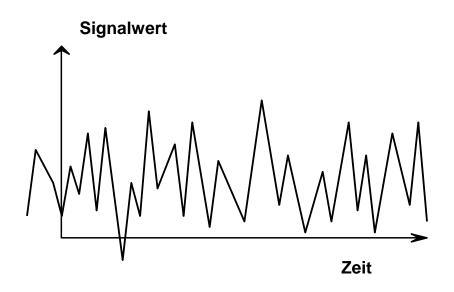
mit k = 1, 2, 3, ...



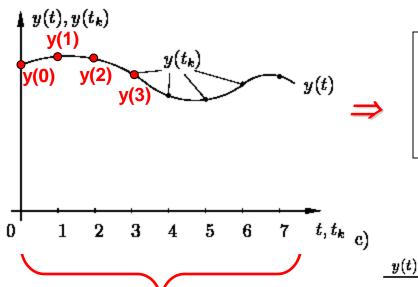
Beschreibung von Signalen (4)

Definition: Stochastisches Signal

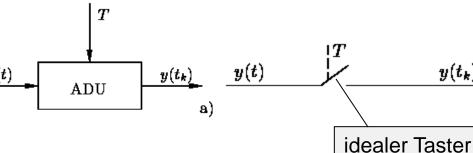
Ein stochastisches Signal hängt in seinem zeitlichen Verlauf vom Zufall ab.



Ein zeitdiskretes Signal kann man aus einem kontinuierlichen Signal durch Abtastung gewinnen.



Durch Abtastung des kontinuierlichen Signals y(t) zu den Zeitpunkten $t_0, t_1, t_2,...$ erhält man das zeitdiskrete Signal oder die Abtastfolge $y(t_k) = y(t)|_{t=t_k}$.



Periodische Abtastung

ADU: Analog-Digital-Umsetzer

T: Vorgegebener Takt

 $y(t_k)$

b)

Analog-Digital-Umsetzer

- In einem A/D-Umsetzer wird ein kontinuierliches Signal zeitdiskretisiert und amplitudenquantisiert.
- Der Effekt der Amplitudenquantisierung ist bei hinreichend großer Auflösung für die Dynamik des Regelkreises vernachlässigbar.
- Im weiteren wird äquidistante Abtastung vorausgesetzt.
- Die Tastperiode T ist aber ein wesentlicher Analyse- und Syntheseparameter, der erheblichen Einfluss auf die Dynamik des Regelkreises hat.

Beschreibung von Systemen

Definition 2.4 Kontinuierliches System

In einem kontinuierlichen System sind die Eingangs- und Ausgangssignale sowie die Zustandsvariablen kontinuierliche Zeitfunktionen. Das dynamische Verhalten wird durch Dgln. beschrieben (Bild 2.4).

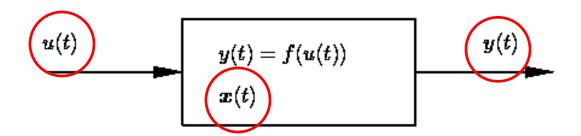


Bild 2.4: Blockbild eines kontinuierlichen Systems

Beschreibung von Systemen (2)

Definition 2.5 Abtastsystem

Bei einem kontinuierlichen Abtastsystem sind die Zustandsvariablen kontinuierliche Funktionen, die Eingangs- und/oder Ausgangssignale diskrete Signale (Bild 2.5).

Regelstrecke

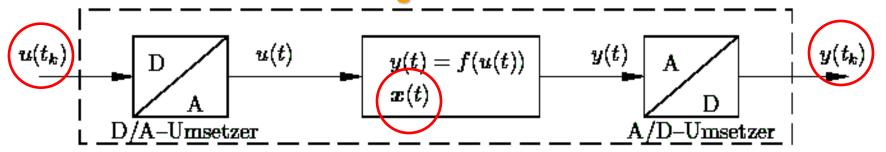


Bild 2.5: Blockschaltbild eines Abtastsystems

Beschreibung von Systemen (3)

Definition 2.6 Diskretes System

Bei einem diskreten System sind die <u>Eingangs</u>-, <u>Ausgangs</u>- und <u>Zustandsvariable</u>n diskrete Zeitfunktionen (Bild 2.6).

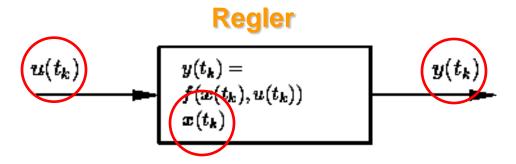


Bild 2.6: Zeitdiskretes System

Schreibweise diskreter Signale

Durch Abtastung des kontinuierlichen Signals y(t) zu den Zeitpunkten t_1 , t_2 , t_3 ,... erhält man das zeitdiskrete Signal oder die Abtastfolge $y(t_k) = y(t)|_{t=t_k}$.

Beispiel: y(0,5), y(0,7), y(0,8),

Wird eine äquidistante Abtastung mit dem Abtastintervall T vorgenommen, so kann man auch diese abgekürzte Schreibweise verwenden:

$$y_k = y(k) = y(kT) = y(t)|_{t=kT}$$

Beispiel:

Für T=0,1 bedeutet dies

$$y_3 = y(3) = y(3T) = y(0,3)$$

Die Bezeichung y_k kann dabei sowohl für einen einzelnen Abtastwert als auch für eine ganze Abtastfolge stehen.

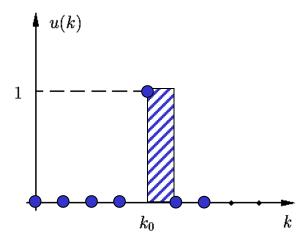
Elementare diskrete Signale

Einheitsimpuls oder Impulsfolge

Der Einheitsimpuls (Bild 2.12a)

$$\delta(k-k_0) = \left\{ egin{array}{ll} 1 & ext{ für } & k=k_0 \ 0 & ext{ für } & k
eq k_0 \end{array}
ight. \qquad k=0,1,\ldots$$

$$=0,1,\dots$$

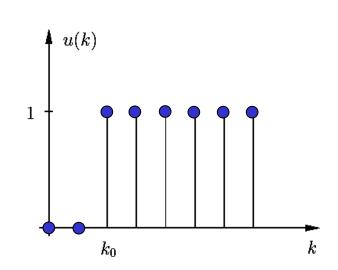


Einheitssprung oder Sprungfolge

Der Einheitssprung (Bild 2.12b)

$$1(k-k_0) = \left\{ egin{array}{ll} 1 & ext{ für } & k \geq k_0 \ 0 & ext{ für } & k < k_0 \end{array}
ight. \quad k = 0, 1, 2, \ldots$$

$$k = 0, 1, 2, \dots$$



Energie- und Leistungssignale

Die Energie eines diskreten bzw. kontinuierlichen Signals ist definiert zu:

diskret:

$$E_{X} = \sum_{k=-\infty}^{\infty} |x(k)|^{2}$$

kontinuierlich:
$$E_{x} = \int_{-\infty}^{\infty} |x(t)|^{2} dt$$

Energiesignale weisen eine endliche Energie auf.

Beispiel: Impulsfolge mit E=1

Energie- und Leistungssignale (2)

Die Leistung eines diskreten bzw. kontinuierlichen Signals ist definiert zu:

diskret:

$$P_{X} = \lim_{n \to \infty} \frac{1}{2n+1} \sum_{k=-n}^{n} |x(k)|^{2}$$

kontinuierlich:

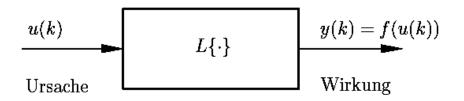
$$P_{x} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^{2} dt$$

Leistungssignale weisen eine endliche Leistung auf.

Beispiel: Sprungfolge mit
$$P = \lim_{n \to \infty} \frac{1}{2n+1} \cdot n = \frac{1}{2}$$

Leistungssignale haben immer eine unendliche Energie!

Eigenschaften diskreter Systeme



Betrachtet werden lineare, zeitinvariante, kausale Systeme

Lineares System

Ein zeitdiskretes System ist linear wenn das Superpositionsprinzip gilt.

Beispiel:

$$y_1(k) + y_2(k) = f(u_1(k)) + f(u_2(k))$$

= $f(u_1(k) + u_2(k))$

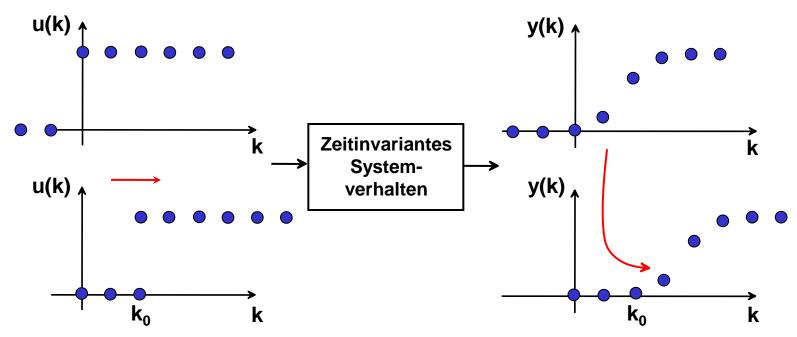
Kausalität

Ein System ist Kausal, wenn das Ausgangssignal y(k) zu einem Zeitpunkt $k=k_0$ unabhängig von künftigen Werten des Eingangssignals u(k) ist. Das bedeutet, die Antwort eines Systems erscheint bei Kausalität nicht vor der Erregung.

Eigenschaften diskreter Systeme (2)

Zeitinvarianz

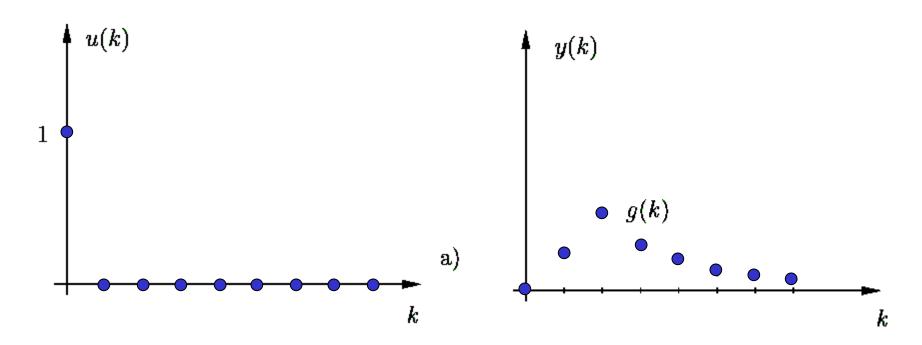
Ein zeitdiskretes System verhält sich zeitinvariant, wenn ein zeitverschobenes Eingangssignal u(k - k₀) das zeitverschobene Ausgangssignal y(k - k₀) erzeugt.



Eigenschaften diskreter Systeme (3)

d) Beschreibung durch Gewichtsfolge

Genauso wie bei den kontinuierlichen Systemen läßt sich das Zeitverhalten diskreter Systeme durch die Impulsantwort oder Gewichtsfolge g(k), der Antwort auf den Einheitsimpuls $\delta(k)$ beschreiben (Bild 2.14b).



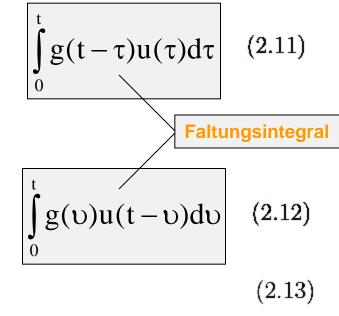
Eigenschaften diskreter Systeme (4)

Faltungssummation

Die Antwort des linearen Systems mit der Gewichtsfolge g(k) auf eine beliebige Eingangsfolge u(k) kann mit der Faltungssummation bestimmt werden:

$$y(k) = \sum_{i=0}^k g(k-i)u(i) \;\;\; ; \;\;\; k=0,1,2,\dots$$

oder mit der Substitution k - i = r:



Eigenschaften diskreter Systeme (5)

e) Beschreibung durch Differenzengleichungen

Das Signalübertragungsverhalten zeitdiskreter Systeme kann analog zu der Vorgehensweise bei kontinuierlichen Systemen durch Gleichungen erfolgen, die Eingangs- und Ausgangsgröße verknüpfen. Waren dies bei kontinuierlichen Systemen Differenzengleichungen, so sind es bei diskreten Systemen Differenzengleichungen.

Beispiel:

$$T_1\dot{y}(t) + y(t) = u(t)$$

PT₁-System

Approximation von dy(t)/dt durch den Differenzenquotienten:

$$\frac{dy(t)}{dt}\Big|_{t=kT} \approx \frac{y(kT) - y((k-1)T)}{T} = \frac{y(k) - y(k-1)}{T}$$

T = Abtastintervall

Eigenschaften diskreter Systeme (6)

Aus

$$T(\dot{y}(t)) + y(t) = u(t)$$
 $\Rightarrow T_1 \underbrace{y(k) - y(k-1)}_T + y(k) = u(k)$

Beide Seiten mit T multiplizieren:

$$T_1(y(k) - y(k-1)) + Ty(k) = Tu(k)$$

 $(T_1 + T)y(k) - T_1y(k-1) = Tu(k)$

Auflösen nach y(k):

$$y(k) = \frac{1}{T_1 + T} (T_1 y(k-1) + T u(k))$$

$$= \frac{T_1}{T_1 + T} y(k-1) + \frac{T}{T_1 + T} u(k)$$

$$= -a_1 y(k-1) + b_0 u(k)$$

Eigenschaften diskreter Systeme (7)

Differenzengleichung eines zeitdiskreten Systems

$$y(k) + a_1 y(k-1) + a_2 y(k-2) + \dots + a_n y(k-n) = = b_0 u(k) + b_1 u(k-1) + \dots + b_n u(k-n) ; k = 1, 2, 3, \dots$$
 (2.14)

mit den n Anfangsbedingungen:

$$y_0 = y(0)$$
, $y(-1) = \cdots = y(-n+1) = 0$ (2.15)

oder in kompakterer Notierung mittels Summenzeichen:

$$y(k) = \sum_{j=0}^{n} b_j \ u(k-j) - \sum_{i=1}^{n} a_i \ y(k-i) \qquad , \qquad k = 1, 2, 3, \dots$$
 (2.16)

Differenzengleichungen stellen einen Rekursionsalgorithmus dar, der mit einem Digitalrechner schrittweise gelöst werden kann.

Eigenschaften diskreter Systeme (8)

```
% Sprungantwort für die Differenzengleichung 1. Ordnung
y(k) = -a1 * y(k-1) + b0 * u(k)
% als Approximation der DGL
% T1 * dy(t)/dt + y(t) = u(t)
                                                                  Zeitkonstante T1 = 1 Abtastintervall T = 0.1
%
T1 = 1;
                                                    0.9
T = 0.1;
a1 = -T1/(T1+T)
                                                    0.8
b0 = T/(T1+T)
%
                                                    0.7
uk = 1;
                                                    0.6
%
% Anfangsbedingung y(0) = 0
                                                 꽃 0.5
%
y0 = 0;
                                                    0.4
                                                    0.3
% Berechnung der Ausgangsfolge für k = 1
                                                    0.2
y(1) = -a1 * y0 + b0 *uk;
for i=2:100
                                                    0.1
  y(i) = -a1 * y(i-1) + b0 * uk;
end
                                                                            20
% Graphische Darstellung der Ausgangsfolge
stem(y(1:50))
xlabel('k')
ylabel('y(k)')
title(['Zeitkonstante T1 = ', num2str(T1),' Abtastintervall T = ' num2str(T)])
```


Eigenschaften diskreter Systeme (9)

$$T_1\dot{y}(t) + y(t) = u(t)$$

$$y(k) = \frac{T_1}{T_1 + T} y(k-1) + \frac{T}{T_1 + T} u(k)$$

