
Algorithm evaluation - Steps
towards more quality in M & S
Perspektiven der Modellbildung und
Simulation

Roland Ewald, Jan Himmelspach, Stefan Leye, and
Stefan Rybacki, Adelinde M. Uhrmacher
University of Rostock, Faculty of Computer Science
and Electrical Engineering

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 1 / 33

What does quality of M&S refer to?

• Quality of M&S results

• Quality of models (right abstraction - right modeling means)

• Quality of experiments (right overall process, with the right algorithms with
sufficient number of runs)

• Quality of software (Well defined development process)

• “Bug free software” (Well tested, software reuse)

• Efficiency of the software / scalability (Alternative algorithms, different hardware,
...)

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 2 / 33

Perspectives on quality

Modeller

M&S Software Developer

Experiment designer / doer

SponsorQuality of
M&S

products

tra
ns

ce
nt

product centered

user centered

process viewcost/use

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 3 / 33

Software development for M&S

“[...] to support practitioners, who (because of lack of background and or time)
should be protected from everything other than stating the problem and its context”
[Schmeiser 09]

• (not only) “by developing theory, methods, and algorithms” but

• by providing these in an accessible manner

• by supporting and guiding users,

• and (thus) “reducing the sources of errors”

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 4 / 33

A few first answers from James II

A Java-Based Multi Purpose Modeling Environment for Simulation

• There are (common) principles, techniques, and elements shareable by all
M&S software

• why not use an integrative approach and allow intensive reuse (cross tasks /
techniques / domains)

• facilitates development and evaluation of new methods

• more reliable simulation results

• currently more than 600 plug-ins

• Plug ’n simulate: Base (framework) + plug-ins per task/technique

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 5 / 33

Modelling in JAMES II
Quality of models: right modeling means

User interface

Experiment

Model

Simulation

Simulator

Database

start

generatesuse
write/read

executes

use

• DEVS-based formalisms

• π-based formalisms

• in addition for teaching: CA, Petri Nets, . . .

• + means for composition and model reuse

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 6 / 33

Model validation in JAMES II

Quality of models: right abstraction

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 7 / 33

Model validation in JAMES II

Quality of models: right abstraction

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 7 / 33

Model validation in JAMES II

Quality of models: right abstraction

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 7 / 33

Model validation in JAMES II

Quality of models: right abstraction

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 7 / 33

Model validation in JAMES II

Quality of models: right abstraction

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 7 / 33

Model validation in JAMES II

Quality of models: right abstraction

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 7 / 33

Experimentation support in JAMES II

Quality of experiments: the right process
Quality of models: the right model abstraction

Executable Model Validation

Theoretical
Analysis

Validation
Technique
Selection

Validat
ion

Objecti
ves

Simulation
Setup

Simulation
Execution Analysis

Evaluation

Executable Model need more Replication

succeeded

succeededneed more simulations

Setup & Execute Validation Experiment

Objectives

(Sub-) Workflow description for validation of an executable model

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 8 / 33

Experimentation support in JAMES II

Quality of experiments: the right process
Quality of experiments: the right algorithm

Algorithm
Formulation

Algorithm
Implementation

failed due to implementation succeeded
Conce
ptual

Algorit
hm

Algorithm
V&V

failed due to formulation

Algorithm
Evaluation

failed due to formulation

failed due to implementation

Impleme
nted

Algorith
m

Specification &
Requirements

Definition

Specifi
cation

Requir
ement

s

Workflow description for the evaluation of an algorithm

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 9 / 33

Evaluating (Implemented) M & S Algorithms

Correctness
• (Adapting) Methods from software

inspection and testing
• Experimental validation

Efficiency
• Benchmarking

Requirements

• Standardized Test Cases (like SATlib, UCI machine learning repository . . .)

• Alternative algorithms

• Automated testing and evaluation (user transparency)

Sufficient efficiency is the precondition for a sufficient validation!

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 10 / 33

"‘bug-free"’ M & S Algorithms?

• Unit tests: essential tool for developers

• Automated testing of corner cases, which need to be defined specifically for
specific algorithm classes

• Allows continuous integration

• Facilitates (test-driven) development of new algorithms

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 11 / 33

Standard Tests for Event Queues

• Test methods for the interface of event queues

• Classical (black box) unit testing

• Can be enriched with further test scenarios (gray box tests) which reflect
internals of the implementations

Basic set of tests ensures a minimal testing; all queues have to pass these at least
(→ minimal quality).

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 12 / 33

Managing Data on Algorithm Validity

• Validity is important to users

• May be used for deciding upon a certain setup

• Can be managed (and updated) automatically

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 13 / 33

Example: Plug-in Life Cycle in JAMES II

Under Development Untested Tested Stable

Broken

[Submitted/Fixed]
[TestsOK]

[UsageOK]

[Withdraw]

[Withdraw]

[Withdraw]

[Broken]

[Broken]

[Broken] [Withdraw]

[Broken]
[Fixed]

[Fixed]

[Fixed]

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 14 / 33

Efficiency of (implemented) M & S Algorithms

• Scalable

• Flexible

• and transpartent to the user

The inner life of the cell, http://multimedia.mcb.harvard.edu/

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 15 / 33

Bench Models

required to ensure:
• Comparability
• Reproducibility

important properties:
• Parameterizability
• Scalability
• Simplicity
• Representativeness

Commonplace in other domains, e.g.,

• SAT-solvers: SATLib http://www.satlib.org

• UCI machine learning repository http://archive.ics.uci.edu/ml

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 16 / 33

http://www.satlib.org
http://archive.ics.uci.edu/ml

Benchmarking Event Queues

Problems (Std tests)
• Up/Down
• Hold

Parameters
• initial distribution of entries
• distributions for enqueue

Being in use for more than three decades.

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 17 / 33

Pitfall: Load of Benchmark Model may vary over Time

1.5

1.6

1.7

ec
ut
io
n
Ti
m
es
 (F
R/
D
M
)

First Reaction vs. Direct Method on LCS Benchmark
Model

1.3

1.4

10 20 30 40 50

Ra
ti
o
of
 E
xe

Simulation End Time (in s)

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 18 / 33

Scalability

• Large number of CPUs /
cores per CPU

• Large models (memory,
computational demands)

• Large parameter spaces
(many trajectories need to
be computed)

• Large amounts of
(observed) data

• Complex analysis of data

single core
single hdd

multi core,
multi cpu,

raid

single configuration
single replication
single analysis

multiple configurations
multiple replications
multiple analyses

ne
tw

or
k

in
fr

as
tr

uc
tu

re

parallel data collection
parallel configurations

pa
ra

lle
l r

ep
lic

at
io

ns

pa
ra

lle
l a

na
ly

si
s

distributed

local

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 19 / 33

Flexibility
Efficiency of the software: Alternative algorithms

Experiment

Job 1

Job n

Replication 1 (Job
1)

Replication m (Job
1)

Replication 1 (Job
n)

Replication m (Job
n)

Analysis (Rep 1 ,
Job 1)

Analysis (Rep m,
Job 1)

Analysis (Rep 1 ,
Job n)

Analysis (Rep m,
Job n)

Analysis Job 1

Analysis Job n

Analysis
Experiment

Distributed /
sequential simulation

algorithm

(Remote / Distrib.) data
sink w. seq./par. access

Iterative / Upon
completion of all

replications

Iterative / Upon
completion of all jobs

Iterative / Upon
completion of

replication

Parallel jobs Parallel replications Parallel analysis Parallel job analysis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Feedback (job 1)

Parallel parameter
scan, optimization,

validation, ...

Multi CPU, Multi Core, Cluster, Grid, Cloud, ...
SOA, Web Services, RMI, MPI, ...

HLA, Data bases, ...

Distributed model

Minimal number of
jobs

Cancellation (rep 1, job 1)

Algorithm selection

Partitioning / Load
balancingJob distribution

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 20 / 33

User Transparency and support

• Flexible and scalable simulation systems
are hard to...

• build
• evaluate
• configure

• Simulation Algorithm Selection:
What is the best algorithm combination for a
given problem?

Drew Endy &
Isadora Deese,

Adventures in Synthetic Biology, Nature, 2005

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 21 / 33

Algorithm Selection on JAMES II Plug-ins

Simulator

Event Queue RNG

}Plug-in type
Simulator

Plug-in type
EventQueue

Plug-ins

Simulation
Setups ...

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 22 / 33

JAMES II Flexibility increases Difficulty 1.2. Terminology

200,000

300,000

400,000

500,000

600,000

700,000

Lines of Code

0

100,000

200,000

Figure 1.1.: Growth of the JAMES II code base
over the past years.

200

300

400

500

600

Plug‐ins # Plug‐in Types

0

100

Figure 1.2.: Number of plug-ins and plug-in types
defined in JAMES II (see sec. 4.2, p. 81).

on the relative merits of simulation algorithms. Researchers will benefit from such knowledge as well,
as it may reveal the weaknesses of current methods and could point to promising research directions.

This thesis addresses the Algorithm Selection Problem in a simulation context. The presented
methods are implemented within the modeling and simulation framework JAMES II, which was
constructed to serve as a productive environment for comparing simulation algorithms [131] and
has been growing steadily over the past years (see fig. 1.1 and 1.2). The abundance of competing
algorithmic solutions for certain simulation tasks in JAMES II is one of the more practical motivations
to investigate their automated selection. Nevertheless, the developed methods are not restricted to
JAMES II; they are applicable to simulation systems in general.

The next section defines some important terms and concepts. Section 1.3 introduces two real-world
challenges for simulation algorithm selection, which serve as example domains in the following. Finally,
section 1.4 briefly overviews the philosophical grounds on which the objectives of this thesis can be
evaluated, while section 1.5 concludes the introduction by outlining the structure of the next chapters.

1.2. Terminology

The notion of an algorithm is central to computer science. The most prominent definition is given by
Turing, who proposed a Turing Machine (TM) in analogy to a person that is computing a number [307,
p. 231–233]. The person only has a finite memory, but may use (infinitely many) segments of a tape
to keep notes. One can now think of a machine that shall automate this process: it has a finite number
of states (representing its memory), it is able to read from or write to the tape (one symbol at a time),
and it may also move left or right along the tape (segment-by-segment). Turing regards a machine as
automatic if its next action is always completely determined by its current position on the tape, its
state, and the content of the tape. This notion is contrasted by the definition of a ’choice-machine’; a
machine that sometimes requires intervention by an ’external operator’, i.e., which relies on elements
that are not necessarily computable.

However, the automatic version of Turing’s machine model does not rely on such interventions. It is
this machine model that can be used to define what an algorithm is: everything that can be described
by an (automatic) Turing machine. Algorithms might be given in verbal form or as code in some
programming language; they all have in common that they can be mimicked by a Turing Machine.
Nevertheless, the argument that this kind of machine does indeed cover all possible processes of
calculation remains unproven: “All arguments which can be given are bound to be, fundamentally,
appeals to intuition, and for this reason rather unsatisfactory mathematically” [307, p. 249]. Similar
to Turing, Davis et al. conclude that “[...] the word algorithm has no general definition separated from
a particular language [...]” [54, p. 69], and the languages they refer to are programming languages

3

• Code base grows steadily

• Combinatorial explosion

• Algorithm parameters must not be neglected

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 23 / 33

Algorithm Selection: Different Circumstances

Simulation Algorithm Selection

None Performance
Data

Problem Features +
Performance Data

Performance
Prediction

Adaptive
Replication

Adaptive R. +
Portfolios

Stochastic Simulation

Requirements

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 24 / 33

No Prior Knowledge: Adaptive Replication

Reward: 100 Reward: 70

i i+1

simulation
setups

policy

selection

Reward: 10

i-1
performance

...
horizon

reinforcement reinforcement

• Restricted to stochastic simulation

• Policies to solve the Multi-Armed Bandit Problem

• Requires sufficiently many replications

• Results: speedup up to 3.2 (w.r.t. avg. performance)

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 25 / 33

Just Performance Data: Algorithm Portfolios

simulation
setups

policy

Hard Easy

Portfolio
Theory ...

reinforcement...

Performance
Data

• Portfolio theory allows to rank algorithms⇒ implicit quality measure

• Combines set of algorithm to improve overall performance

• Results: additional speedup of 3

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 26 / 33

Perf. Data & Problem Features: Performance Prediction

Experiments

Performance
DB

Selector Generation

Plug-in Registry

1 Record Data 2 Learn Selection Mappings 3 Deploy

• Inductive learning (e.g., decision trees)

• Auxiliary components help quality management:

• Performance database: stores past performance data

• Enhanced registry: stores life cycle state of plug-ins (e.g., broken, stable, etc.)

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 27 / 33

Example: Decision Trees Generated for Sτ

L≤11³

P≤104›

P≤106›

D≤4

›

P≤272.73

No

NSM
Yes

No

NSM

Yes

GMPM

No

NSM

P>0.8

Yes

NSM

YesNo

Yes

Sτ
No

(10)

Sτ(33)

No

Yes

A B

NSM

Obtainable speed-up: several orders of magnitude.

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 28 / 33

Coping with Change: Algorithmic Change Evaluator

PerfDB

SimSpEx James II Exp LayerASR

New Algorithm Version Old Configurations*
...

1. Experiment generation

3. Result comparison
* * Result Storage...{

2. Execution

ACE:

• Hard to test: What is the overall performance impact of a code change?

• Requires Simulation Space Exploration components (SimSpEx)

• ACE allows a fast evaluation of changes because:

• Adaptive replication (ASR) keeps focus on fastest algorithms

• Data from PerfDB steers experiments

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 29 / 33

Sample Results: a bad code change

9.2. Experimental Evaluation

80

100

120

Best Performance

0

20

40

60

ODM NRM/MListRe DM NRM/SimpleEQ NRM/Heap FR

Co
un

t

Best Performance (10 s)

Worst Performance

Worst Performance (10 s)

Figure 9.4.: Best/worst performance counts for SSA algorithms. Blue bars denote the count of problems
where the given algorithm outperformed all others, red bars denote the count of problems where the given
algorithm performed worst. Counts from scenario three (using calibration) are dark blue and red, counts from
scenario one (fixed simulation end time of 10 s) are light blue and red.

‐0.5

0

0.5

1

‐3

‐2.5

‐2

‐1.5

‐1

Relative Performance Gain (Before)

Relative Performance Gain (Now)

Figure 9.5.: Relative performance gains before and after the code change. Note that, for the sake of clarity,
the performance gains are sorted independent of each other in ascending order, so two bars at the same position
do not represent the same problem.

of all runtime configurations that include the changed algorithm, and marks all of its old runtime
configurations as out-of-date within the performance data base (see sec. 5.1.1, p. 106). By doing so,
one can easily build a ’performance history’ for a certain algorithm, e.g., to assess optimization efforts.

The ACE is set up to execute six replications per problem. This results in 6 · 150 = 900 simulation
runs (replications × simulation problems), which take ≈ 55 minutes. It is hence much faster than
repeating the whole performance experiment from scratch (which takes more than five hours at best,
see fig. 9.2, p. 183). The output of the ACE is used to calculate the relative performance gain regarding
execution time, for all 150 simulation problems: it is the difference between ODM’s average execution
time (EODM) and the average execution time of the best alternative (non-ODM) setup (Ealt) for a
given simulation problem, set into relation with the best overall execution time:

Ealt − EODM
min(Ealt, EODM)

(9.2)

A positive relative performance gain denotes setups where ODM delivers the best overall perfor-
mance, as it is faster than the best alternative. The opposite holds for negative performance gains.
Considering relative gains avoids a bias towards problems with longer execution times (and hence

185

Idea: compare best (here: fastest) simulation setup that contains the changed
algorithm, with best setup that does not contain the changed algorithm — before
(from PerfDB) and after the code change, on a set of benchmark models (x-axis).

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 30 / 33

Quality of M& S: Evaluating Algorithms

• Quality of experiments: right algorithms
alternatives + selection of suitable algorithms

• M & S software quality : “Bug free software”
alternatives + support for evaluation and report of life cycle

• M & S software quality: Efficiency of the software
alternatives + selection of efficient algorithms

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 31 / 33

Quality of M& S: Evaluating Algorithms

• Quality of experiments: right algorithms
alternatives + selection of suitable algorithms

• M & S software quality : “Bug free software”
alternatives + support for evaluation and report of life cycle

• M & S software quality: Efficiency of the software
alternatives + selection of efficient algorithms

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 31 / 33

Potential for Standardization

• Software component interfaces (Reuse)

• Benchmark models (Repeatability)

• Experiment descriptions (Repeatability)

• Data storage formats (Usability)

• Knowledge for algorithm selection (Usability)

• Knowledge for modeling formalisms selection (Usability)

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 32 / 33

Thank you for your attention.

Questions?

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 33 / 33

