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What does quality of M&S refer to?

• Quality of M&S results

• Quality of models (right abstraction - right modeling means)

• Quality of experiments (right overall process, with the right algorithms with
sufficient number of runs)

• Quality of software (Well defined development process)

• “Bug free software” (Well tested, software reuse)

• Efficiency of the software / scalability (Alternative algorithms, different hardware,
... )
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Perspectives on quality
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Software development for M&S

“[...] to support practitioners, who (because of lack of background and or time)
should be protected from everything other than stating the problem and its context”
[Schmeiser 09]

• (not only) “by developing theory, methods, and algorithms” but

• by providing these in an accessible manner

• by supporting and guiding users,

• and (thus) “reducing the sources of errors”

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 4 / 33



A few first answers from James II

A Java-Based Multi Purpose Modeling Environment for Simulation

• There are (common) principles, techniques, and elements shareable by all
M&S software

• why not use an integrative approach and allow intensive reuse (cross tasks /
techniques / domains)

• facilitates development and evaluation of new methods

• more reliable simulation results

• currently more than 600 plug-ins

• Plug ’n simulate: Base (framework) + plug-ins per task/technique
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Modelling in JAMES II
Quality of models: right modeling means

User interface

Experiment

Model

Simulation

Simulator

Database

start

generatesuse
write/read

executes

use

• DEVS-based formalisms

• π-based formalisms

• in addition for teaching: CA, Petri Nets, . . .

• + means for composition and model reuse
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Model validation in JAMES II

Quality of models: right abstraction
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Experimentation support in JAMES II

Quality of experiments: the right process
Quality of models: the right model abstraction

Executable Model Validation

Theoretical
Analysis

Validation
Technique
Selection

Validat
ion

Objecti
ves

Simulation
Setup

Simulation
Execution Analysis

Evaluation

Executable Model need more Replication

succeeded

succeededneed more simulations

Setup & Execute Validation Experiment

Objectives

(Sub-) Workflow description for validation of an executable model
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Experimentation support in JAMES II

Quality of experiments: the right process
Quality of experiments: the right algorithm
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Evaluating (Implemented) M & S Algorithms

Correctness
• (Adapting) Methods from software

inspection and testing
• Experimental validation

Efficiency
• Benchmarking

Requirements

• Standardized Test Cases (like SATlib, UCI machine learning repository . . . )

• Alternative algorithms

• Automated testing and evaluation (user transparency)

Sufficient efficiency is the precondition for a sufficient validation!
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"‘bug-free"’ M & S Algorithms?

• Unit tests: essential tool for developers

• Automated testing of corner cases, which need to be defined specifically for
specific algorithm classes

• Allows continuous integration

• Facilitates (test-driven) development of new algorithms
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Standard Tests for Event Queues

• Test methods for the interface of event queues

• Classical (black box) unit testing

• Can be enriched with further test scenarios (gray box tests) which reflect
internals of the implementations

Basic set of tests ensures a minimal testing; all queues have to pass these at least
(→ minimal quality).
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Managing Data on Algorithm Validity

• Validity is important to users

• May be used for deciding upon a certain setup

• Can be managed (and updated) automatically
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Example: Plug-in Life Cycle in JAMES II

Under Development Untested Tested Stable

Broken

[Submitted/Fixed] 
[TestsOK] 

[UsageOK] 

[Withdraw] 

[Withdraw] 

[Withdraw] 

[Broken] 

[Broken] 

[Broken] [Withdraw] 

[Broken] 
[Fixed] 

[Fixed] 

[Fixed] 
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Efficiency of (implemented) M & S Algorithms

• Scalable

• Flexible

• and transpartent to the user

The inner life of the cell, http://multimedia.mcb.harvard.edu/
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Bench Models

required to ensure:
• Comparability
• Reproducibility

important properties:
• Parameterizability
• Scalability
• Simplicity
• Representativeness

Commonplace in other domains, e.g.,

• SAT-solvers: SATLib http://www.satlib.org

• UCI machine learning repository http://archive.ics.uci.edu/ml
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Benchmarking Event Queues

Problems (Std tests)
• Up/Down
• Hold

Parameters
• initial distribution of entries
• distributions for enqueue

Being in use for more than three decades.
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Pitfall: Load of Benchmark Model may vary over Time
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Scalability

• Large number of CPUs /
cores per CPU

• Large models (memory,
computational demands)

• Large parameter spaces
(many trajectories need to
be computed)

• Large amounts of
(observed) data

• Complex analysis of data
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Flexibility
Efficiency of the software: Alternative algorithms
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User Transparency and support

• Flexible and scalable simulation systems
are hard to...

• build
• evaluate
• configure

• Simulation Algorithm Selection:
What is the best algorithm combination for a
given problem?

Drew Endy &
Isadora Deese,

Adventures in Synthetic Biology, Nature, 2005
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Algorithm Selection on JAMES II Plug-ins

Simulator

Event Queue RNG

}Plug-in type 
Simulator

Plug-in type 
EventQueue

Plug-ins

Simulation 
Setups ...
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JAMES II Flexibility increases Difficulty 1.2. Terminology
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Figure 1.1.: Growth of the JAMES II code base
over the past years.
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Figure 1.2.: Number of plug-ins and plug-in types
defined in JAMES II (see sec. 4.2, p. 81).

on the relative merits of simulation algorithms. Researchers will benefit from such knowledge as well,
as it may reveal the weaknesses of current methods and could point to promising research directions.

This thesis addresses the Algorithm Selection Problem in a simulation context. The presented
methods are implemented within the modeling and simulation framework JAMES II, which was
constructed to serve as a productive environment for comparing simulation algorithms [131] and
has been growing steadily over the past years (see fig. 1.1 and 1.2). The abundance of competing
algorithmic solutions for certain simulation tasks in JAMES II is one of the more practical motivations
to investigate their automated selection. Nevertheless, the developed methods are not restricted to
JAMES II; they are applicable to simulation systems in general.

The next section defines some important terms and concepts. Section 1.3 introduces two real-world
challenges for simulation algorithm selection, which serve as example domains in the following. Finally,
section 1.4 briefly overviews the philosophical grounds on which the objectives of this thesis can be
evaluated, while section 1.5 concludes the introduction by outlining the structure of the next chapters.

1.2. Terminology

The notion of an algorithm is central to computer science. The most prominent definition is given by
Turing, who proposed a Turing Machine (TM) in analogy to a person that is computing a number [307,
p. 231–233]. The person only has a finite memory, but may use (infinitely many) segments of a tape
to keep notes. One can now think of a machine that shall automate this process: it has a finite number
of states (representing its memory), it is able to read from or write to the tape (one symbol at a time),
and it may also move left or right along the tape (segment-by-segment). Turing regards a machine as
automatic if its next action is always completely determined by its current position on the tape, its
state, and the content of the tape. This notion is contrasted by the definition of a ’choice-machine’; a
machine that sometimes requires intervention by an ’external operator’, i.e., which relies on elements
that are not necessarily computable.

However, the automatic version of Turing’s machine model does not rely on such interventions. It is
this machine model that can be used to define what an algorithm is: everything that can be described
by an (automatic) Turing machine. Algorithms might be given in verbal form or as code in some
programming language; they all have in common that they can be mimicked by a Turing Machine.
Nevertheless, the argument that this kind of machine does indeed cover all possible processes of
calculation remains unproven: “All arguments which can be given are bound to be, fundamentally,
appeals to intuition, and for this reason rather unsatisfactory mathematically” [307, p. 249]. Similar
to Turing, Davis et al. conclude that “[...] the word algorithm has no general definition separated from
a particular language [...]” [54, p. 69], and the languages they refer to are programming languages

3

• Code base grows steadily

• Combinatorial explosion

• Algorithm parameters must not be neglected
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Algorithm Selection: Different Circumstances

Simulation Algorithm Selection

None Performance 
Data

Problem Features + 
Performance Data

Performance 
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No Prior Knowledge: Adaptive Replication

Reward: 100 Reward: 70

i i+1

simulation
setups

policy

selection

Reward: 10

i-1
performance

...
horizon

reinforcement reinforcement

• Restricted to stochastic simulation

• Policies to solve the Multi-Armed Bandit Problem

• Requires sufficiently many replications

• Results: speedup up to 3.2 (w.r.t. avg. performance)
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Just Performance Data: Algorithm Portfolios

simulation
setups

policy

Hard Easy

Portfolio 
Theory ...

reinforcement...

Performance 
Data

• Portfolio theory allows to rank algorithms⇒ implicit quality measure

• Combines set of algorithm to improve overall performance

• Results: additional speedup of 3
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Perf. Data & Problem Features: Performance Prediction

Experiments

Performance 
DB

Selector Generation

Plug-in Registry

1 Record Data 2 Learn Selection Mappings 3 Deploy

• Inductive learning (e.g., decision trees)

• Auxiliary components help quality management:

• Performance database: stores past performance data

• Enhanced registry: stores life cycle state of plug-ins (e.g., broken, stable, etc.)
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Example: Decision Trees Generated for Sτ
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Obtainable speed-up: several orders of magnitude.
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Coping with Change: Algorithmic Change Evaluator

PerfDB

SimSpEx James II Exp LayerASR

New Algorithm Version Old Configurations*
...

1. Experiment generation

3. Result comparison
* * Result Storage...{

2. Execution

ACE:

• Hard to test: What is the overall performance impact of a code change?

• Requires Simulation Space Exploration components (SimSpEx)

• ACE allows a fast evaluation of changes because:

• Adaptive replication (ASR) keeps focus on fastest algorithms

• Data from PerfDB steers experiments

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 29 / 33



Sample Results: a bad code change

9.2. Experimental Evaluation
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Figure 9.4.: Best/worst performance counts for SSA algorithms. Blue bars denote the count of problems
where the given algorithm outperformed all others, red bars denote the count of problems where the given
algorithm performed worst. Counts from scenario three (using calibration) are dark blue and red, counts from
scenario one (fixed simulation end time of 10 s) are light blue and red.
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Figure 9.5.: Relative performance gains before and after the code change. Note that, for the sake of clarity,
the performance gains are sorted independent of each other in ascending order, so two bars at the same position
do not represent the same problem.

of all runtime configurations that include the changed algorithm, and marks all of its old runtime
configurations as out-of-date within the performance data base (see sec. 5.1.1, p. 106). By doing so,
one can easily build a ’performance history’ for a certain algorithm, e.g., to assess optimization efforts.

The ACE is set up to execute six replications per problem. This results in 6 · 150 = 900 simulation
runs (replications × simulation problems), which take ≈ 55 minutes. It is hence much faster than
repeating the whole performance experiment from scratch (which takes more than five hours at best,
see fig. 9.2, p. 183). The output of the ACE is used to calculate the relative performance gain regarding
execution time, for all 150 simulation problems: it is the difference between ODM’s average execution
time (EODM ) and the average execution time of the best alternative (non-ODM) setup (Ealt) for a
given simulation problem, set into relation with the best overall execution time:

Ealt − EODM
min(Ealt, EODM )

(9.2)

A positive relative performance gain denotes setups where ODM delivers the best overall perfor-
mance, as it is faster than the best alternative. The opposite holds for negative performance gains.
Considering relative gains avoids a bias towards problems with longer execution times (and hence

185

Idea: compare best (here: fastest) simulation setup that contains the changed
algorithm, with best setup that does not contain the changed algorithm — before
(from PerfDB) and after the code change, on a set of benchmark models (x-axis).
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Quality of M& S: Evaluating Algorithms

• Quality of experiments: right algorithms
alternatives + selection of suitable algorithms

• M & S software quality : “Bug free software”
alternatives + support for evaluation and report of life cycle

• M & S software quality: Efficiency of the software
alternatives + selection of efficient algorithms
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Potential for Standardization

• Software component interfaces (Reuse)

• Benchmark models (Repeatability)

• Experiment descriptions (Repeatability)

• Data storage formats (Usability)

• Knowledge for algorithm selection (Usability)

• Knowledge for modeling formalisms selection (Usability)

January 18, 2011 c© 2011 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 32 / 33



Thank you for your attention.

Questions?
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