
Formal OS Kernel Verification —
Making Trusted Trustworthy

Gernot Heiser
NICTA and UNSW and Open Kernel Labs
Sydney, Australia

December, 2008

© 2008 Gernot Heiser, NICTA 2

“Trusted Computing” a la TCG

App App App

OS

Secure Boot

Processor TPM

Trusted

Millions of lines of
code!

Credibility gap!

Trustworthy
(I hope!)

© 2008 Gernot Heiser, NICTA 3

Rehash of Yesterday

Operating systems are trusted, but not trustworthy
 Millions of lines of code (LOC)

�

 Thousands of bugs
 Hundreds of security holes
 Standard way out: minimise the trusted computing base (TCB)

• Microkernels are good

• Fewer LoC  fewer security-relevant bugs

 Not exactly a radical idea
• QNX selling a microkernel since early '90s
• Green Hills Integrity since 2000 or so
• OKL4 from Open Kernel Labs deployed in 250 million devices

© 2008 Gernot Heiser, NICTA 4

Also Mentioned:
Communication Control & MAC

OKL4 has it:
 Communication controlled by capabilities

• Use of a communication channel requires a capability to it

 Define isolation domains called Secure HyperCells
 Impose mandatory communication control based on system-wide policy

Linux

Microkernel

Processor

App App

App






Secure
HyperCellTM

boundary

© 2008 Gernot Heiser, NICTA 5

How About Formal Verification?

Requirements Implementation

EAL1 not evaluated Informal not evaluated not evaluated

EAL2 not evaluated Informal Informal not evaluated

EAL3 not evaluated Informal Informal not evaluated

EAL4 not evaluated Informal Informal Informal

EAL5 not evaluated Semi-Formal Semi-Formal Informal

EAL6 Formal Semi-Formal Semi-Formal Informal

EAL7 Formal Formal Formal Informal

Evaluation
Level

Functional
Specification

Top-Down
Design

 Never done before — why?

 E.g. Common Criteria:

 One system is close: NICTA's seL4 microkenel

© 2008 Gernot Heiser, NICTA 6

Trusted Computing Limitations

Trusted computing without a trustworthy TCB is a fantasy!
 Assurance does not ensure that the TCB is trustworthy

• Even at the highest, most thorough evaluation standards!

 Real trustworthiness can only be based on proof.
 Implication: Need an OS format that

• Can be proved to satisfy security requirements
• Can be proved to be correctly implemented
• Can support arbitrary systems, including standard consumer electronics
• Performs well enough to be usable on battery-powered mobile devices

− Overheads must not significantly exceed traditional OSes

 Constructed proof of feasibility: NICTA seL4 microkernel

© 2008 Gernot Heiser, NICTA 7

seL4

© 2008 Gernot Heiser, NICTA 8

The seL4 Microkernel

Goals
 Formal specification of kernel and machine
 High-performance implementation
 Formal proof of security properties
 Formal verification of implementation

Innovation over other L4 kernels:
 All accesses mediated by capabilities
 Kernel resource accounting

• complete internal separation of memory held on behalf
of applications (page tables, control blocks)

• memory explicitly provided to kernel
• free from covert storage channels by construction

 No significant performance penalty for new features
• 15 cycles per syscall ok. Maybe.

© 2008 Gernot Heiser, NICTA 9

seL4 Verification Project Overview

 Size of the project
• Average 4–5 people (full time equivalent)

A

• 5 years
• Ends March 2009

 Interesting Problems
• Designing and formalising an OS kernel
• Refinement on monadic functional programs
• Refinement on C programs
• Formalizing machine details
• Access control

© 2008 Gernot Heiser, NICTA 10

seL4 Capability-based Protection

All authority conferred via capabilities
 Capabilities are like keys

• Possess the key, and you can invoke the operation

 All system calls are invoked via Capabilities
• No ambient authority

Advantage: Established body knowledge on capabilities
 Reason about them
 Confining authority

Capability-based protection adopted by OK Labs
 first stage of introduction (for IPC) in OKL4 V3.0
 other resources to be covered later

© 2008 Gernot Heiser, NICTA 11

seL4 Physical Memory Management

Some kernel memory is
statically allocated at boot time

Remainder is divided into
untyped (UT) objects

• 2n region of physical memory
• size aligned

Supervisor gets authority
over these objects

• authority conferred by capabilities

Kernel never allocates dynamic memory
• user must provide memory for kernel objects
• re-typing untyped memory to kernel object type

App 1 App 2

Supervisory
OS

Microkernel

Physical memory

Kernel
Data

UT
obj 1

UT
obj 2

UT
obj 3 ..

....

UT
obj n

© 2008 Gernot Heiser, NICTA 12

High-Performance
C implementation

Designing and Formalising

Design &
Specify

Formal
Model

Safety
Theorem

Pro
of

P
ro

o
f

© 2008 Gernot Heiser, NICTA 13

Formal Methods Practitioners
vs

Kernel Developers

Two Teams

© 2008 Gernot Heiser, NICTA 14

Standard Kernel Design

Kernel Hacker View

Design &
Specify

High-Performance
C implementation

White-
board

Safety
Theorem

Formal
Model

 Step 2

Proof

P
ro

o
f

Prototype on
Real Hardware

© 2008 Gernot Heiser, NICTA 15

Formal Design

Design &
Specify

Formal
Model

Safety
Theorem

Design in
Theorem Prover

Formal Methods
View

P
ro

o
f

High-Performance
C implementation

Step 2

Proof

© 2008 Gernot Heiser, NICTA 16

Iterative Design and Formalisation

Design &
Specify

Formal
Model

High-Performance
C implementation

Safety
Theorem

Haskell
Prototype

Proof

• prototype kernel
 executes native binaries on simulator

• exposes usability issues early

• tight formal design integration

Pro
of

Inspired by existing code

© 2008 Gernot Heiser, NICTA 17

The Proof

© 2008 Gernot Heiser, NICTA 18

Access Control Model

Abstract Model

Executable Model

C Code HW

Confinement

Haskell Prototype

Formal proof:
concrete behaviour
captured at
abstract level

Monadic functional
programs

Hoare Logic
Separation Logic

Manual System Specification

(Isabelle/HOL)

(

High Performance Implementation
(C/asm)

(

Hardware model

The Proof

© 2008 Gernot Heiser, NICTA 19

The Proof

Access Control Model

Abstract Model

Executable Model

C Code HW

Confinement

Haskell Prototype

Formal proof:
concrete behaviour
captured at
abstract level

Monadic functional
programs

Hoare Logic
Separation Logic

Manual System Specification

(Isabelle/HOL)

(

High Performance Implementation
(C/asm)

(

Hardware model

© 2008 Gernot Heiser, NICTA 20

Common Criteria and seL4

EAL1 Informal

EAL2 Informal Informal

EAL3 Informal Informal

EAL4 Informal Informal Informal

EAL5 Semi-Formal Semi-Formal Informal

EAL6 Formal Semi-Formal Semi-Formal Informal

EAL7 Formal Formal Formal Informal

seL4 Formal Formal Formal Formal

Evaluation
Level

Require-
ments

Functional
Specification

Top-Down
Design

Imple-
mentation

not eval. not eval not eval

not eval. not eval

not eval. not eval

not eval.

not eval.

© 2008 Gernot Heiser, NICTA 21

Common Criteria and L4.verified

Cost

EAL1 Informal

EAL2 Informal Informal

EAL3 Informal Informal

EAL4 Informal Informal Informal

EAL5 Semi-Formal Semi-Formal Informal

EAL6 Formal Semi-Formal Semi-Formal Informal

EAL7 Formal Formal Formal Informal

seL4 Formal Formal Formal Formal

Evaluation
Level

Require-
ments

Functional
Specification

Top-Down
Design

Imple-
mentation

not eval. not eval not eval

not eval. not eval

not eval. not eval

not eval.

not eval.

$10k/LoC

$0.6k/LoC

© 2008 Gernot Heiser, NICTA 22

Wrapping Up

© 2008 Gernot Heiser, NICTA 23

seL4 Summary

Statistics
 3.5k LoC abstract, 7kLoC concrete spec (about 3k Haskell)

�

 Abstract → Haskell: 100kLoP (more features coming)

�

 Haskell → C/asm: 80kLoP (estimated)
 Access control model + isolation proofs done (1kLoP)
 109 patches to Haskell kernel, 132 to abstract spec
 Performance in line with other L4 kernels
 average 6 people over 5 years

Kinds of properties proved
 Well typed references, aligned objects, ..
 Well formed thread states, endpoint and scheduler queues, ...
 All syscalls terminate, reclaiming memory is safe, ...
 Authority is distributed by caps only
 Access control is decidable

© 2008 Gernot Heiser, NICTA 24

Summary

seL4 verification status
 Refinement to LLD complete
 C level refinement in progress (due February)

C

 Working on proving more security properties

o

 Already most formally verified kernel ever
 Performance comparable to other L4 kernels
 Commercialization by Open Kernel Labs

Conclusion:
 Verification of OS kernels is possible
 ... but it ain't easy

• limited to small kernels
• but can leverage guarantees of verified kernel
• however, doing this is an unsolved and highly non-trivial problem

© 2008 Gernot Heiser, NICTA 25

How About Hardware?

 Hardware has the appearance of being more trustworthy
• because it's unchangeable, people think more about it

 But: if it's broken in hardware, I can't fix it in software
• hardware is too complex to be completely formally verified
• putting more complexity into hardware is the wrong way to go
• keep it simple, and let me control it by software

 What hardware should be like
• sufficient for building secure software (doesn't need much!)
• well-defined APIs (simplicity is a bonus)
• correctly implemented

 Formally-verified kernel becomes more like hardware
• it needs to be extremely well-designed
• once verified, don't change it, as this will break your proofs!

© 2008 Gernot Heiser, NICTA 26

A Final Word on Commercial Realities

Is it possible to commercialise a verified OS?

 Formal verification can be less expensive than CC assurance
• ... but delivers more

 seL4 is correct to a much higher degree than can be assured by CC EAL7
• ... but it won't even be acceptable where EAL4 is required

 Problem with common criteria:
• too expensive
• no rewards for doing better

 Unless this is changed, there is no business case for formal verification
• no business case  no commercial system will be verified

• no formal verification  no trustworthy systems

 Requires leadership by governments (NSA, BSI, ...)

© 2008 Gernot Heiser, NICTA 27

Thank You

© 2008 Gernot Heiser, NICTA 28

Small Kernels

 Small trustworthy foundation
 Hypervisor micro kernel,

nano-kernel, virtual machine, separation
kernel, exokernel ...

 Applications:
• Fault isolation
• Fault identification
• IP Protection
• Modularity
• ...

 High assurance components
in presence of other components

Legacy
Apps

Sensitive
Apps

Linux
Server

Trusted
Service

Supervisor OS

seL4

Hardware

TrustedUntrusted

© 2008 Gernot Heiser, NICTA 29

seL4 Physical Memory Management

Some kernel memory is
statically allocated at boot time

Remainder is divided into
untyped (UT) objects

• 2n region of physical memory
• size aligned

Supervisor gets authority
over these objects

• authority conferred by capabilities

Kernel never allocates dynamic memory
• user must provide memory for kernel objects
• re-typing untyped memory to kernel object type

App 1 App 2

Supervisory
OS

Microkernel

Physical memory

Kernel
Data

UT
obj 1

UT
obj 2

UT
obj 3 ..

....

UT
obj n

© 2008 Gernot Heiser, NICTA 30

Refinement

 The old story
• C refines A if all behaviours of C are contained in A

 Sufficient: forward simulation

A

Cs’

s

t’

t

S S

As t

t’

S

C
s’

S

	Trusted  Trustworthy  Proof
	What does Trusted Computing Do?
	Are Operating Systems Trustworthy?
	Small TCB: Microkernel
	Common Criteria Assurance and Trustworthiness
	Trusted Computing Limitations
	seL4
	The seL4 Microkernel
	seL4 Project Overview
	seL4 Capability-based Protection
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	The Proof
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Wrapping Up
	seL4 Summary
	Summary
	Slide 25
	Slide 26
	Thank You
	Small Kernels
	Slide 29
	Refinement

