13) Die Lagrangefunktion ist $L(x,\lambda) = x_1 + \lambda_1(x_1^2 + x_2^2 - 1) + \lambda_2(x_1 + x_2 - \gamma)$. Aus den KKT-Bedingungen folgt

$$1 + \lambda_1 2x_1 + \lambda_2 = 0$$
$$\lambda_1 2x_2 + \lambda_2 = 0$$

Ist $\lambda_1 = 0$, so folgt aus der zweiten Gleichung $\lambda_2 = 0$ und damit ist die erste nicht lösbar. Also gilt $\lambda_1 \neq 0$ und wegen der Komplementarität $x_1^2 + x_2^2 = 1$. Durch Differenzbildung der zwei Gleichungen und Auflösung nach λ_1 erhält man $\lambda_1 = \frac{1}{2(x_2 - x_1)}$ und damit $\lambda_2 = \frac{-x_2}{x_2 - x_1}$. Wegen $\lambda_1 \geq 0$ und $\lambda_2 \geq 0$ folgt hieraus $x_2 > x_1$ und $x_2 \leq 0$.

Nun unterscheiden wir zwei Fälle:

 $\lambda_2 = 0$: Dann liefert die zweite Gleichung $x_2 = 0$, und damit, da die erste Restriktion aktiv ist, $x_1 = \pm 1$. Da $\lambda_1 > 0$ gelten muss, liefert die erste Gleichung $x_1 < 0$. Insgesamt erhält man den Punkt

$$(x_1, x_2, \lambda_1, \lambda_2) = \left(-1, 0, \frac{1}{2}, 0\right).$$

Dieser ist KKT-Punkt, wenn er zulässig ist, d.h. wenn $-1 \le \gamma$ gilt. Andernfalls hat man in diesem Fall keinen KKT Punkt.

 $\lambda_2 \neq 0$: Dann müssen beide Restriktionen aktiv sein, und somit ist $x_2 = \gamma - x_1$. Dies in die erste Restriktion eingesetzt ergibt:

$$x_1^2 + (\gamma - x_1)^2 = 1$$

$$\Leftrightarrow 2x_1^2 - 2\gamma x_1 + \gamma^2 - 1 = 0$$

$$\Leftrightarrow x_1 = \frac{2\gamma \pm \sqrt{4\gamma^2 - 8(\gamma^2 - 1)}}{4}$$

$$\Leftrightarrow x_1 = \frac{\gamma}{2} \pm \frac{1}{2}\sqrt{2 - \gamma^2}$$

Man sieht also, dass dies nur für $-\sqrt{2} \le \gamma \le \sqrt{2}$ möglich ist. Weiter erhält man $x_2 = \gamma - x_1 = \frac{\gamma}{2} \mp \frac{1}{2}\sqrt{2-\gamma^2}$ und wegen $x_1 < x_2$ erhält man den einen Punkt $(x_1, x_2) = \left(\frac{\gamma}{2} - \frac{1}{2}\sqrt{2-\gamma^2}, \frac{\gamma}{2} + \frac{1}{2}\sqrt{2-\gamma^2}\right)$. Da ferner $x_2 \le 0$ gelten muss, folgt $\gamma \le -1$. Damit erhält man für $-\sqrt{2} < \gamma \le -1$ den KKT-Punkt

$$\left(\frac{\gamma}{2} - \frac{1}{2}\sqrt{2 - \gamma^2}, \frac{\gamma}{2} + \frac{1}{2}\sqrt{2 - \gamma^2}, \frac{1}{2\sqrt{2 - \gamma^2}}, \frac{-\frac{\gamma}{2} - \frac{1}{2}\sqrt{2 - \gamma^2}}{\sqrt{2 - \gamma^2}}\right).$$

Für $\gamma=-\sqrt{2}$ sind die Multiplikatoren in der Formel nicht definiert. Man erkennt, dass dann $x_1=x_2$ ist und somit hat das Gleichungssystem keine Lösung.

Zusammenfassend erhalten wir also für $\gamma=-\sqrt{2}$ keinen KKT-Punkt, für $-\sqrt{2}<\gamma$ jeweils genau einen.