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06.11.2007 9:00-9:50 CT
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13.11.2007 9:00-9:50 48–53

19.11.2007 9:00-9:50 54–57

20.11.2007 9:00-9:50 57–61

26.11.2007 9:00-9:50 62–66

27.11.2007 9:00-9:50 66–68

03.12.2007 9:00-9:50 68–72

04.12.2007 9:00-9:50 CT

10.12.2007 9:00-9:50 72–76

11.12.2007 9:00-9:50 76–80

Examples classes:

Date Hours Questions

13.10.2008 14:00-14:50

27.10.2008 14:00-14:50

10.11.2008 14:00-14:50

24.11.2008 14:00-14:50

08.12.2008 14:00-14:50

Class tests:

Date Hours Questions

06.11.2008 9:00-9:50

04.12.2008 9:00-9:50
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Chapter 1

Introduction

This course is about linear optimisation which is also known as linear programming.

Linear programming is an important field of optimisation. Many practical problems in

operations research can be expressed as linear programming problems. A number of al-

gorithms for other types of optimisation problems work by solving linear programming

problems as sub-problems. Historically, ideas from linear programming have inspired

many of the central concepts of optimisation theory, such as duality, decomposition, and

the importance of convexity and its generalisations. Likewise, linear programming is heav-

ily used in business management, either to maximize the income or minimize the costs of

a production scheme.

What is optimisation about?

Optimisation plays a major role in many applications from economics, operations research,

industry, engineering sciences, and natural sciences. In the famous book of Nocedal and

Wright [NW99] we find the following statement:

People optimise: Airline companies schedule crews and aircraft to minimise cost. Investors

seek to create portfolios that avoid risks while achieving a high rate of return. Manufactur-

ers aim for maximising efficiency in the design and operation of their production processes.

Nature optimises: Physical systems tend to a state of minimum energy. The molecules in

an isolated chemical system react with each other until the total potential energy of their

electrons is minimised, Rays of light follow paths that minimise their travel time.

General optimisation problem:

For a given function f : R
n → R and a given set M ⊆ R

n find x̂ ∈ M which minimises

f on M , that is x̂ satisfies

f(x̂) ≤ f(x) for every x ∈ M.

Terminology:

• f is called objective function.

2



3

• M is called feasible set (or admissible set).

• x̂ is called minimiser of f on M .

• Any x ∈ M is called feasible or admissible.

• The components xi, i = 1, . . . , n, of the vector x are called optimisation variables.

For brevity we likewise call the vector x optimisation variable or simply variable.

Remarks:

• Without loss of generality, it suffices to consider minimisation problems. For, if the

task were to maximise f , an equivalent minimisation problem is given by minimising

−f . [Exercise: Define what equivalent means in this context!]

• The function f often is associated with costs.

• The set M is often associated with resources, e.g. available budget, available mate-

rial in a production, etc.

The above general optimisation problem is much too general to solve it and one needs to

specify f and M . In this course we exclusively deal with linear optimisation problems.

What is a linear function?

Definition 1.0.1 (linear function)

A function f : R
n → R

m is called linear, if and only if

f(x + y) = f(x) + f(y),

f(cx) = cf(x)

hold for every x, y ∈ R
n and every c ∈ R.

Linear vs. nonlinear functions:

Example 1.0.2

The functions

f1(x) = x,

f2(x) = 3x1 − 5x2, x =

(

x1

x2

)

,

f3(x) = c⊤x, x, c ∈ R
n,

f4(x) = Ax, x ∈ R
n, A ∈ R

m×n,

c© 2008 by M. Gerdts



4 CHAPTER 1. INTRODUCTION

are linear [exercise: prove it!].

The functions

f5(x) = 1,

f6(x) = x + 1, x ∈ R,

f7(x) = Ax + b, x ∈ R
n, A ∈ R

m×n, b ∈ R
m,

f8(x) = x2,

f9(x) = sin(x),

f10(x) = anxn + an−1x
n−1 + . . . + a1x + a0, ai ∈ R, (an, . . . , a2, a0) 6= 0

are not linear [exercise: prove it!].

Fact:

Every linear function f : R
n → R

m can be expressed in the form f(x) = Ax with some

matrix A ∈ R
m×n.

Notion:

Throughout this course we use the following notion:

• x ∈ R
n is the column vector









x1

x2

...

xn









with components x1, x2, . . . , xn ∈ R.

• By x⊤ we mean the row vector (x1, x2, . . . , xn). This is called the transposed vector

of x.

• A ∈ R
m×n is the matrix









a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn









with entries aij , 1 ≤ i ≤ m,

1 ≤ j ≤ n.

• By A⊤ ∈ R
n×m we mean the transposed matrix of A, i.e.









a11 a21 · · · am1

a12 a22 · · · am2

...
...

. . .
...

a1n a2n · · · amn









.

This notion allows to characterise linear optimisation problems. A linear optimisation

problem is a general optimisation problem in which f is a linear function and the set M

is defined by the intersection of finitely many linear equality or inequality constraints. A

c© 2008 by M. Gerdts
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linear program in its most general form has the following structure:

Definition 1.0.3 (Linear Program (LP))

Minimise

c⊤x = c1x1 + . . . + cnxn =
n∑

i=1

cixi

subject to the constraints

ai1x1 + ai2x2 + . . . + ainxn







≤

≥

=







bi, i = 1, . . . , m.

In addition, some (or all) components xi, i ∈ I, where I ⊆ {1, . . . , n} is an index set,

may be restricted by sign conditions according to

xi

{

≤

≥

}

0, i ∈ I.

Herein, the quantities

c =






c1

...

cn




 ∈ R

n, b =






b1

...

bm




 ∈ R

m, A =






a11 · · · a1n

...
. . .

...

am1 · · · amn




 ∈ R

m×n

are given data.

Remark 1.0.4

• Without loss of generality we restrict the discussion to minimisation problems. No-

tice, that every maximisation problem can be transformed easily into an equivalent

minimisation problem by multiplying the objective function with −1, i.e. maximisa-

tion of c⊤x is equivalent to minimising −c⊤x and vice versa.

• The relations ‘≤’, ‘≥’, and ‘=’ are applied component-wise to vectors, i.e. given

two vectors x = (x1, . . . , xn)⊤ and y = (y1, . . . , yn)
⊤ we have

x







≤

≥

=







y ⇔ xi







≤

≥

=







yi, i = 1, . . . , n.

• Variables xi, i 6∈ I, are called free variables, as these variables may assume any real

value.

c© 2008 by M. Gerdts



6 CHAPTER 1. INTRODUCTION

Example 1.0.5

The LP

Minimise −5x1 + x2 + 2x3 + 2x4

s.t. x2 − 4x3 ≤ 5

2x1 + x2 − x3 − x4 ≥ −3

x1 + 3x2 − 4x3 − x4 = −1

x1 ≤ 0 , x2 ≥ 0 , x4 ≥ 0

is a general LP with I = {1, 2, 4} and

x =








x1

x2

x3

x4








, c =








−5

1

2

2








, b =






5

−3

−1




 , A =






0 1 −4 0

2 1 −1 −1

1 3 −4 −1




 .

The variable x3 is free.

The following questions arising in the context of linear programming will be investigated

throughout this course:

• Existence of feasible points?

• Existence of optimal solutions?

• Uniqueness of an optimal solution?

• How does an optimal solution depend on problem data?

• Which algorithms can be used to compute an optimal solution?

• Which properties do these algorithms possess (finiteness, complexity)?

Beyond linear programming ...

c© 2008 by M. Gerdts



1.1. EXAMPLES 7

optimal control

nonlinear programming

linear programming

integer programming

gamesOptimisation

Typical applications (there are many more!):

• nonlinear programming: portfolio optimisation, shape optimisation, parameter iden-

tification, topology optimisation, classification

• linear programming: allocation of resources, transportation problems, transship-

ment problems, maximum flows

• integer programming: assignment problems, travelling salesman problems, VLSI

design, matchings, scheduling, shortest paths, telecommunication networks, public

transportation networks

• games: economical behaviour, equilibrium problems, electricity markets

• optimal control: path planning for robots, cars, flight systems, crystal growth, flows,

cooling of steel, economical strategies, inventory problems

1.1 Examples

Before defining linear programs precisely, we will discuss some typical examples.

Example 1.1.1 (Maximisation of Profit)

A farmer intends to plant 40 acres with sugar beets and wheat. He can use 2400 pounds

and 312 working days to achieve this. For each acre his cultivation costs amount to 40

pounds for sugar beets and to 120 pounds for wheat. For sugar beets he needs 6 working

days per acre and for wheat 12 working days per acre. The profit amounts to 100 pounds

per acre for sugar beets and to 250 pounds per acre for wheat. Of course, the farmer

wants to maximise his profit.

c© 2008 by M. Gerdts



8 CHAPTER 1. INTRODUCTION

Mathematical formulation: Let x1 denote the acreage which is used for sugar beets and x2

those for wheat. Then, the profit amounts to

f(x1, x2) = 100x1 + 250x2.

The following restrictions apply:

maximum size: x1 + x2 ≤ 40

money: 40x1 + 120x2 ≤ 2400

working days: 6x1 + 12x2 ≤ 312

no negative acreage: x1, x2 ≥ 0

In matrix notation we obtain

max c⊤x s.t. Ax ≤ b, x ≥ 0,

where

x =

(

x1

x2

)

, c =

(

100

250

)

, b =






40

2400

312




 , A =






1 1

40 120

6 12




 .

Example 1.1.2 (The Diet Problem by G.J.Stigler, 1940ies)

A human being needs vitamins S1, S2, and S3 for healthy living. Currently, only 4 medi-

cations A1,A2,A3,A4 contain these substances:

S1 S2 S3 cost

A1 30 10 50 1500

A2 5 0 3 200

A3 20 10 50 1200

A4 10 20 30 900

need per day 10 5 5.5

Task: Find combination of medications that satisfy the need at minimal cost!

Let xi denote the amount of medication Ai, i = 1, 2, 3, 4. The following linear program

solves the task:

Minimise 1500x1+200x2+1200x3+900x4

subject to 30x1+ 5x2+ 20x2+ 10x4 ≥ 10

10x1+ 10x3+ 20x4 ≥ 5

50x1+ 3x2+ 50x3+ 30x4 ≥ 5.5

x1, x2, x3, x4 ≥ 0

In matrix notation, we obtain

min c⊤x s.t. Ax ≥ b, x ≥ 0,

c© 2008 by M. Gerdts



1.1. EXAMPLES 9

where

x =








x1

x2

x3

x4








, c =








1500

200

1200

900








, b =






10

5

5.5




 , A =






30 5 20 10

10 0 10 20

50 3 50 30




 .

In the 1940ies nine people spent in total 120 days (!) for the numerical solution of a diet

problem with 9 inequalities and 77 variables.

Example 1.1.3 (Transportation problem)

A transport company has m stores and wants to deliver a product from these stores to n

consumers. The delivery of one item of the product from store i to consumer j costs cij

pound. Store i has stored ai items of the product. Consumer j has a demand of bj items

of the product. Of course, the company wants to satisfy the demand of all consumers. On

the other hand, the company aims at minimising the delivery costs.

S
to

re
s

C
o
n
su

m
er

Delivery
a1

a2

am

b1

bn

Let xij denote the amount of products which are delivered from store i to consumer j.

In order to find the optimal transport plan, the company has to solve the following linear

program:

Minimise

m∑

i=1

n∑

j=1

cijxij (minimise delivery costs)

s.t. n∑

j=1

xij ≤ ai, i = 1, . . . , m, (can’t deliver more than it is there)

m∑

i=1

xij ≥ bj , j = 1, . . . , n, (satisfy demand)

xij ≥ 0, i = 1, . . . , m, j = 1, . . . , n. (can’t deliver negative amount)

c© 2008 by M. Gerdts



10 CHAPTER 1. INTRODUCTION

Remark: In practical problems xij is often restricted in addition by the constraint xij ∈

N0 = {0, 1, 2, . . .}, i.e. xij may only assume integer values. This restriction makes the

problem much more complicated and standard methods like the simplex method cannot be

applied anymore.

Example 1.1.4 (Network problem)

A company intends to transport as many goods as possible from city A to city D on the

road network below. The figure next to each edge in the network denotes the maximum

capacity of the edge.

A

B

C D

5

3 6

7
2

How can we model this problem as a linear program?

Let V = {A, B, C, D} denote the nodes of the network (they correspond to cities). Let E =

{(A, B), (A, C), (B, C), (B, D), (C, D)} denote the edges of the network (they correspond

to roads connecting two cities).

For each edge (i, j) ∈ E let xij denote the actual amount of goods transported on edge

(i, j) and uij the maximum capacity. The capacity constraints hold:

0 ≤ xij ≤ uij ∀(i, j) ∈ E.

Moreover, it is reasonable to assume that no goods are lost or no goods are added in cities

B and C, i.e. the conservation equations ‘outflow - inflow = 0’ hold:

xBD + xBC − xAB = 0,

xCD − xAC − xBC = 0.

The task is to maximize the amount of goods leaving city A (note that this is the same

amount that enters city D):

xAB + xAC → max .

All examples are special cases of the general LP 1.0.3.

1.2 Transformation to canonical and standard form

LP in its most general form is rather tedious for the construction of algorithms or the

derivation of theoretical properties. Therefore, it is desirable to restrict the discussion to

certain standard forms of LP into which any arbitrarily structured LP can be transformed.

c© 2008 by M. Gerdts



1.2. TRANSFORMATION TO CANONICAL AND STANDARD FORM 11

In the sequel we will restrict the discussion to two types of LP: the canonical LP and the

standard LP.

We start with the canonical LP.

Definition 1.2.1 (Canonical Linear Program (LPC))

Let c = (c1, . . . , cn)⊤ ∈ R
n, b = (b1, . . . , bm)⊤ ∈ R

m and

A =









a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn









∈ R
m×n

be given. The canonical linear program reads as follows: Find x = (x1, . . . , xn)⊤ ∈ R
n

such that the objective function
n∑

i=1

cixi

becomes minimal subject to the constraints

n∑

j=1

aijxj ≤ bi, i = 1, . . . , m, (1.1)

xj ≥ 0, j = 1, . . . , n. (1.2)

In matrix notation:

Minimise c⊤x subject to Ax ≤ b, x ≥ 0. (1.3)

We need some notation.

Definition 1.2.2 (objective function, feasible set, feasible points, optimality)

(i) The function f(x) = c⊤x is called objective function.

(ii) The set

MC := {x ∈ R
n | Ax ≤ b, x ≥ 0}

is called feasible (or admissible) set (of LPC).

(iii) A vector x ∈ MC is called feasible (or admissible) (for LPC).

(iv) x̂ ∈ MC is called optimal (for LPC), if

c⊤x̂ ≤ c⊤x ∀x ∈ MC .

c© 2008 by M. Gerdts



12 CHAPTER 1. INTRODUCTION

We now discuss how an arbitrarily structured LP can be transformed into LPC. The

following cases may occur:

(i) Inequality constraints: The constraint

n∑

j=1

aijxj ≥ bi

can be transformed into a constraint of type (1.1) by multiplication with −1:

n∑

j=1

(−aij)xj ≤ −bi.

(ii) Equality constraints: The constraint

n∑

j=1

aijxj = bi

can be written equivalently as

bi ≤
n∑

j=1

aijxj ≤ bi.

Hence, instead of one equality constraint we obtain two inequality constraints. Using

(i) for the inequality on the left we finally obtain two inequality constraints of type

(1.1):

n∑

j=1

aijxj ≤ bi,

n∑

j=1

(−aij)xj ≤ −bi.

(iii) Free variables: Any real number xi can be decomposed into xi = x+
i − x−

i with

nonnegative numbers x+
i ≥ 0 and x−

i ≥ 0. Notice, that this decomposition is not

unique as for instance −6 = 0−6 = 1−7 = . . .. It will be unique if we postulate that

either x+
i or x−

i be zero. But this postulation is not a linear constraint anymore, so

we don’t postulate it.

In order to transform a given LP into canonical form, every occurrence of the free

variable xi in LP has to be replaced by x+
i −x−

i . The constraints x+
i ≥ 0 and x−

i ≥ 0

have to be added. Notice, that instead of one variable xi we now have two variables

x+
i and x−

i .

c© 2008 by M. Gerdts



1.2. TRANSFORMATION TO CANONICAL AND STANDARD FORM 13

(iv) Maximisation problems: Maximising c⊤x is equivalent to minimising (−c)⊤x.

Example 1.2.3

Consider the linear program of maximising

−1.2x1 − 1.8x2 − x3

subject to the constraints

x1 ≥ −
1

3
x1 − 2x3 ≤ 0

x1 − 2x2 ≤ 0

x2 − x1 ≤ 0

x3 − 2x2 ≤ 0

x1 + x2 + x3 = 1

x2, x3 ≥ 0.

This linear program is to be transformed into canonical form (1.3).

The variable x1 is a free variable. Therefore, according to (iii) we replace it by x1 :=

x+
1 − x−

1 , x+
1 , x−

1 ≥ 0.

According to (ii) the equality constraint x1 + x2 + x3 = 1 is replaced by

x∗
1 − x−

1
︸ ︷︷ ︸

=x1

+x2 + x3 ≤ 1 and −x+
1 + x−

1
︸ ︷︷ ︸

=−x1

−x2 − x3 ≤ −1.

According to (i) the inequality constraint x1 = x+
1 − x−

1 ≥ −1
3

is replaced by

−x1 = −x+
1 + x−

1 ≤
1

3
.

Finally, we obtain a minimisation problem by multiplying the objective function with −1.

Summarising, we obtain the following canonical linear program:

Minimise (1.2,−1.2, 1.8, 1)








x+
1

x−
1

x2

x3








s.t.
















−1 1 0 0

1 −1 0 −2

1 −1 −2 0

−1 1 1 0

0 0 −2 1

1 −1 1 1

−1 1 −1 −1























x+
1

x−
1

x2

x3








≤
















1/3

0

0

0

0

1

−1
















,








x+
1

x−
1

x2

x3








≥ 0.
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Theorem 1.2.4

Using the transformation techniques (i)–(iv), we can transform any LP into a canonical

linear program (1.3).

The canonical form is particularly useful for visualising the constraints and solving the

problem graphically. The feasible set MC is an intersection of finitely many halfspaces

and can be visualised easily for n = 2 (and maybe n = 3). This will be done in the

next section. But for the construction of solution methods, in particular for the simplex

method, another notation is preferred: the standard linear program.

Definition 1.2.5 (Standard Linear Program (LPS))

Let c = (c1, . . . , cn)
⊤ ∈ R

n, b = (b1, . . . , bm)⊤ ∈ R
m and

A =









a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn









∈ R
m×n

be given. Let Rank(A) = m. The standard linear program reads as follows: Find x =

(x1, . . . , xn)⊤ ∈ R
n such that the objective function

n∑

i=1

cixi

becomes minimal subject to the constraints

n∑

j=1

aijxj = bi, i = 1, . . . , m, (1.4)

xj ≥ 0, j = 1, . . . , n. (1.5)

In matrix notation:

Minimise c⊤x subject to Ax = b, x ≥ 0. (1.6)

Remark 1.2.6

• The sole difference between LPC and LPS are the constraints (1.1) and (1.4), respec-

tively. Don’t be confused by the same notation. The quantities c, b and A are not

the same when comparing LPC and LPS.
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1.2. TRANSFORMATION TO CANONICAL AND STANDARD FORM 15

• The rank assumption Rank(A) = m is useful because it avoids linearly dependent

constraints. Linearly dependent constraints always can be detected and eliminated

in a preprocessing procedure.

• LPS is only meaningful if m < n holds. Because in the case m = n and A nonsingu-

lar, the equality constraint yields x = A−1b. Hence, x is completely defined and no

degrees of freedom remain for optimising x. If m > n and Rank(A) = n the linear

equation Ax = b possesses at most one solution and again no degrees of freedom

remain left for optimisation. Without stating it explicitely, we will assume m < n

in the sequel whenever we discuss LPS.

As in Definition 1.2.2 we define the feasible set (of LPS) to be

MS := {x ∈ R
n | Ax = b, x ≥ 0}

and call x̂ ∈ MS optimal (for LPS) if

c⊤x̂ ≤ c⊤x ∀x ∈ MS .

The feasible set MS is the intersection of the affine subspace {x ∈ R | Ax = b} (e.g. a

line or a plane) with the nonnegative orthant {x ∈ R
n | x ≥ 0}. The visualisation is more

difficult as for the canonical linear program and a graphical solution is rather impossible

(except for very simple cases).

Example 1.2.7

Consider the linear program

max −90x1 − 150x2 s.t.
1

2
x1 + x2 + x3 = 3, x1, x2, x3 ≥ 0.

The feasible set MS = {(x1, x2, x3)
⊤ ∈ R

3 | 1
2
x1 + x2 + x3 = 3, x1, x2, x3 ≥ 0} is the blue

triangle below:

 0
 1

 2
 3

 4
 5

 6

 0
 0.5

 1
 1.5

 2
 2.5

 3

 0

 0.5

 1

 1.5

 2

 2.5

 3

x_3

x_1

x_2

x_3
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16 CHAPTER 1. INTRODUCTION

We can transform a canonical linear program into an equivalent standard linear program

and vice versa.

(i) Transformation of a canonical problem into a standard problem:

Let a canonical linear program (1.3) be given.

Define slack variables y = (y1, . . . , ym)⊤ ∈ R
m by

yi := bi −
n∑

j=1

aijxj , i = 1, . . . , m,

resp.

y = b − Ax.

It holds Ax ≤ b if and only if y ≥ 0.

With x̂ := (x, y)⊤ ∈ R
n+m, ĉ := (c, 0)⊤ ∈ R

n+m, Â := (A | I) ∈ R
m×(n+m) we obtain

a standard linear program of type (1.6):

Minimise ĉ⊤x̂ s.t. Âx̂ = b, x̂ ≥ 0. (1.7)

Notice, that Rank(Â) = m holds automatically.

(ii) Transformation of a standard problem into a canonical problem:

Let a standard linear program (1.6) be given. Rewrite the equality Ax = b as two

inequalities Ax ≤ b and −Ax ≤ −b. With

Â :=

(

A

−A

)

∈ R
2m×n, b̂ :=

(

b

−b

)

∈ R
2m

a canonical linear program of type (1.3) arises:

Minimise c⊤x s.t. Âx ≤ b̂, x ≥ 0. (1.8)

We obtain

Theorem 1.2.8

Canonical linear programs and standard linear programs are equivalent in the sense that

(i) x solves (1.3) if and only if x̂ = (x, b − Ax)⊤ solves (1.7).

(ii) x solves (1.6) if and only if x solves (1.8).

Proof: We only show (i) as (ii) is obvious.
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1.3. GRAPHICAL SOLUTION OF LP 17

(i) ⇒ Let x solve (1.3), i.e. it holds

c⊤x ≤ c⊤z ∀z : Az ≤ b, z ≥ 0.

Let ẑ = (z, y)⊤ be feasible for (1.7). Then, it holds y = b−Az and y ≥ 0 and hence,

z satisfies Az ≤ b and z ≥ 0. Then,

ĉ⊤x̂ = c⊤x ≤ c⊤z = ĉ⊤ẑ.

The assertion follows as ẑ was an arbitrary feasible point.

(i)⇐ Let x̂ = (x, b − Ax)⊤ solve (1.7), i.e.

ĉ⊤x̂ ≤ ĉ⊤ẑ ∀ẑ : Âẑ = b, ẑ ≥ 0.

Let z be feasible for (1.3). Then ẑ = (z, b − Az)⊤ is feasible for (1.7) and

c⊤x = ĉ⊤x̂ ≤ ĉ⊤ẑ = c⊤z.

The assertion follows as z was an arbitrary feasible point. 2

1.3 Graphical Solution of LP

We demonstrate the graphical solution of a canonical linear program in the 2-dimensional

space.

Example 1.3.1 (Example 1.1.1 revisited)

The farmer in Example 1.1.1 aims at solving the following canonical linear program:

Minimise

f(x1, x2) = −100x1 − 250x2

subject to

x1 + x2 ≤ 40

40x1 + 120x2 ≤ 2400

6x1 + 12x2 ≤ 312

x1, x2 ≥ 0

Define the linear functions

g1(x1, x2) := x1 + x2,

g2(x1, x2) := 40x1 + 120x2,

g3(x1, x2) := 6x1 + 12x2.
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Let us investigate the first constraint g1(x1, x2) = x1 + x2 ≤ 40, cf Figure 1.1. The

equation g1(x1, x2) = x1 + x2 = 40 defines a straight line in R
2 – a so-called hyperplane

H := {(x1, x2)
⊤ ∈ R

2 | x1 + x2 = 40}.

The vector of coefficients ng1
= (1, 1)⊤ is the normal vector on the hyperplane H and it

points in the direction of increasing values of the function g1. I.e. moving a point on H

into the direction of ng1
leads to a point (x1, x2)

⊤ with g1(x1, x2) > 40. Moving a point on

H into the opposite direction −ng1
leads to a point (x1, x2)

⊤ with g1(x1, x2) < 40. Hence,

H separates R
2 into two halfspaces defined by

H− := {(x1, x2)
⊤ ∈ R

2 | x1 + x2 ≤ 40},

H+ := {(x1, x2)
⊤ ∈ R

2 | x1 + x2 > 40}.

Obviously, points in H+ are not feasible, while points in H− are feasible w.r.t. to the

constraint x1 + x2 ≤ 40.

10 20 30 40 50 60 70 x_1

40

30

20

10

0

x_2

H− = {(x1, x2)
⊤ ∈ R

2 | x1 + x2 ≤ 40}
H+ = {(x1, x2)

⊤ ∈ R
2; | x1 + x2 > 40}

H

ng1
= (1, 1)⊤

Figure 1.1: Geometry of the constraint g1(x1, x2) = x1 + x2 ≤ 40: normal vector ng1
=

(1, 1)⊤ (the length has been scaled), hyperplane H and halfspaces H+ and H−. All points

in H− are feasible w.r.t. to this constraint

The same discussion can be performed for the remaining constraints (don’t forget the

constraints x1 ≥ 0 and x2 ≥ 0!). The feasible set is the dark area in Figure 1.2 given by

the intersection of the respective halfspaces H− of the constraints.
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10 20 30 40 50 60 70 x_1

40

30

20

10

0

x_2

ng1
= (1, 1)⊤

ng2
= (40, 120)⊤

ng3
= (6, 12)⊤

g1 : x1 + x2 = 40

g2 : 40x1 + 120x2 = 2400

g3 : 6x1 + 12x2 = 312

Figure 1.2: Feasible set of the linear program: Intersection of halfspaces for the constraints

g1, g2, g3 and x1 ≥ 0 and x2 ≥ 0 (the length of the normal vectors has been scaled).

We haven’t considered the objective function so far. The red line in the Figure 1.3 corre-

sponds to the line

f(x1, x2) = −100x1 − 250x2 = −3500,

i.e. for all points on this line the objective function assumes the value −3500. Herein, the

value −3500 is just an arbitrary guess of the optimal value. The green line corresponds

to the line

f(x1, x2) = −100x1 − 250x2 = −5500,

i.e. for all points on this line the objective function assumes the value −5500.

Obviously, the function values of f increase in the direction of the normal vector nf (x1, x2) =

(−100,−250)⊤, which is nothing else than the gradient of f . As we intend to minimise

f , we have to ‘move’ the ‘objective function line’ in the opposite direction −nf (direction

of descent!) as long as it does not completely leave the feasible set (the intersection of

this line and the feasible set has to be nonempty). The feasible points on this extremal

‘objective function line’ are then optimal. The green line is the optimal line as there would

be no feasible points on it if we moved it any further in the direction −nf .

According to the figure we graphically determine the optimal solution to be x1 = 30,

x2 = 10 with objective function f(x1, x2) = −5500. The solution is attained in a vertex

of the feasible set.

In this example, the feasible vertices are given by the points (0, 0), (0, 20), (30, 10), and
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(40, 0).

10 20 30 40 50 60 70 x_1

40

30

20

10

0

x_2

nf = (−100,−250)⊤

nf = (−100,−250)⊤ f : −100x1 − 250x2 = −3500

f : −100x1 − 250x2 = −5500

Figure 1.3: Solving the LP graphically: Move the objective function line in the opposite

direction of nf as long as the objective function line intersects with the feasible set (dark

area). The green line is optimal. The optimal solution is (x1, x2)
⊤ = (30, 10)⊤.

In general, each row

ai1x1 + ai2x2 + . . . + ainxn ≤ bi, i ∈ {1, . . . , m},

of the constraint Ax ≤ b of the canonical linear program defines a hyperplane

H = {x ∈ R
n | ai1x1 + ai2x2 + . . . + ainxn = bi},

with normal vector (ai1, . . . , ain)⊤, a positive halfspace

H+ = {x ∈ R
n | ai1x1 + ai2x2 + . . . + ainxn ≥ bi},

and a negative halfspace

H− = {x ∈ R
n | ai1x1 + ai2x2 + . . . + ainxn ≤ bi}.

Recall that the normal vector n is perpendicular to H and points into the positive halfspace

H+, cf. Figure*1.4.
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1.3. GRAPHICAL SOLUTION OF LP 21

H− = {x | a⊤x ≤ b}

H+ = {x | a⊤x ≥ b}

H = {x | a⊤x = b}

a

Figure 1.4: Geometry of the inequality a⊤x ≤ b: Normal vector a, hyperplane H , and

halfspaces H+ and H−.

The feasible set MC of the canonical linear program is given by the intersection of the

respective negative halfspaces for the constraints Ax ≤ b and x ≥ 0. The intersection of

a finite number of halfspaces is called polyedric set or polyeder. A bounded polyeder is

called polytope. Figure 1.5 depicts the different constellations that may occur in linear

programming.
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−c
−c

−c −c

MC MC

MC MC

Figure 1.5: Different geometries of the feasible set (grey), objective function line (red),

optimal solution (blue).

Summarising, the graphical solution of an LP works as follows:

(1) Sketch the feasible set.

(2) Make a guess w ∈ R of the optimal objective function value or alternatively take an

arbitrary (feasible) point x̂, introduce this point x̂ into the objective function and

compute w = c⊤x̂. Plot the straight line given by c⊤x = w.

(3) Move the straight line in (2) in the direction −c as long as the intersection of the

line with the feasible set is non-empty.

(4) The most extreme line in (3) is optimal. All feasible points on this line are optimal.

Their values can be found in the picture.

Observations:

• The feasible set MC can be bounded (pictures on top) or unbounded (pictures at

bottom).

• If the feasible set is bounded, there always exists an optimal solution by the Theorem

of Weierstrass (MC is compact and the objective function is continuous and thus

assumes its minimum and maximum value on MC).
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• The optimal solution can be unique (pictures on left) or non-unique (top-right pic-

ture).

• The bottom-left figure shows that an optimal solution may exist even if the feasible

set is unbounded.

• The bottom-right figure shows that the LP might not have an optimal solution.

The following observation is the main motivation for the simplex method. We will see

that this observation is always true!

Main observation:

If an optimal solution exists, there is always a ‘vertex’ of the feasible set among

the optimal solutions.

1.4 The Fundamental Theorem of Linear Programming

The main observation suggests that vertices play an outstanding role in linear program-

ming. While it is easy to identify vertices in a picture, it is more difficult to characterise

a vertex mathematically. We will define a vertex for convex sets.

We note

Theorem 1.4.1

The feasible set of a linear program is convex.

Herein, a set M ∈ R
n is called convex, if the entire line connecting two points in M

belongs to M , i.e.

x, y ∈ M ⇒ λx + (1 − λ)y ∈ M for all 0 ≤ λ ≤ 1.

convex and non-convex set

Proof: Without loss of generality the discussion is restricted to the standard LP. Let

x, y ∈ MS, 0 ≤ λ ≤ 1, and z = λx + (1− λ)y. We have to show that z ∈ MS holds. Since

λ ∈ [0, 1] and x, y ≥ 0 it holds z ≥ 0. Moreover, it holds

Az = λAx + (1 − λ)Ay = λb + (1 − λ)b = b.
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Hence, z ∈ MS . 2

Now we define a vertex of a convex set.

Definition 1.4.2 (Vertex)

Let M be a convex set. x ∈ M is called vertex of M , if the representation x = λx1 + (1−

λ)x2 with 0 < λ < 1 and x1, x2 ∈ M implies x1 = x2 = x.

Remark 1.4.3

The set {λx1 +(1−λ)x2 | 0 < λ < 1} is the straight line interconnecting the points x1 and

x2 (x1 and x2 are not included). Hence, if x is a vertex it cannot be on this line unless

x = x1 = x2.

According to the following theorem it suffices to visit only the vertices of the feasible

set in order to find one (not every!) optimal solution. As any LP can be transformed

into standard form, it suffices to restrict the discussion to standard LP’s. Of course, the

following result holds for any LP.

Theorem 1.4.4 (Fundamental Theorem of Linear Programming)

Let a standard LP 1.2.5 be given with MS 6= ∅. Then:

(a) Either the objective function is unbounded from below on MS or Problem 1.2.5 has

an optimal solution and at least one vertex of MS is among the optimal solutions.

(b) If MS is bounded, then an optimal solution exists and x ∈ MS is optimal, if and

only if x is a convex combination of optimal vertices.

Proof: The proof exploits the following facts about polyeders, which we don’t proof

here:

(i) If MS 6= ∅, then at least one vertex exists.

(ii) The number of vertices of MS is finite.

(iii) Let x1, . . . , xN with N ∈ N denote the vertices of MS. For every x ∈ MS there

exists a vector d ∈ R
n and scalars λi, i = 1, . . . , N , such that

x =

N∑

i=1

λix
i + d

and

λi ≥ 0, i = 1, . . . , N,

N∑

i=1

λi = 1, d ≥ 0, Ad = 0.

c© 2008 by M. Gerdts



1.4. THE FUNDAMENTAL THEOREM OF LINEAR PROGRAMMING 25

(iv) If MS is bounded, then every x ∈ MS can be expressed as

x =
N∑

i=1

λix
i, λi ≥ 0, i = 1, . . . , N,

N∑

i=1

λi = 1.

With these facts the assertions can be proven as follows.

(a) Case 1: If in (iii) there exists a d ∈ R
n with d ≥ 0, Ad = 0, and c⊤d < 0, then the

objective function is unbounded from below as for an x ∈ MS the points x+ td with

t ≥ 0 are feasible as well because A(x+td) = Ax+tAd = Ax = b and x+td ≥ x ≥ 0.

But c⊤(x + td) = c⊤x + tc⊤d → −∞ for t → ∞ and thus the objective function is

unbounded from below on MS.

Case 2: Let c⊤d ≥ 0 hold for every d ∈ R
n with d ≥ 0 and Ad = 0. According to

(i), (ii), and (iii) every point x ∈ MS can be expressed as

x =

N∑

i=1

λix
i + d

with suitable

λi ≥ 0, i = 1, . . . , N,

N∑

i=1

λi = 1, d ≥ 0, Ad = 0.

Let x0 be an optimal point. Then, x0 can be expressed as

x0 =

N∑

i=1

λix
i + d, λi ≥ 0,

N∑

i=1

λi = 1, Ad = 0, d ≥ 0.

Let xj , j ∈ {1, . . . , N}, denote the vertex with the minimal objective function value,

i.e. it holds c⊤xj ≤ c⊤xi for all i = 1, . . . , N . Then

c⊤x0 =
N∑

i=1

λic
⊤xi + c⊤d ≥

N∑

i=1

λic
⊤xi ≥ c⊤xj

N∑

i=1

λi = c⊤xj .

As x0 was supposed to be optimal, we found that xj is optimal as well which shows

the assertion.

(b) Let MS be bounded. Then the objective function is bounded from below on MS

according to the famous Theorem of Weierstrass. Hence, the LP has at least one

solution according to (a). Let x0 be an arbitrary optimal point. According to (iv)

x0 can be expressed as a convex combination of the vertices xi, i = 1, . . . , N , i.e.

x0 =

N∑

i=1

λix
i, λi ≥ 0,

N∑

i=1

λi = 1.
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Let xj , j ∈ {1, . . . , N}, be an optimal vertex (which exists according to (a)), i.e.

c⊤x0 = c⊤xj = min
i=1,...,N

c⊤xi.

Then, using the expression for x0 it follows

c⊤x0 =

N∑

i=1

λic
⊤xi = c⊤xj = min

i=1,...,N
c⊤xi.

Now let xk, k ∈ {1, . . . , N}, be a non-optimal vertex with c⊤xk = c⊤x0 + ε, ε > 0.

Then,

c⊤x0 =

N∑

i=1

λic
⊤xi =

N∑

i=1,i6=k

λic
⊤xi+λkc

⊤xk ≥ c⊤x0

N∑

i=1,i6=k

λi+λkc
⊤x0+λkε = c⊤x0+λkε.

As ε > 0 this implies λk = 0 which shows the first part of the assertion.

If x0 is a convex combination of optimal vertices, i.e.

x0 =

N∑

i=1

λix
i, λi ≥ 0,

N∑

i=1

λi = 1,

then due to the linearity of the objective function and the convexity of the feasible

set it is easy to show that x0 is optimal. This completes the proof.

2

1.5 Software for LP’s

Matlab (www.mathworks.com) provides the command linprog for the solution of linear

programs.

Scilab (www.scilab.org) is a powerful platform for scientific computing. It provides the

command linpro for the solution of linear programs.

There are many commercial and non-commercial implementations of algorithms for linear

programming on the web. For instance, the company Lindo Systems Inc. develops

software for the solution of linear, integer, nonlinear and quadratic programs. On their

webpage

http://www.lindo.com

it is possible to download a free trial version of the software LINDO.

The program GeoGebra (www.geogebra.org) is a nice geometry program that can be used

to visualise feasible sets.
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Chapter 2

The Simplex Method

A real breakthrough in linear programming was the invention of the simplex method by

G. B. Dantzig in 1947.

George Bernard Dantzig

Born: 8.11.1914 in Portland (Oregon)

Died: 13.5.2005 in Palo Alto (California)

The simplex method is one of the most important and popular algorithms for solving

linear programs on a computer. The very basic idea of the simplex method is to move

from a feasible vertex to a neighbouring feasible vertex and repeat this procedure until

an optimal vertex is reached. According to Theorem 1.4.4 it is sufficient to consider only

the vertices of the feasible set.

In order to construct the simplex algorithm, we need to answer the following questions:

• How can (feasible) vertices be computed?

• Given a feasible vertex, how can we compute a neighbouring feasible vertex?

• How to check for optimality?

In this chapter we will restrict the discussion to LP’s in standard form 1.2.5, i.e.

min c⊤x s.t. Ax = b, x ≥ 0.

Throughout the rest of the chapter we assume rank(A) = m. This assumption excludes

linearly dependent constraints from the problem formulation.

Notation:

27
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• The rows of A are denoted by

a⊤
i := (ai1, . . . , ain) ∈ R

n, i = 1, . . . , m,

i.e.

A =









a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn









=









a⊤
1

a⊤
2
...

a⊤
m









.

• The columns of A are denoted by

aj := (a1j , . . . , amj)
⊤ ∈ R

m, j = 1, . . . , n,

i.e.

A =









a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn









=
(

a1 a2 · · · an

)

.

2.1 Vertices and Basic Solutions

The geometric definition of a vertex in Definition 1.4.2 is not useful if a vertex has to

be computed explicitely within an algorithm. Hence, we are looking for an alternative

characterisation of a vertex which allows us to actually compute a vertex. For this purpose

the standard LP is particularly well suited.

Consider the feasible set of the standard LP 1.2.5:

MS = {x ∈ R
n | Ax = b, x ≥ 0}.

Let x = (x1, . . . , xn)⊤ be an arbitrary point in MS. Let

B := {i ∈ {1, . . . , n} | xi > 0}

be the index set of positive components of x, and

N := {1, . . . , n} \ B = {i ∈ {1, . . . , n} | xi = 0}

the index set of vanishing components of x. Because of x ∈ MS it holds

b = Ax =
n∑

j=1

ajxj =
∑

j∈B

ajxj .

This is a linear equation for the components xj , j ∈ B. This linear equation has a unique

solution, if the column vectors aj, j ∈ B, are linearly independent. In this case, we call x

a feasible basic solution.
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Definition 2.1.1 (feasible basic solution)

Let A ∈ R
m×n, b ∈ R

m, and MS = {x ∈ R
n | Ax = b, x ≥ 0}.

x ∈ MS is called feasible basic solution (for the standard LP), if the column vectors

{aj | j ∈ B} are linearly independent, where B = {i ∈ {1, . . . , n} | xi > 0}.

The following theorem states that a feasible basic solution is a vertex of the feasible set

and vice versa.

Theorem 2.1.2

x ∈ MS is a vertex of MS if and only if x is a feasible basic solution.

Proof: Recall that the feasible set MS is convex, see Theorem 1.4.1.

‘⇒’ Let x be a vertex. Without loss of generality let x = (x1, . . . , xr, 0, . . . , 0)⊤ ∈ R
n

with xi > 0 for i = 1, . . . , r.

We assume that aj, j = 1, . . . , r, are linearly dependent. Then there exist αj,

j = 1, . . . , r, not all of them are zero with

r∑

j=1

αja
j = 0.

Define

y+ = (x1 + εα1, . . . , xr + εαr, 0, . . . , 0)⊤

y− = (x1 − εα1, . . . , xr − εαr, 0, . . . , 0)⊤

with

0 < ε < min

{
|xj |

|αj|

∣
∣
∣ αj 6= 0, 1 ≤ j ≤ r

}

.

According to this choice of ε it follows y+, y− ≥ 0. Moreover, y+ and y− are feasible

because

Ay± =

r∑

j=1

(xj ± εαj)a
j =

r∑

j=1

xja
j ± ε

r∑

j=1

αja
j

︸ ︷︷ ︸

=0, lin. dep.

= b.

Hence, y+, y− ∈ MS , but (y+ + y−)/2 = x. This contradicts the assumption that x

is a vertex.

‘⇐’ Without loss of generality let x = (x1, . . . , xr, 0, . . . , 0)⊤ ∈ MS with xj > 0 and

aj linearly independent for j = 1, . . . , r. Let y, z ∈ MS and x = λy + (1 − λ)z,

0 < λ < 1. Then,

(i)

xj > 0 (1 ≤ j ≤ r) ⇒ yj > 0 or zj > 0 for all 1 ≤ j ≤ r.
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(ii)

xj = 0 (j = r + 1, . . . , n) ⇒ yj = zj = 0 for r + 1 ≤ j ≤ n.

b = Ay = Az implies 0 = A(y−z) =
∑r

j=1(yj−zj)a
j. Due to the linear independence

of aj it follows yj − zj = 0 for j = 1, . . . , r. Since yj = zj = 0 for j = r + 1, . . . , n, it

holds y = z. Hence, x is a vertex.

2

2.2 The (primal) Simplex Method

Theorem 2.1.2 states that a vertex can be characterised by linearly independent columns

of A. According to Theorem 1.4.4 it is sufficient to compute only the vertices (feasible

basic solutions) of the feasible set in order to obtain at least one optimal solution – pro-

vided such a solution exists at all. This is the basic idea of the simplex method.

Notation:

Let B ⊆ {1, . . . , n} be an index set.

• Let x = (x1, . . . , xn)⊤ be a vector. Then, xB is defined to be the vector with

components xi, i ∈ B.

• Let A be a m×n-matrix with columns aj , j = 1, . . . , n. Then, AB is defined to be

the matrix with columns aj , j ∈ B.

Example:

x =








−1

10

3

−4








, A =

(

1 2 3 4

5 6 7 8

)

, B = {2, 4} ⇒ xB =

(

10

−4

)

, AB =

(

2 4

6 8

)

.

The equivalence theorem 2.1.2 is of fundamental importance for the simplex method,

because we can try to find vertices by solving linear equations as follows:

Algorithm 2.2.1 (Computation of a vertex)

(1) Choose m linearly independent columns aj, j ∈ B, B ⊆ {1, . . . , n}, of A and set

N = {1, . . . , n} \ B.

(2) Set xN = 0 and solve the linear equation

ABxB = b.
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(3) If xB ≥ 0, x is a feasible basic solution and thus a vertex. STOP. If there exists an

index i ∈ B with xi < 0, then x is infeasible. Go to (1) and repeat the procedure

with a different choice of linearly independent columns.

Recall rank(A) = m, which guarantees the existence of m linearly independent columns

of A in step (1) of the algorithm.

A naive approach to solve a linear program would be to compute all vertices of the

feasible set by the above algorithm. As there are at most
(

n

m

)
ways to choose m linearly

independent columns from a total of n columns there exist at most

( n

m

)

=
n!

m!(n − m)!

vertices (resp. feasible basic solutions). Unfortunately, this is a potentially large number,

especially if m and n are large (1 million, say). Hence, it is not efficient to compute every

vertex.

Caution: Computing all vertices and choosing that one with the smallest objective func-

tion value may not be sufficient to solve the problem, because it may happen that the

feasible set and the objective function is unbounded! In this case, no solution exists.

Example 2.2.2

Consider the constraints Ax = b, x ≥ 0, with

A =

(

2 3 1 0

1 0 0 1

)

, b =

(

6

2

)

.

There are at most
(

4
2

)
= 6 possible combinations of two columns of A:

B1 = {1, 2} ⇒ xB1
= A−1

B1
b =

(

2
2
3

)

, x1 =

(

2,
2

3
, 0, 0

)⊤

,

B2 = {1, 3} ⇒ xB2
= A−1

B2
b =

(

2

2

)

, x2 = (2, 0, 2, 0)⊤ ,

B3 = {1, 4} ⇒ xB3
= A−1

B3
b =

(

3

−1

)

, x3 = (3, 0, 0,−1)⊤ ,

B4 = {2, 3} ⇒ AB is singular,

B5 = {2, 4} ⇒ xB5
= A−1

B5
b =

(

2

2

)

, x5 = (0, 2, 0, 2)⊤ ,

B6 = {3, 4} ⇒ xB6
= A−1

B6
b =

(

6

2

)

, x6 = (0, 0, 6, 2)⊤ .
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Herein, those components xj with j 6∈ B are set to 0. x3 is not feasible. Hence, the

vertices are given by x1, x2, x5, x6.

Remark 2.2.3

It is possible to define basic solutions which are not feasible. Let B ⊆ {1, . . . , n} be an

index set with |B| = m, N = {1, . . . , n} \ B, and let the columns ai, i ∈ B, be linearly

independent. Then, x is called a basic solution if

ABxB = b, xN = 0.

Notice that such a xB = A−1
B b does not necessarily satisfy the sign condition xB ≥ 0, i.e.

the above x may be infeasible. Those infeasible basic solutions are not of interest for the

linear program.

We need some more definitions.

Definition 2.2.4

• (Basis)

Let rank(A) = m and let x be a feasible basic solution of the standard LP. Every

system {aj | j ∈ B} of m linearly independent columns of A, which includes those

columns aj with xj > 0, is called basis of x.

• ((Non-)basis index set, (non-)basis matrix, (non-)basic variable)

Let {aj | j ∈ B} be a basis of x. The index set B is called basis index set, the

index set N := {1, . . . , n}\B is called non-basis index set, the matrix AB := (aj)j∈B

is called basis matrix, the matrix AN := (aj)j∈N is called non-basis matrix, the

vector xB := (xj)j∈B is called basic variable and the vector xN := (xj)j∈N is called

non-basic variable.

Let’s consider an example.

Example 2.2.5

Consider the inequality constraints

x1 + 4x2 ≤ 24,

3x1 + x2 ≤ 21,

x1 + x2 ≤ 9, x1 ≥ 0, x2 ≥ 0.

Introduction of slack variables x3 ≥ 0, x4 ≥ 0, x5 ≥ 0 leads to standard constraints
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Ax = b, x ≥ 0, with

A =






1 4 1 0 0

3 1 0 1 0

1 1 0 0 1




 , b =






24

21

9




 , x =











x1

x2

x3

x4

x5











.

The projection of the feasible set MS = {x ∈ R
5 | Ax = b, x ≥ 0} into the (x1, x2)-plane

looks as follows:

x1

x2

3x1 + x2 = 21

x1 + x2 = 9

x1 + 4x2 = 24

(0, 0) (7, 0)

(0, 6)

(6, 3)

(4, 5)

(i) Consider x = (6, 3, 6, 0, 0)⊤ ∈ MS. The first three components are positive and

the corresponding columns of A, i.e.






1

3

1




,






4

1

1




 and






1

0

0




, are linearly

independent. x is actually a feasible basic solution and according to Theorem 2.1.2

a vertex. We obtain the basis












1

3

1




 ,






4

1

1




 ,






1

0

0












with basis index set B = {1, 2, 3}, non-basis index set N = {4, 5}, basic variable

xB = (6, 3, 6)⊤, non-basic variable xN = (0, 0)⊤ and basis matrix resp. non-basis
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matrix

AB :=






1 4 1

3 1 0

1 1 0




 , AN :=






0 0

1 0

0 1




 .

(ii) Exercise: Consider as in (i) the remaining vertices which are given by (x1, x2) =

(0, 0), (x1, x2) = (0, 6), (x1, x2) = (7, 0), and (x1, x2) = (4, 5).

With these definition, we are ready to formulate a draft version of the simplex method :

(0) Phase 0:

Transform the linear program into standard form 1.2.5, if necessary at all.

(1) Phase 1:

Determine a feasible basic solution (feasible vertex) x with basis index set B, non-

basis index set N , basic variable xB ≥ 0 and non-basic variable xN = 0.

(2) Phase 2:

Compute a neighbouring feasible basic solution x+ with basis index set B+ and

non-basis index set N+ until either an optimum is computed or it can be decided

that no such solution exists.

2.2.1 Computing a neighbouring feasible basic solution

In this section we will discuss how a neighbouring feasible basic solution x+ can be com-

puted in phase two of the simplex algorithm.

In the sequel, we assume that a feasible basic solution x with basis index set B and non-

basis index set N is given. We will construct a new feasible basic solution x+ with index

sets

B+ = (B \ {p}) ∪ {q},

N+ = (N \ {q}) ∪ {p}

by interchanging suitably chosen indices p ∈ B and q ∈ N . This procedure is called basis

change.

The indices p and q are not chosen arbitrarily but in such a way that the following

requirements are satisfied:

(i) Feasibility:

x+ has to remain feasible, i.e.

Ax = b, x ≥ 0 ⇒ Ax+ = b, x+ ≥ 0.
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(ii) Descent property:

The objective function value decreases monotonically, i.e.

c⊤x+ ≤ c⊤x.

Let a basis with basis index set B be given and let x be a feasible basic solution. Then,

• AB = (ai)i∈B is non-singular.

• xN = 0.

Hence, the constraint Ax = b can be solved w.r.t. the basic variable xB according to

Ax = ABxB + ANxN = b ⇒ xB = A−1
B b
︸ ︷︷ ︸

=β

−A−1
B AN
︸ ︷︷ ︸

=Γ

xN =: β − ΓxN . (2.1)

Introducing this expression into the objective function yields the expression

c⊤x = c⊤BxB + c⊤NxN = c⊤Bβ
︸︷︷︸

=d

− (c⊤BΓ − c⊤N)
︸ ︷︷ ︸

=ζ⊤

xN =: d − ζ⊤xN . (2.2)

A feasible basic solution x satisfies xN = 0 in (2.1) and (2.2) and thus,

xB = β ≥ 0, xN = 0, c⊤x = d. (2.3)

Herein, we used the notation: β = (βi)i∈B, ζ = (ζj)j∈N , Γ = (γij)i∈B,j∈N .

Now we intend to change the basis in order to get to a neighbouring basis. Therefore, we

consider the ray

z(t) =






z1(t)
...

zn(t)




 =






x1

...

xn




+ t






s1

...

sn




 = x + ts, t ≥ 0, (2.4)

emanating from the current basic solution x in direction s with step length t ≥ 0, cf.

Figure 2.1.

x

x+

z(t)

s

Figure 2.1: Idea of the basis change in the simplex method. Find a search direction s

such that the objective function decreases monotonically along this direction.
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We choose the search direction s in such a way that only the non-basic variable xq with

suitable index q ∈ N will be changed while the remaining components xj = 0, j ∈ N ,

j 6= q, remain unchanged. For a suitable index q ∈ N we define

sq := 1, sj := 0 for j ∈ N, j 6= q, (2.5)

and thus,

zq(t) = t ≥ 0, zj(t) = 0 for j ∈ N, j 6= q. (2.6)

Of course, the point z(t) ought to be feasible, i.e. as in (2.1) the following condition has

to hold:

b = Az(t) = Ax
︸︷︷︸

=b

+tAs ⇒ 0 = As = ABsB + ANsN .

Solving this equation leads to

sB = −A−1
B ANsN = −ΓsN . (2.7)

Thus, the search direction s is completely defined by (2.5) and (2.7). Along the ray z(t)

the objective function value computes to

c⊤z(t)
(2.4)
= c⊤x + tc⊤s

(2.3)
= d + tc⊤BsB + tc⊤NsN

(2.7)
= d − t

(
c⊤BΓ − c⊤N

)
sN

= d − tζ⊤sN

(2.5)
= d − tζq. (2.8)

This representation immediately reveals that the objective function value decreases along

s for t ≥ 0, if ζq > 0 holds.

If, on the other hand, ζj ≤ 0 holds for all j ∈ N , then a descent along s in the objective

function is impossible. It remains to be investigated whether there are other points, which

are not on the ray, but possibly lead to a smaller objective function value. This is not the

case as for an arbitrary x̂ ∈ MS it holds x̂ ≥ 0 and ABx̂B +AN x̂N = b resp. x̂B = β−Γx̂N .

With ζj ≤ 0 and x̂N ≥ 0 it follows

c⊤x̂ = c⊤Bx̂B + c⊤N x̂N = c⊤Bβ − (c⊤BΓ − c⊤N)x̂N = d − ζ⊤x̂N ≥ d = c⊤x.

Hence, if ζj ≤ 0 holds for all j ∈ N , then the current basic solution x is optimal! We

summarise:
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Choice of the pivot column q:

In order to fulfil the descent property in (ii), the index q ∈ N has to be chosen such that

ζq > 0. If ζj ≤ 0 for all j ∈ N , then the current basic solution x is optimal.

Now we aim at satisfying the feasibility constraint in (i). The following has to hold:

zB(t) = xB + tsB

(2.7)
= β − tΓsN ≥ 0,

respectively

zi(t) = βi − t
∑

j∈N

γijsj

= βi − tγiq sq
︸︷︷︸

=1

−t
∑

j∈N,j 6=q

γij sj
︸︷︷︸

=0

(2.5)
= βi − γiqt ≥ 0, i ∈ B.

The conditions βi − γiqt ≥ 0, i ∈ B, restrict the step size t ≥ 0. Two cases may occur:

(a) Case 1: It holds γiq ≤ 0 for all i ∈ B.

Due to βi ≥ 0 it holds zi(t) = βi − γiqt ≥ 0 for every t ≥ 0 and every i ∈ B. Hence,

z(t) is feasible for every t ≥ 0.

If in addition ζq > 0 holds, then the objective function is not bounded from below

for t → ∞ according to (2.8). Thus, the linear program does not have a solution!

Unsolvability of LP

If for some q ∈ N it holds ζq > 0 and γiq ≤ 0 for every i ∈ B, then the LP does

not have a solution. The objective function is unbounded from below.

(b) Case 2: It holds γiq > 0 for at least one i ∈ B.

βi − γiqt ≥ 0 implies t ≤ βi

γiq
. This postulation restricts the step length t.
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Choice of pivot row p:

The feasibility in (i) will be satisfied by choosing an index p ∈ B with

tmin :=
βp

γpq

:= min

{
βi

γiq

∣
∣
∣ γiq > 0, i ∈ B

}

.

It holds

zp(tmin) = βp − γpqtmin = βp − γpq

βp

γpq

= 0,

zi(tmin) = βi
︸︷︷︸

≥0

− γiq
︸︷︷︸

≤0

tmin
︸︷︷︸

≥0

≥ 0, for i with γiq ≤ 0,

zi(tmin) = βi − γiq tmin
︸︷︷︸

≤
βi
γiq

≥ βi − γiq

βi

γiq

= 0 for i with γiq > 0.

Hence, the point x+ := z(tmin) is feasible and satisfies xp = 0. Hence, xp leaves the

basic variables and enters the non-basic variables.

The following theorem states that x+ is actually a feasible basic solution.

Theorem 2.2.6

Let x be a feasible basic solution with basis index set B. Let a pivot column q ∈ N with

ζq > 0 and a pivot row p ∈ B with γpq > 0 exist. Then, x+ = z(tmin) is a feasible basic

solution and c⊤x+ ≤ c⊤x. In particular, {aj | j ∈ B+} with B+ = (B \ {p}) ∪ {q} is a

basis and AB+ is non-singular.

Proof: By construction x+ is feasible. It remains to show that {aj | j ∈ B+} with

B+ = (B \ {p}) ∪ {q} is a basis. We note that xj = 0 for all j 6∈ B+.

The definition of Γ = A−1
B AN implies AN = ABΓ. The column q of this matrix equation

reads as

aq =
∑

i∈B

aiγiq = apγpq +
∑

i∈B,i6=p

aiγiq, (2.9)

where γiq are the components of column q of Γ and γpq 6= 0 according to the assumption

of this theorem.

We will now show that the vectors ai, i ∈ B, i 6= p, and aq are linearly independent.

Therefore, we consider the equation

αaq +
∑

i∈B,i6=p

αia
i = 0 (2.10)

with coefficients α ∈ R and αi ∈ R, i ∈ B, i 6= p. We introduce aq from (2.9) into (2.10)

and obtain

αγpqa
p +

∑

i∈B,i6=p

(αi + αγiq)a
i = 0.
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As {ai | i ∈ B} is a basis, we immediately obtain that all coefficients vanish, i.e.

αγpq = 0, αi + αγiq = 0, i ∈ B, i 6= p.

Since γpq 6= 0 it follows α = 0 and this in turn implies αi = 0 for all i ∈ B, i 6= p. Hence,

all coefficients vanish. This shows the linear independence of the set {ai | i ∈ B+}. 2

2.2.2 The Algorithm

We summarise our findings in an algorithm:

Algorithm 2.2.7 ((Primal) Simplex Method)

(0) Phase 0:

Transform the linear program into standard form 1.2.5, if necessary at all.

(1) Phase 1:

Determine a feasible basic solution (feasible vertex) x for the standard LP 1.2.5 with

basis index set B, non-basis index set N , basis matrix AB, non-basis matrix AN ,

basic variable xB ≥ 0 and non-basic variable xN = 0.

If no feasible solution exists, STOP. The problem is infeasible.

(2) Phase 2:

(i) Compute Γ = (γij)i∈B,j∈N , β = (βi)i∈B, and ζ = (ζj)j∈N according to

Γ = A−1
B AN , β = A−1

B b, ζ⊤ = c⊤BΓ − c⊤N .

(ii) Check for optimality:

If ζj ≤ 0 for every j ∈ N , then STOP. The current feasible basic solution

xB = β, xN = 0 is optimal. The objective function value is d = c⊤Bβ.

(iii) Check for unboundedness:

If there exists an index q with ζq > 0 and γiq ≤ 0 for every i ∈ B, then the

linear program does not have a solution and the objective function is unbounded

from below. STOP.

(iv) Determine pivot element:

Choose an index q with ζq > 0. q defines the pivot column. Choose an index p

with
βp

γpq

= min

{
βi

γiq

∣
∣
∣
∣

γiq > 0, i ∈ B

}

.

p defines the pivot row.

(v) Perform basis change:

Set B := (B \ {p}) ∪ {q} and N := (N \ {q}) ∪ {p}.

(vi) Go to (i).
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Remark 2.2.8

It is very important to recognise, that the indexing of the elements of the matrix Γ and

the vectors β and ζ in (i) depends on the current entries and the orders in the index sets

B and N . Notice that B and N are altered in each step (v) of the algorithm. So, Γ, β,

and ζ are altered as well in each iteration. For instance, if B = {2, 4, 5} and N = {1, 3},

the entries of the matrix Γ and the vectors β and ζ are indexed as follows:

Γ =






γ21 γ23

γ41 γ43

γ51 γ53




 , β =






β2

β4

β5




 , ζ =

(

ζ1

ζ3

)

.

More generally, if B = {i1, . . . , im}, ik ∈ {1, . . . , n}, and N = {j1, . . . , jn−m}, jk ∈

{1, . . . , n} \ B, then

Γ =









γi1j1 γi1j2 · · · γi1jn−m

γi2j1 γi2j2 · · · γi2jn−m

...
...

. . .
...

γimj1 γimj2 · · · γimjn−m









, β =









βi1

βi2

...

βim









, ζ =









ζj1

ζj2

...

ζjn−m









.

Example 2.2.9 (compare Example 2.2.5)

Consider the standard LP

Minimise c⊤x subject to Ax = b, x ≥ 0

with the data (x3, x4, x5 are slack variables):

c =











−2

−5

0

0

0











, A =






1 4 1 0 0

3 1 0 1 0

1 1 0 0 1




 , b =






24

21

9




 , x =











x1

x2

x3

x4

x5











.

Phase 1:

A feasible basic solution is given by the basis index set B = {3, 4, 5}, because the columns

3,4,5 of A are obviously linearly independent and

xB =






x3

x4

x5




 =






24

21

9




 > 0 and xN =

(

x1

x2

)

=

(

0

0

)
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is feasible, i.e. x ≥ 0 and Ax = b.

Phase 2:

Iteration 0:

With B = {3, 4, 5} and N = {1, 2} we find

AB =






1 0 0

0 1 0

0 0 1




 , AN =






1 4

3 1

1 1




 , cB =






0

0

0




 , cN =

(

−2

−5

)

.

and





γ31 γ32

γ41 γ42

γ51 γ52




 =






1 4

3 1

1 1




 ,






β3

β4

β5




 =






24

21

9




 ,

(

ζ1

ζ2

)

=

(

2

5

)

The checks for optimality and unboundedness fail. Hence, we choose the index q =

2 ∈ N with ζq = 5 > 0 as the pivot column (we could choose q = 1 ∈ N as well)

and compute
β3

γ32
=

24

4
= 6,

β4

γ42
=

21

1
= 21,

β5

γ52
=

9

1
= 9.

The first fraction achieves the minimal value and thus defines the pivot row to be

p = 3 ∈ B.

Iteration 1:

The basis change leads to B = {2, 4, 5} and N = {1, 3} (we interchanged the pivot

column q = 2 and the pivot row p = 3) and we find

AB =






4 0 0

1 1 0

1 0 1




 , AN =






1 1

3 0

1 0




 , cB =






−5

0

0




 , cN =

(

−2

0

)

and





γ21 γ23

γ41 γ43

γ51 γ53




 =

1

4






1 1

11 −1

3 −1




 ,






β2

β4

β5




 =






6

15

3




 ,

(

ζ1

ζ3

)

=
1

4

(

3

−5

)

The checks for optimality and unboundedness fail again. Hence, we have to choose

the index q = 1 ∈ N with ζq = 3/4 as the pivot column and compute

β2

γ21
=

6

1/4
= 24,

β4

γ41
=

15

11/4
= 60/11,

β5

γ51
=

3

3/4
= 4.
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The third fraction achieves the minimal value and thus defines the pivot row to be

p = 5 ∈ B.

Iteration 2:

The basis change leads to B = {2, 4, 1} and N = {5, 3} (we interchanged the pivot

column q = 1 and the pivot row p = 5) and we find

AB =






4 0 1

1 1 3

1 0 1




 , AN =






0 1

0 0

1 0




 , cB =






−5

0

−2




 , cN =

(

0

0

)

and





γ25 γ23

γ45 γ43

γ15 γ13




 =

1

3






−1 1

−11 2

4 −1




 ,






β2

β4

β1




 =






5

4

4




 ,

(

ζ5

ζ3

)

=

(

−1

−1

)

Now, the optimality check does not fail as ζj < 0 holds for all j ∈ N . Hence, the

current feasible basic solution

xB =






x2

x4

x1




 =






5

4

4




 = β, xN =

(

x5

x3

)

=

(

0

0

)

is optimal. The objective function value is d = c⊤Bβ = −33.

2.3 The Simplex Table

The computations in step (2)(i) of Algorithm 2.2.7 are quite time consuming, especially if

an LP has to be solved by hand. Therefore, the simplex method often is given in a more

compact notation – the simplex table, which is just a more efficient way to perform the

computations in Algorithm 2.2.7. The relations

xB = β − ΓxN ,

c⊤x = d − ζ⊤xN ,

compare (2.1) and (2.2), are combined in the following table:

xN

xB Γ = (γij) := A−1
B AN β := A−1

B b

ζ⊤ := c⊤BA−1
B AN − c⊤N d := c⊤BA−1

B b
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As the non-basic variable is zero, the current value of the variable x can be immediately

obtained from the table: xB = β, xN = 0. The corresponding objective function is

c⊤x = d.

Example 2.3.1 (compare Example 2.2.9)

Consider the standard LP

Minimise c⊤x subject to Ax = b, x ≥ 0

with the data (x3, x4, x5 are slack variables):

c =











−2

−5

0

0

0











, A =






1 4 1 0 0

3 1 0 1 0

1 1 0 0 1




 , b =






24

21

9




 , x =











x1

x2

x3

x4

x5











.

A feasible basic solution is given by the basis index set B = {3, 4, 5} and non-basis index

set N = {1, 2}. Moreover, AB = I and

β = A−1
B b =






24

21

9




 ,

Γ = A−1
B AN =






1 4

3 1

1 1




 ,

ζ⊤ = c⊤BA−1
B AN − c⊤N =

(

2 5
)

,

d = c⊤BA−1
B b = 0.

Hence, it holds

xB =






x3

x4

x5




 =






24

21

9




−






1 4

3 1

1 1






(

x1

x2

)

c⊤x = d − ζ⊤xN = 0 −
(

2 5
)
(

x1

x2

)

.

The corresponding table is given by

x1 x2

x3 1 4 24

x4 3 1 21

x5 1 1 9

2 5 0
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The simplex method requires to solve many linear equations in order to compute Γ and

β after each basis change. This effort can be reduced by so-called update formulae for Γ,

β, ζ , and d. Our intention is to derive an updated simplex table after a basis change has

been performed. The new basis leads to a similar representation

xB+ = β+ − Γ+xN+ ,

c⊤x+ = d+ − ζ+⊤
xN+ .

Our aim is to compute Γ+, β+, ζ+, and d+ without solving linear equations explicitly.

For a basis index set B and the non-basis index set N , it holds

xi = βi −
∑

j∈N

γijxj , i ∈ B,

c⊤x = d −
∑

j∈N

ζjxj .

Let p ∈ B and q ∈ N be the pivot row and the pivot column, respectively, and γpq 6= 0

the pivot element. Furthermore, let B+ = (B \ {p}) ∪ {q} and N+ = (N \ {q}) ∪ {p} be

the new basis and non-basis index sets after a basis change.

Consider row p in the table:

xp = βp −
∑

j∈N

γpjxj = βp − γpqxq −
∑

j∈N,j 6=q

γpjxj .

Since γpq 6= 0, we can solve this equation for xq and obtain

xq =
1

γpq

(

βp − xp −
∑

j∈N,j 6=q

γpjxj

)

=
βp

γpq
︸︷︷︸

=β+
q

−
1

γpq
︸︷︷︸

=γ+
qp

xp −
∑

j∈N,j 6=q

γpj

γpq
︸︷︷︸

=γ+

qj

xj .

Introducing xq into the remaining equations

xi = βi −
∑

j∈N

γijxj = βi − γiqxp −
∑

j∈N,j 6=q

γijxj , i 6= p, i ∈ B,

yields

xi =

(

βi − γiq

βp

γpq

)

︸ ︷︷ ︸

=β+

i

−

(

−
γiq

γpq

)

︸ ︷︷ ︸

=γ+

ip

xp −
∑

j∈N,j 6=q

(

γij − γiq

γpj

γpq

)

︸ ︷︷ ︸

=γ+

ij

xj , i 6= p, i ∈ B.
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Introducing xq into the objective function yields

c⊤x = d −
∑

j∈N

ζjxj = d − ζqxq −
∑

j∈N,j 6=q

ζjxj

= d − ζq

βp

γpq
︸ ︷︷ ︸

=d+

−

(

−
ζq

γpq

)

︸ ︷︷ ︸

=ζ+
p

xp −
∑

j∈N,j 6=q

(

ζj − ζq

γpj

γpq

)

︸ ︷︷ ︸

=ζ+

j

xj

Hence, the new basis is represented by

xB+ = β+ − Γ+xN+ ,

c⊤x+ = d+ − ζ+⊤
xN+ ,

where Γ+, β+, ζ+, and d+ are obtained by updating the values of Γ, β, ζ , and d according

to the following update rules: For i ∈ B+ and j ∈ N+ it holds

γ+
ij =







γij −
γiqγpj

γpq
for i 6= q, j 6= p

−
γiq

γpq
for i 6= q, j = p

γpj

γpq
for i = q, j 6= p

1
γpq

for i = q, j = p

β+
i =

{

βi −
γiqβp

γpq
for i 6= q

βp

γpq
for i = q

ζ+
j =

{

ζj −
ζqγpj

γpq
for j 6= p

− ζq

γpq
for j = p

d+ = d − ζqβp

γpq

(2.11)

The updated simplex table after a basis change is given by:

xj , j ∈ N \ {q} xp

xi, i ∈ B \ {p} γij −
γiqγpj

γpq
−

γiq

γpq
βi −

γiqβp

γpq

xq
γpj

γpq

1
γpq

βp

γpq

ζj −
ζqγpj

γpq
− ζq

γpq
d − ζqβp

γpq

Example 2.3.2 (compare Examples 2.2.5 and 2.2.9)

Consider the standard LP

Minimise c⊤x subject to Ax = b, x ≥ 0
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with the data (x3, x4, x5 are slack variables):

c =











−2

−5

0

0

0











, A =






1 4 1 0 0

3 1 0 1 0

1 1 0 0 1




 , b =






24

21

9




 , x =











x1

x2

x3

x4

x5











.

The simplex method yields the following simplex tables (an initial feasible basic solution

was given by the basis index set B = {3, 4, 5}):

Initial table:
x1 x2

x3 1 4 24

x4 3 1 21

x5 1 1 9

2 5 0

Pivot row and column: p = 3, q = 2, pivot element: γpq = 4.

Table 1:
x1 x3

x2
1
4

1
4

6

x4
11
4

−1
4

15

x5
3
4

−1
4

3

3
4

−5
4

−30

Pivot row and column: p = 5, q = 1, pivot element: γpq = 3
4
.

Table 2:
x5 x3

x2 −1
3

1
3

5

x4 −11
3

2
3

4

x1
4
3

−1
3

4

−1 −1 −33

Table 2 is optimal. The optimal solution is x2 = 5, x4 = 4, x1 = 4, x5 = 0, and x3 = 0.

The optimal objective function value is −33.

Important: Please note that the contents of the tables coincide with the computations

performed in Example 2.2.9. The rules for choosing the pivot element and the tests for

optimality and unboundedness are precisely the same rules as in Algorithm 2.2.7!

Remark 2.3.3

The vector ζ in an optimal table indicates whether the solution is unique. If ζ < 0 holds
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in an optimal simplex table, then the solution of the LP is unique. If there exists a

component ζj = 0, j ∈ N , in an optimal simplex table, then the optimal solution may

not be unique. Further optimal solutions can be computed by performing additional basis

changes by choosing those pivot columns with ζj = 0, j ∈ N . By investigation of all

possible basis changes it is possible to compute all optimal vertices. According to part

(b) of the Fundamental Theorem of Linear Programming every optimal solution can be

expressed as a convex combination of these optimal vertices.

2.4 Phase 1 of the Simplex Method

A feasible basic solution is required to start the simplex method. In many cases such a

solution can be obtained as follows.

Theorem 2.4.1 (Canonical Problems)

Consider an LP in canonical form 1.2.1

Minimise c⊤x subject to Ax ≤ b, x ≥ 0.

If b ≥ 0 holds, then a feasible basic solution is given by

y = b ≥ 0, x = 0,

where y denotes the vector of slack variables. An initial simplex table is given by

x

y A b

−c 0

Proof: Introducing slack variables leads to a problem in standard form

Ax + Iy = b, x ≥ 0, y ≥ 0.

As the unity matrix I is non-singular, a feasible basic solution is given by

y = b ≥ 0, x = 0.

2

Caution: If there exists a component bi < 0, then it is much more complicated to find a

feasible basic solution. The same holds true if the problem is not given in canonical form.
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In all these cases, the following method has to be applied.

Consider an LP in standard form 1.2.5

Minimise c⊤x subject to Ax = b, x ≥ 0.

Without loss of generality we may assume b ≥ 0. This is not a restriction as this property

can always be achieved by multiplying by −1 those equations with bi < 0.

Define

Auxiliary LP:

Minimise e⊤y =
m∑

i=1

yi subject to Ax + Iy = b, x ≥ 0, y ≥ 0, (2.12)

where e = (1, . . . , 1)⊤ ∈ R
m.

Theorem 2.4.2 (Feasible solution for auxiliary LP)

Consider the auxiliary LP 2.12 with b ≥ 0. Then, a feasible basic solution is given by

y = b ≥ 0, x = 0.

An initial simplex table for the auxiliary LP is given by

x

y A b

e⊤A e⊤b

Proof: The auxiliary LP is a standard LP for z = (x, y)⊤. Obviously, it holds c =

(0, e⊤)⊤ and y = b − Ax and thus Γ = A and β = b. Moreover, cB = e and cN = 0.

Hence, ζ⊤ = c⊤BΓ − c⊤N = e⊤A and d = c⊤Bβ = e⊤b. 2

Theorem 2.4.3

(i) If the auxiliary LP has the optimal solution y = 0, then the corresponding x obtained

in the simplex method is a feasible basic solution for the standard LP 1.2.5.

(ii) If the auxiliary LP has the optimal solution y 6= 0 and thus e⊤y > 0, then the

standard LP 1.2.5 is infeasible.
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Proof:

(i) If y = 0 is a solution, the corresponding x in the final simplex tableau satisfies

Ax = b, x ≥ 0, and thus is a feasible basic solution for the standard LP.

(ii) The objective function of the auxiliary LP is bounded from below by 0 because of

y ≥ 0 implies e⊤y ≥ 0. Assume that the standard LP has a feasible point x. Then,

y = 0 is feasible for the auxiliary LP because Ax + y = b, x ≥ 0 and y = 0. Hence,

y = 0 solves the auxiliary problem which contradicts the assumption in (ii).

2

Example 2.4.4 (Finding a feasible basic solution)

Consider the feasible set Ax = b, x ≥ 0 with the data

A =

(

1 1 2

−1 1 0

)

, b =

(

1

1

)

, x =






x1

x2

x3




 .

Notice that it is difficult to find a feasible basic solution at a first glance. Hence, we solve

the following auxiliary problem by the simplex method.

Minimise y1 + y2 subject to Ax + Iy = b, x ≥ 0, y = (y1, y2)
⊤ ≥ 0.

We obtain the following solution (notice that x4 := y1 and x5 := y2 in the computation):

Initial table:
x1 x2 x3

x4 1 1 2 1

x5 −1 1 0 1

0 2 2 2

Pivot row and column: p = 5, q = 2, pivot element: γpq = 1.

Table 1:
x1 x5 x3

x4 2 −1 2 0

x2 −1 1 0 1

2 −2 2 0

Pivot row and column: p = 4, q = 1, pivot element: γpq = 2.

Table 2:
x4 x5 x3

x1
1
2

−1
2

1 0

x2
1
2

1
2

1 1

−1 −1 0 0
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This table is optimal with objective function value 0 and y1 = y2 = 0(= x4 = x5). Hence,

x = (x1, x2, x3)
⊤ = (0, 1, 0)⊤ satisfies the constraints Ax = b and x ≥ 0. x is a feasible

basic solution with basis index set B = {1, 2} and non-basis index set N = {3}.

Suppose now that we want to minimise the function

x1 + 2x2 + x3 (i.e. c = (1, 2, 1)⊤)

on the feasible set above. The initial simplex table is given by table 2 if the columns

corresponding to the auxiliary variables y1 and y2 (resp. x4 and x5) are deleted. As the

objective function has changed, we have to recompute the bottom row of the table, that is

d = c⊤Bβ = (1, 2)

(

0

1

)

= 2,

ζ⊤ = c⊤BΓ − c⊤N = (1, 2)

(

1

1

)

− (1) = 2.

Initial table:

x3

x1 1 0

x2 1 1

2 2

Pivot row and column: p = 1, q = 3, pivot element: γpq = 1.

Table 1:

x1

x3 1 0

x2 −1 1

−2 2

This table is optimal.

Remark 2.4.5

In might happen that some components of y are among the basic variables in the final

simplex table. In this case the columns corresponding to the components xi, i ∈ B, do not

define a full basis matrix (always m linearly independent columns are necessary). Hence,

additional linearly independent columns aj of A with j ∈ N have to be determined in

order to obtain a complete basis matrix. This can be done by inspection or by performing

additional simplex steps with the aim to move the auxiliary variable y into the non-basis.

This can be achieved by performing steps of the dual simplex method, compare Chapter 3.

c© 2008 by M. Gerdts



2.5. COMPUTATIONAL ISSUES 51

2.5 Computational Issues

Our examples so far suggest that the simplex method seems to work properly. However,

there are some pitfalls which were encountered during the decades after the invention of

the method.

Open questions in 1947:

• If the pivot element is not uniquely determined, which one should be chosen? There

may exist several choices for p and q!

• Finiteness: Does the algorithm always terminate?

• Complexity: polynomial effort or non-polynomial (i.e. exponential) effort?

2.5.1 Finite Termination of the Simplex Method

There are two degrees of freedom in step (4) of Algorithm 2.2.7:

• Which index q with ζq > 0 should be chosen? The examples 2.2.9, 2.3.2, 2.4.4 show,

that there are often many choices.

• Which index p with

βp

γpq

= min

{
βi

γiq

∣
∣
∣
∣

γiq > 0, i ∈ B

}

should be chosen? In general there may exist more than one choice, e.g. in the

initial table of Example 2.4.4.

Dantzig has chosen the pivot column according to the formula

ζq = max{ζj | ζj > 0, j ∈ N}, (2.13)

because this choice guarantees the largest descent in the objective function if the con-

straints are neglected. Unfortunately, this choice may lead to cycles in the simplex method

as famous examples by Hoffman [Hof53] and Marshall and Suurballe [MS69] show. In this

case, the simplex method does not terminate!

Example 2.5.1 (Cycles in simplex method)

Consider the example of Marshall and Suurballe [MS69]:

Minimise c⊤x s.t. Ax = b, x ≥ 0
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with the data (x5, x6, x7 are slack variables)

c =
















−10

57

9

24

0

0

0
















, A =






0.5 −5.5 −2.5 9 1 0 0

0.5 −1.5 −0.5 1 0 1 0

1 0 0 0 0 0 1




 , b =






0

0

1




 , x =
















x1

x2

x3

x4

x5

x6

x7
















.

With Dantzig’s choice of the pivot column, the simplex method yields the following tables.

Notice that the last table is the same as the first table (apart from perturbations of the

columns). Hence, a similar choice of the pivot columns leads to a cycle and the simplex

method does not terminate.

Initial table:

x1 x2 x3 x4

x5 0.5 −5.5 −2.5 9 0

x6 0.5 −1.5 −0.5 1 0

x7 1 0 0 0 1

10 −57 −9 −24 0

Pivot row and column: p = 5, q = 1, pivot element: γpq = 0.5.

Table 1:

x5 x2 x3 x4

x1 2 −11 −5 18 0

x6 −1 4 2 −8 0

x7 −2 11 5 −18 1

−20 53 41 −204 0

Pivot row and column: p = 6, q = 2, pivot element: γpq = 4.

Table 2:

x5 x6 x3 x4

x1 −0.75 2.75 0.5 −4 0

x2 −0.25 0.25 0.5 −2 0

x7 0.75 −2.75 −0.5 4 1

−6.75 −13.25 14.5 −98 0

Pivot row and column: p = 1, q = 3, pivot element: γpq = 0.5.
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Table 3:
x5 x6 x1 x4

x3 −1.5 5.5 2 −8 0

x2 0.5 −2.5 −1 2 0

x7 0 0 1 0 1

15 −93 −29 18 0

Pivot row and column: p = 2, q = 4, pivot element: γpq = 2.

Table 4:

x5 x6 x1 x2

x3 0.5 −4.5 −2 4 0

x4 0.25 −1.25 −0.5 0.5 0

x7 0 0 1 0 1

10.5 −70.5 −20 −9 0

Pivot row and column: p = 3, q = 5, pivot element: γpq = 0.5.

Table 5:
x3 x6 x1 x2

x5 2 −9 −4 8 0

x4 −0.5 1 0.5 −1.5 0

x7 0 0 1 0 1

−21 24 22 −93 0

Pivot row and column: p = 4, q = 6, pivot element: γpq = 1.

Table 6:
x3 x4 x1 x2

x5 −2.5 9 0.5 −5.5 0

x6 −0.5 1 0.5 −1.5 0

x7 0 0 1 0 1

−9 −24 10 −57 0

Example 2.5.1 reveals an interesting observation: Although all tables are different (with

exception of the initial and final table), the corresponding basic solutions are always the

same, namely

x = (0, 0, 0, 0, 0, 0, 1)⊤.

With other words: All tables describe the same vertex x. This clearly shows that the same

vertex may possess different table representations and in this example we unfortunately

produced a cycle.

Moreover, we observe that two basic components of the feasible basic solution are always

zero in all tables, e.g. in table 3 the basic variables x2 and x3 are zero. Whenever this

happens, we call the basic solution degenerated:
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Definition 2.5.2 (Degenerate feasible basic solution)

Let x = (x1, . . . , xn)⊤ ∈ R
n be a feasible basic solution with basis index set B. x is called

degenerate, if xi = 0 holds for at least one index i ∈ B. If xi > 0 for all i ∈ B, x is called

non-degenerate.

We now show why degeneracy and cycling are closely connected.

The non-degenerate case: Assume that the simplex method always chooses pivot rows p

with βp > 0. Then the transformation rules (2.11) show that the objective function value

strictly decreases in this case because

d+ = d −

>0
︷︸︸︷

ζq

>0
︷︸︸︷

βp

γpq
︸︷︷︸

>0

< d.

As the simplex method by construction computes feasible basic solutions only and as

there exist only finitely many of them, one of them being optimal, the simplex method

terminates in a finite number of steps (provided that a solution exists at all).

The degenerate case: The non-degenerate case shows that a cycle can only occur if a pivot

row p with βp = 0 has to be chosen in the simplex method. In this case it holds

d+ = d −

>0
︷︸︸︷

ζq

=0
︷︸︸︷

βp

γpq
︸︷︷︸

>0

= d.

Hence, the objective function value remains unchanged in a basis change from x to x+.

Moreover, the transformation rules (2.11) yield

β+
i =







βi −
γiq

=0

︷︸︸︷

βp

γpq
for i 6= q

=0
︷︸︸︷

βp

γpq
for i = q

=

{

βi for i 6= q

0 for i = q

Hence, β+ = β and thus xB+ = β+ = β = xB (compare Example 2.5.1). The simplex

method stagnates in the feasible basic solution x = x+. Notice that the simplex table

does change although x remains the same. Now, Example 2.5.1 shows that it is actually

possible to revisit a simplex table again after a finite number of basis changes. If this

happens, a cycle is born.

Summarising:
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• A cycle can only occur in a degenerate feasible basic solution.

• Example 2.4.4 shows that the presence of a degenerate feasible basic solution does

not automatically lead to a cycle.

Can cycles be avoided at all? Fortunately yes. There is a simple rule (more precisely: the

rule is easy to apply but very difficult to prove) that avoids cycling.

Bland’s rule [Bla77]

Among all possible choices for the pivot element, always choose the pivot column q ∈ N

and the pivot row p ∈ B in step (4) of Algorithm 2.2.7 with the smallest indices q and

p, that is:

(i) Choose q = min{j ∈ N | ζj > 0}.

(ii) Choose p = min

{

k ∈ B

∣
∣
∣
∣
∣

βk

γkq
= min

{
βi

γiq

∣
∣
∣ γiq > 0, i ∈ B

}
}

.

Finally, we state the main result of this section:

Theorem 2.5.3 (Finite termination)

If the pivot element is chosen according to Bland’s rule, the Simplex Algorithm 2.2.7 either

finds an optimal solution or it detects that the objective function is unbounded from below.

In both cases Algorithm 2.2.7 terminates after a finite number of steps.

Remark 2.5.4

In practical applications cycling usually does not occur (due to round-off errors) and often

Bland’s rule is not obeyed. Instead, Dantzig’s rule of steepest descent, compare equation

(2.13), is used frequently (although – from a theoretical point of view – it may lead to

cycles).

2.5.2 Complexity of the Simplex Method

The previous paragraph showed that the simplex method terminates after a finite number

of steps if Bland’s rule is used. This is a good message. However, in view of the numerical

performance of an algorithm the most relevant question is that of its complexity.

Example 2.5.5 (Polynomial and exponential complexity)

Suppose a computer with 1010 ops/sec (10 GHz) is given. A problem P (e.g. an LP) has

to be solved on the computer. Let n denote the size of the problem (e.g. the number of

variables of the LP). Let five different algorithms be given, which require n, n2, n4, 2n,
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and n! operations (e.g. steps in the simplex method), respectively, to solve the problem P

of size n.

The following table provides an overview on the time which is needed to solve the problem.

ops \ size n 20 60 · · · 100 1000

n 0.002 µs 0.006 µs · · · 0.01 µs 0.1 µs

n2 0.04 µs 0.36 µs · · · 1 µs 0.1 ms

n4 16 µs 1.296 ms · · · 10 ms 100 s

2n 0.1 ms 3 yrs · · · 1012 yrs ·

n! 7.7 yrs · · · ·

Clearly, only the algorithms with polynomial complexity n, n2, n4 are ‘efficient’ while those

with exponential complexity 2n and n! are very ‘inefficient’.

We don’t want to define the complexity of an algorithm in a mathematically sound way.

Instead we use the following informal but intuitive definition:

Definition 2.5.6 (Complexity (informal definition))

A method for solving a problem P has polynomial complexity if it requires at most a

polynomial (as a function of the size) number of operations for solving any instance of the

problem P. A method has exponential complexity, if it has not polynomial complexity.

Unfortunately, it was shown by the example below of Klee and Minty [KM72] in 1972

that

the simplex method in its worst case has exponential complexity!

Hence, the simplex method does not belong to the class of algorithms with polynomial

complexity. This was a very disappointing result.

Example 2.5.7 (Klee and Minty [KM72])

Klee and Minty showed that the following linear program has 2n vertices and that there

exists a simplex path which visits every 2n vertices and thus, the simplex method requires

an exponential number of steps w.r.t. n. Notice, that each step of the simplex method

only requires a polynomial number of operations as essentially linear equations have to be

solved.

max e⊤n x subject to 0 ≤ x1 ≤ 1, εxi ≤ xi+1 ≤ 1 − εxi, i = 1, . . . , n − 1

with ε ∈ (0, 1/2) and e⊤n = (1, . . . , 1).

From a theoretical point of view, the simplex method is an inefficient method. Never-

theless, there is also a practical point of view. And the simplex method is still one of

the most frequently used algorithms in linear programming, even for large-scale problems.

Moreover, extensive numerical experience with practically relevant problems showed the
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following: Most often, the number of variables n is between m (number of constraints)

and 10m and the simplex method needs between m and 4m steps to find a solution. As

each step of the simplex method needs a polynomial number of operations in n and m,

the simplex method solves most practically relevant problems in polynomial time.

Hence: In practise the simplex method shows polynomial complexity in n and m!

Further investigations by Borgwardt [Bor87] show: If the input data A, b and c is reason-

ably distributed, then the expected effort of the simplex method is polynomial.

2.5.3 The Revised Simplex Method

The main effort of the simplex method 2.2.7 is to compute the following quantities:

Γ = A−1
B AN , β = A−1

B b.

We achieved this in two ways:

• Explicit computation: An efficient implementation of the simplex method does not

compute the matrix A−1
B explicitely. Rather, in order to obtain the columns γj,

j ∈ N , of Γ and the vector β, the linear equations

ABγj = aj , j ∈ N, ABβ = b,

are solved by some suitable numerical method, e.g. LU-decomposition (Gaussian-

Algorithm) or QR-decomposition or iterative solvers. In total, n − m + 1 linear

equations of dimension m have to be solved for this approach.

• Table update: The update formulae (2.11) can be used to update the simplex table.

The main effort is to update the m × (n − m)-matrix Γ.

If n is much larger than m, that is m << n, then it is not efficient to update the

whole simplex table, because a close investigation of the simplex algorithm reveals that

essentially only the vectors β, ζ and the pivot column γq of Γ are necessary to determine

the pivot element γpq. The remaining columns j ∈ N , j 6= q, of Γ are not referenced at all

in the algorithm. In fact it is more efficient (in view of computational effort and memory

requirements) to work with the m × m-matrix AB only.

Algorithm 2.5.8 (Revised Simplex Method)

(0) Phase 0:

Transform the linear program into standard form 1.2.5, if necessary at all.

(1) Phase 1:

Determine a feasible basic solution (feasible vertex) x for the standard LP 1.2.5 with

basis index set B, non-basis index set N , basis matrix AB, basic variable xB ≥ 0

and non-basic variable xN = 0.

If no feasible solution exists, STOP. The problem is infeasible.
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(2) Phase 2:

(i) Compute β = (βi)i∈B as the solution of the linear equation ABβ = b.

(ii) Solve the linear equation A⊤
Bλ = cB for λ ∈ R

m and compute ζ = (ζj)j∈N by

ζ⊤ = λ⊤AN − c⊤N .

(ii) Check for optimality:

If ζj ≤ 0 for every j ∈ N , then STOP. The current feasible basic solution

xB = β, xN = 0 is optimal. The objective function value is d = c⊤Bβ.

(iii) Determine pivot column: Choose an index q with ζq > 0 (according to Bland’s

rule).

(iv) Compute pivot column: Solve the linear equation ABγ = aq, where aq denotes

column q of A.

(v) Check for unboundedness:

If γ ≤ 0, then the linear program does not have a solution and the objective

function is unbounded from below. STOP.

(vi) Determine pivot row:

Choose an index p (according to Bland’s rule) with

βp

γp

= min

{
βi

γi

∣
∣
∣
∣

γi > 0, i ∈ B

}

.

(vii) Perform basis change:

Set B := (B \ {p}) ∪ {q} and N := (N \ {q}) ∪ {p}.

(viii) Go to (i).

The revised simplex algorithm requires to solve three linear equations only, namely two

linear equations with AB in steps (i) and (iv) and one linear equation with A⊤
B in (ii):

ABβ = b, ABγ = aq, A⊤
Bλ = cB.

Solving these linear equations can be done using the following techniques:

• explicit computation of A−1
B and computation of

β = A−1
B b, γ = A−1

B aq, λ = (A−1
B )⊤cB.

• Decomposition of AB using an LU-decomposition. Herein, the matrix AB is ex-

pressed as AB = L · U with a lower triangular matrix L ∈ R
m×m and an upper

triangular matrix U ∈ R
m×m. The linear equation ABβ = b is then solved by

forward-backward substitution. For details please refer to courses on numerical

linear algebra or numerical mathematics.
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• It can be exploited, that the basis matrices AB and AB+ are neighbouring matrices.

This allows to construct update formulae similar to (2.11) for the inverse basis

matrix A−1
B . Let B = {i1, . . . , iℓ−1, p, iℓ+1, . . . , im} with 1 ≤ ℓ ≤ m basis index set

and γ = A−1
B aq with q ∈ N the current pivot column with pivot element γℓ 6= 0.

Herein, aq is the q-th column of A. Let eℓ be the l-th unity vector. Then the

following update rule holds:

A−1
B+ =

(
I − (γ − eℓ)e

⊤
ℓ /γℓ

)
A−1

B (2.14)

Example 2.5.9 (Revised Simplex Method)

Minimise −3x1 − 4x2 subject to

2x1 + x2 + x3 = 8,

4x1 + x2 + x4 = 10,

x1, x2, x3, x4 ≥ 0.

The problem is in standard form already with

c =








−3

−4

0

0








, b =

(

8

10

)

, A =

(

2 1 1 0

4 1 0 1

)

.

Phase 1: A feasible basic solution is given by xB = (8, 10)⊤, xN = 0 with B = {3, 4} and

N = {1, 2}.

Phase 2:

Iteration 0:

With B = {3, 4} and N = {1, 2} we find

AB =

(

1 0

0 1

)

, AN =

(

2 1

4 1

)

, cB =

(

0

0

)

, cN =

(

−3

−4

)

.

and (

β3

β4

)

=

(

8

10

)

, λ =

(

0

0

)

,

(

ζ1

ζ2

)

=

(

3

4

)

.

The check for optimality fails. Hence, in accordance with Bland’s rule we choose the

index q = 1 ∈ N with ζq = 3 > 0 as the pivot column. The pivot column computes

to (

γ3

γ4

)

=

(

2

4

)

.
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The check for unboundedness fails. The pivot row is p = 4 ∈ B, because

β3

γ3
=

8

2
= 4,

β4

γ4
=

10

4
= 2.5.

Iteration 1:

The basis change leads to B = {3, 1} and N = {4, 2} (we interchanged the pivot

column q = 1 and the pivot row p = 4) and we find

AB =

(

1 2

0 4

)

, AN =

(

0 1

1 1

)

, cB =

(

0

−3

)

, cN =

(

0

−4

)

and (

β3

β1

)

=

(

3

2.5

)

, λ =

(

0

−3
4

)

,

(

ζ4

ζ2

)

=
1

4

(

−3

13

)

.

The check for optimality fails. Hence, in accordance with Bland’s rule we choose the

index q = 2 ∈ N with ζq = 13
4

> 0 as the pivot column. The pivot column computes

to (

γ3

γ1

)

=
1

4

(

2

1

)

.

The check for unboundedness fails. The pivot row is p = 3 ∈ B.

Iteration 2:

The basis change leads to B = {2, 1} and N = {4, 3} (we interchanged the pivot

column q = 2 and the pivot row p = 3) and we find

AB =

(

1 2

1 4

)

, AN =

(

0 1

1 0

)

, cB =

(

−4

−3

)

, cN =

(

0

0

)

and (

β2

β1

)

=

(

6

1

)

, λ =
1

2

(

−13

5

)

,

(

ζ4

ζ3

)

=
1

2

(

5

−13

)

.

The check for optimality fails. Hence, in accordance with Bland’s rule we choose the

index q = 4 ∈ N with ζq = 5
2

> 0 as the pivot column. The pivot column computes

to (

γ2

γ1

)

=
1

2

(

−2

1

)

.

The check for unboundedness fails. The pivot row is p = 1 ∈ B.

Iteration 3:
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The basis change leads to B = {2, 4} and N = {1, 3} (we interchanged the pivot

column q = 4 and the pivot row p = 1) and we find

AB =

(

1 0

1 1

)

, AN =

(

2 1

4 0

)

, cB =

(

−4

0

)

, cN =

(

−3

0

)

and (

β2

β4

)

=

(

8

2

)

, λ =

(

−4

0

)

,

(

ζ1

ζ3

)

=

(

−5

−4

)

.

The optimality criterion is satisfied. The optimal solution is x = (0, 8, 0, 2)⊤ with

objective function value c⊤x = −32.

Remark 2.5.10

The auxiliary variable λ in the revised simplex method is a so-called dual variable for the

dual linear program. Dual problems are discussed in the following chapter.
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Chapter 3

Duality and Sensitivity

This chapter provides an introduction to duality theory for linear programs and points

out the connection between dual programs and sensitivity analysis for linear programs.

Sensitivity analysis addresses the question of how optimal solutions depend on perturba-

tions in the problem data (A, b, and c). Finally, the results from sensitivity analysis will

be used to derive so-called shadow prices which play an important role in economy.

Dual linear programs are important because:

• Dual problems allow to determine lower bounds for the optimal objective function

value of a primal minimisation problem.

• Dual problems allow to compute sensitivities of linear programs.

• Occasionally, the dual problem is easier to solve than the primal problem (→ dual

simplex method).

3.1 The Dual Linear Program

Before we state the dual problem of a standard LP in a formal way, we consider two

motivations for the so-called dual problem.

Example 3.1.1

A company produces three products P1, P2, and P3. The profit of the products per unit

amounts to 10, 5, and 5.5 pounds, respectively. The production requires four raw materials

B1, B2, B3, and B4. There are 1500, 200, 1200, and 900 units of these raw materials in

stock. The amount of raw materials needed for the production of one unit of the product

is given by the following table.

P1 P2 P3

B1 30 10 50

B2 5 0 3

B3 20 10 50

B4 10 20 30

Let xi, i = 1, 2, 3, denote the amount of product Pi, i = 1, 2, 3, to be produced. The

company aims at maximising the profit and hence solves the following so-called primal

problem:
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Maximise

10x1 + 5x2 + 5.5x3

subject to

30x1 + 10x2 + 50x3 ≤ 1500,

5x1 + 3x3 ≤ 200,

20x1 + 10x2 + 50x3 ≤ 1200,

10x1 + 20x2 + 30x3 ≤ 900,

x1, x2, x3 ≥ 0.

Assume now, that a second company offers to buy all raw materials from the first company.

The second company offers a price of λi ≥ 0 pounds for one unit of the raw material Bi,

i = 1, . . . , 4. Of course, the second company intends to minimise its total costs

1500λ1 + 200λ2 + 1200λ3 + 900λ4.

Moreover, the first company will only accept the offer of the second company if the resulting

price for one unit of the product Pj is greater than or equal to the (not realised) profit cj,

j = 1, 2, 3, i.e. if

30λ1 + 5λ2 + 20λ3 + 10λ4 ≥ 10,

10λ1 + 10λ3 + 20λ4 ≥ 5,

50λ1 + 3λ2 + 50λ3 + 30λ4 ≥ 5.5,

hold. Summarising, the second company has to solve the following linear program:

Minimise

1500λ1 + 200λ2 + 1200λ3 + 900λ4.

subject to

30λ1 + 5λ2 + 20λ3 + 10λ4 ≥ 10,

10λ1 + 10λ3 + 20λ4 ≥ 5,

50λ1 + 3λ2 + 50λ3 + 30λ4 ≥ 5.5,

λ1, λ2, λ3, λ4 ≥ 0.

This problem is called the dual problem of the primal problem.

More generally, we may associate to the primal problem

Maximise c⊤x subject to Ax ≤ b, x ≥ 0
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the dual problem

Minimise b⊤λ subject to A⊤λ ≥ c, λ ≥ 0.

Now we are interested in formulating a dual problem for the standard problem, which will

be called primal problem in the sequel.

Definition 3.1.2 (Primal problem (P))

The standard LP

(P ) Minimise c⊤x subject to Ax = b, x ≥ 0

with A ∈ R
m×n, c ∈ R

n, b ∈ R
m is called primal problem.

The dual problem to the primal problem (P) is defined as follows.

Definition 3.1.3 (Dual problem (D))

The linear program

(D) Maximise b⊤λ subject to A⊤λ ≤ c

is called the dual problem of (P).

Example 3.1.4

Let the primal LP be given by the following linear program:

Minimise −3x1 − 4x2 subject to

2x1 + x2 + x3 = 8,

4x1 + x2 + x4 = 10,

x1, x2, x3, x4 ≥ 0.

The dual problem reads as:

Maximise 8λ1 + 10λ2 subject to

2λ1 + 4λ2 ≤ −3,

λ1 + λ2 ≤ −4,

λ1 ≤ 0,

λ2 ≤ 0.

By application of the well-known transformation techniques, which allow to transform a

general LP into a standard LP, and writing down the dual problem of the resulting stan-

dard problem, it is possible to formulate the dual problem of a general LP. We demonstrate
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this procedure for the following problem (compare Example 3.1.1). Please note the nice

symmetry of the primal and dual problem!

Theorem 3.1.5

The dual problem of the LP

Maximise c⊤x subject to Ax ≤ b, x ≥ 0

is given by

Minimise b⊤λ subject to A⊤λ ≥ c, λ ≥ 0.

Proof: Transformation into standard form yields:

Minimise
(

−c⊤ 0
)
(

x

y

)

subject to
(

A I
)
(

x

y

)

= b,

(

x

y

)

≥ 0.

The dual problem of this standard problem reads as

Maximise b⊤λ̃ subject to

(

A⊤

I

)

λ̃ ≤

(

−c

0

)

.

Defining λ := −λ̃ yields the problem

Maximise − b⊤λ subject to − A⊤λ ≤ −c, −λ ≤ 0,

which proves the assertion. 2

In a similar way, the following scheme applies. Notice in the scheme below, that the

primal problem is supposed to be a minimisation problem. As we know already, this can

always be achieved by multiplying the objective function of a maximisation problem by

−1.

primal constraints dual constraints

(minimise c⊤x) (maximise b⊤λ)

x ≥ 0 A⊤λ ≤ c

x ≤ 0 A⊤λ ≥ c

x free A⊤λ = c

Ax = b λ free

Ax ≤ b λ ≤ 0

Ax ≥ b λ ≥ 0

The same scheme applies component-wise if primal constraints of the different types

xi







≥ 0

≤ 0

free







, i = 1, . . . , n,
n∑

j=1

aijxj







=

≤

≥







bi, i = 1, . . . , m,
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occur simultaneously in a general LP. More precisely, the dual variable λi is associated

with the i-th primal constraint according to the scheme

n∑

j=1

aijxj







=

≤

≥







bi ↔ λi







free

≤ 0

≥ 0







.

Moreover, the i-th primal variable xi is associated with the i-th component of the dual

constraint according to the scheme

xi







≥ 0

≤ 0

free







↔ (A⊤λ)i







≤

≥

=







ci.

In the latter, (A⊤λ)i denotes the i-th component of the vector A⊤λ, where A = (aij)

denotes the matrix of coefficients of the primal constraints (excluding sign conditions of

course). Again, the above relations assume that the primal problem is a minimisation

problem.

Remark 3.1.6

Dualisation of the dual problem yields the primal problem again.

3.2 Weak and Strong Duality

We summarise important relations between the primal problem and its dual problem.

Theorem 3.2.1 (Weak Duality Theorem)

Let x be feasible for the primal problem (P) (i.e. Ax = b, x ≥ 0) and let λ be feasible for

the dual problem (D) (i.e. A⊤λ ≤ c). Then it holds

b⊤λ ≤ c⊤x.

Proof: Owing to b = Ax and x ≥ 0 it holds

b⊤λ = (Ax)⊤λ = x⊤A⊤λ ≤ x⊤c = c⊤x.

2

The weak duality theorem provides a motivation for the dual problem: dual feasible points

provide lower bounds for the optimal objective function value of the primal problem. Vice

versa, primal feasible points provide upper bounds for the optimal objective function value

of the dual problem. This property is very important in the context of Branch & Bound

methods for integer programs.
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Moreover, it holds

Theorem 3.2.2 (Sufficient Optimality Criterion)

Let x be feasible for the primal problem (P) and let λ be feasible for the dual problem (D).

(i) If b⊤λ = c⊤x, then x is optimal for the primal problem (P) and λ is optimal for the

dual problem (D).

(ii) b⊤λ = c⊤x holds if and only if the complementarity slackness condition holds:

xj

(
m∑

i=1

aijλi − cj

)

= 0, j = 1, . . . , n.

Remark 3.2.3

The complementary slackness condition is equivalent with the following: For j = 1, . . . , n

it holds

xj > 0 ⇒
m∑

i=1

aijλi − cj = 0

and
m∑

i=1

aijλi − cj < 0 ⇒ xj = 0.

This means: Either the primal constraint xj ≥ 0 is active (i.e. xj = 0) or the dual

constraint
∑m

i=1 aijλi ≤ ci is active (i.e.
∑m

i=1 aijλi = ci). It cannot happen that both

constraints are inactive at the same time (i.e. xj > 0 and
∑m

i=1 aijλi < ci).

Proof: The assertion in (i) is an immediate consequence of the weak duality theorem.

The assertion in (ii) follows from

c⊤x − b⊤λ = c⊤x − λ⊤b = c⊤x − λ⊤Ax =
(
c − A⊤λ

)⊤
x =

n∑

j=1

(

cj −
m∑

i=1

aijλi

)

xj .

If c⊤x = b⊤λ, then owing to x ≥ 0 and c−A⊤λ ≥ 0 every term in the sum has to vanish.

If, on the other hand, the complementarity conditions hold, then every term of the sum

vanishes and thus c⊤x = b⊤λ. 2

The sufficient optimality condition rises the question, whether c⊤x = b⊤λ actually can

be obtained. We will answer this question by exploitation of the simplex method. We

have seen before that the simplex method with Bland’s rule (and assuming rank(A) = m)

always terminates, either with an optimal feasible basic solution or with the message that

the problem does not have a solution. Let us investigate the first case. Let x be an

optimal feasible basic solution of the primal problem (P) with basis index set B, which
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has been computed by the simplex method using Bland’s rule. Hence, it holds xB ≥ 0

and xN = 0. Moreover, the optimality criterion

ζ⊤ = c⊤BA−1
B AN − c⊤N ≤ 0

holds. Let λ be defined by

λ⊤ := c⊤BA−1
B ,

see the revised simplex method. We will show that this λ solves the dual problem! Firstly,

it holds

c⊤x = c⊤BxB = c⊤BA−1
B b = λ⊤b = b⊤λ.

Secondly, λ is feasible for the dual problem (D) because

A⊤
Bλ = cB,

A⊤
Nλ − cN = A⊤

N

(
A⊤

B

)−1
cB − cN = ζ ≤ 0.

The latter is just the primal optimality criterion. Combining both relations yields A⊤λ ≤

c. Hence, we have shown:

If the primal problem (P) has an optimal solution, then the dual problem (D) has an

optimal solution, too, and an optimal dual solution is given by λ⊤ = c⊤BA−1
B (there may

be other solutions).

Using the dual simplex method, which will be discussed in the next section, the converse

can be shown as well. The following theorem is the main result of this section.

Theorem 3.2.4 (Strong Duality Theorem)

The primal problem (P) has an optimal solution x if and only if the dual problem (D) has

an optimal solution λ. Moreover, the primal and dual objective function values coincide

if an optimal solution exists, i.e. c⊤x = b⊤λ.

Remark 3.2.5

The primal simplex method, compare Algorithm 2.2.7, and the revised simplex method,

compare Algorithm 2.5.8, compute vertices x, which are primally feasible, and dual vari-

ables λ, which satisfy c⊤x = b⊤λ in each step. The primal simplex method stops as soon

as λ becomes feasible for the dual problem, i.e. dual feasibility is the optimality criterion

for the primal simplex method.

3.3 Dual Simplex Method

The dual simplex method is designed to solve the dual problem

(D) Maximise b⊤λ subject to A⊤λ ≤ c
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of the primal problem (P). Herein, A ∈ R
m×n, b ∈ R

m, c ∈ R
n are given data and the

condition rank(A) = m is supposed to hold. Of course, by solving (D) we implicitly solve

(P ) Minimise c⊤x subject to Ax = b, x ≥ 0

as well according to the strong duality theorem.

The dual method is essentially constructed in the same way as the primal simplex method,

compare Section 2.2.1 and Algorithm 2.2.7. The main difference is that the dual method

computes a sequence of feasible dual basic solutions λ. Such a feasible dual basic solution

satisfies

A⊤
Bλ = cB, A⊤

Nλ ≤ cN

for a basis index set B and a non-basis index set N . Notice that λ is uniquely determined

by the linear equation A⊤
Bλ = cB as AB is supposed to be a basis matrix. Furthermore,

notice that the revised simplex method, compare Algorithm 2.5.8, computes the dual

variable λ as a by-product (although the λ’s in the revised simplex method satisfy the

dual constraints solely in the optimal solution and not at intermediate steps). Finally,

notice that the condition A⊤
Nλ ≤ cN is equivalent with the condition

ζ⊤ = λ⊤AN − c⊤N ≤ 0,

which is nothing else but the optimality criterion used in the primal method.

The dual simplex method even works with the same simplex table as the primal simplex

method, but in a transposed sense. Similarly, basis changes are performed such that the

following requirements are satisfied:

(i) Dual feasibility:

λ+ has to remain feasible for the dual problem, i.e.

A⊤λ ≤ c ⇒ A⊤λ+ ≤ c.

(ii) Ascent property:

The dual objective function value increases monotonically, i.e.

b⊤λ+ ≥ b⊤λ.

Using the same techniques as in Section 2.2.1 one can show that the above requirements

are satisfied if the pivot element is chosen as follows:

• Choice of pivot row p: Choose p ∈ B with βp < 0.

• Choice of pivot column q: Choose q ∈ N such that

ζq

γpq

= min

{
ζj

γpj

: γpj < 0, j ∈ N

}
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Bland’s anti-cycling rule can be applied accordingly.

The following stopping criterions apply:

• Optimality criterion:

If βi ≥ 0 holds for all i ∈ B, then the current dual basic solution λ is optimal. The

corresponding primal solution is given by xB = β ≥ 0.

• Unboundedness criterion:

If there exists βp < 0 for some p ∈ B and γpj ≥ 0 for all j ∈ N , then the dual

problem is unsolvable because the dual objective function is unbounded from above

(the feasible set of the primal problem is empty).

• Uniqueness criterion: If in the optimal table βi > 0 holds for every i ∈ B, then the

dual solution is unique.

We summarise our findings in an algorithm:

Algorithm 3.3.1 (Dual Simplex Method)

(1) Phase 1:

Determine a feasible dual basic solution λ for the dual problem (D) satisfying

A⊤
Bλ = cB, ζ⊤ = λ⊤AN − c⊤N ≤ 0,

with basis index set B, non-basis index set N , basis matrix AB, non-basis matrix

AN .

If no feasible dual point exists, STOP. The problem is infeasible.

(2) Phase 2:

(i) Compute Γ = (γij)i∈B,j∈N , β = (βi)i∈B, and ζ = (ζj)j∈N according to

Γ = A−1
B AN , β = A−1

B b, λ =
(
A−1

B

)⊤
cB, ζ⊤ = λ⊤AN − c⊤N .

(ii) Check for optimality:

If βi ≥ 0 for every i ∈ B, then STOP. The current feasible dual basic solution

λ is optimal (the corresponding primal optimal solution is given by xB = β and

xN = 0). The objective function value is d = b⊤λ.

(iii) Check for unboundedness:

If there exists an index p with βp < 0 and γpj ≥ 0 for every j ∈ N , then the

dual problem does not have a solution and the objective function is unbounded

from above. STOP.
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(iv) Determine pivot element:

Choose an index p with βp < 0 (according to Bland’s rule). p defines the pivot

row. Choose an index q (according to Bland’s rule) with

ζq

γpq

= min

{
ζj

γpj

: γpj < 0, j ∈ N

}

.

q defines the pivot column.

(v) Perform basis change:

Set B := (B \ {p}) ∪ {q} and N := (N \ {q}) ∪ {p}.

(vi) Go to (i).

The simplex table in Section 2.3 can be used as well. The update formulae remain valid.

The dual method is particularly useful for those problems where a feasible dual basic

solution is given, but a feasible primal basic solution is hard to find. For instance, the

following problem class is well-suited for the dual simplex method:

Minimise c⊤x subject to Ax ≤ b, x ≥ 0,

where c ≥ 0 and b 6≥ 0. Introduction of a slack variable y ≥ 0 leads to the standard

problem

Minimise c⊤x subject to Ax + y = b, x ≥ 0, y ≥ 0.

While y = b 6≥ 0 and x = 0 is not feasible for the primal problem, the point leads to a

feasible dual solution because ζ⊤ = −c ≤ 0.

Example 3.3.2

Consider the standard LP

Minimise c⊤x subject to Ax = b, x ≥ 0,

with (x5, x6, x7 are slack variables)

c =
















5

3

3

6

0

0

0
















, b =






14

−25

14




 , A =






−6 1 2 4 1 0 0

3 −2 −1 −5 0 1 0

−2 1 0 2 0 0 1




 .

An initial feasible dual basic solution is given by the index set B = {5, 6, 7}. The dual

simplex method yields:
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Initial table:
x1 x2 x3 x4

x5 −6 1 2 4 14

x6 3 −2 −1 −5 −25

x7 −2 1 0 2 14

−5 −3 −3 −6 0

Table 1:
x1 x2 x3 x6

x5 −3.6 −0.6 1.2 0.8 −6

x4 −0.6 0.4 0.2 −0.2 5

x7 −0.8 0.2 −0.4 0.4 4

−8.6 −0.6 −1.8 −1.2 30

Table 2:
x1 x5 x3 x6

x2 6 −5/3 −2 −4/3 10

x4 −3 2/3 1 1/3 1

x7 −2 1/3 0 2/3 2

−5 −1 −3 −2 36

This table is optimal as x = (0, 10, 0, 1, 0, 0, 2)⊤ is feasible for the primal problem and

the optimal objective function value is 36. A corresponding dual solution is obtained by

solving the linear equation A⊤
Bλ = cB. We obtain λ = (−1,−2, 0)⊤.

Remark 3.3.3

The dual simplex method, compare Algorithm 3.3.1 computes vertices λ, which are feasible

for the dual problem, and primal variables x, which satisfy c⊤x = b⊤λ in each step. The

dual simplex method stops as soon as x becomes feasible for the primal problem, i.e. primal

feasibility is the optimality criterion for the dual simplex method.

3.4 Sensitivities and Shadow Prices

The solutions of the dual problem possess an important interpretation for economical

applications. Under suitable assumptions they provide the sensitivity of the primal ob-

jective function value c⊤x with respect to perturbations in the vector b. In economy, the

dual solutions are known as shadow prices.

In practical applications, the vector b often is used to model capacities (budget, resources,

size, etc.) while the objective function often denotes the costs. An important economical

question is the following: How does a variation in b (i.e. a variation in budget, resources,

size) influence the optimal objective function value (i.e. the costs)?
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To answer this question, the primal problem (P) is embedded into a family of perturbed

linear programs:

Definition 3.4.1 (Perturbed problem (Pδ))

For an arbitrary δ ∈ R
m the LP

(Pδ) Minimise c⊤x subject to Ax = b + δ, x ≥ 0

with A ∈ R
m×n, c ∈ R

n, b ∈ R
m is called perturbed primal problem. The set

Mδ := {x ∈ R
n | Ax = b + δ, x ≥ 0}

is the feasible set of the perturbed primal problem.

Obviously, (Pδ) with δ = 0 is identical with the primal problem (P) which is referred to as

the unperturbed problem. It is clear that the solution of the perturbed problem depends

somehow on δ, i.e. x = x(δ). We are now interested in the following question: How does

the optimal solution x(δ) of the perturbed problem depend on δ for δ sufficiently close to

zero?

Let us approach the problem graphically first.

Example 3.4.2 (compare Examples 1.1.1, 1.3.1)

A farmer intends to plant 40 acres with sugar beets and wheat. He can use up to 312

working days to achieve this. For each acre his cultivation costs amount to 40 pounds

for sugar beets and to 120 pounds for wheat. For sugar beets he needs 6 working days

per acre and for wheat 12 working days per acre. The profit amounts to 100 pounds

per acre for sugar beets and to 250 pounds per acre for wheat. As the farmer wants

to consider unforeseen expenses in his calculation, he assumes that he has a maximal

budget of 2400+ δ pounds, where δ ∈ R is a perturbation potentially caused by unforeseen

expenses. Of course, the farmer wants to maximise his profit (resp. minimise the negative

profit).

The resulting canonical linear program reads as follows (compare Example 1.3.1):

Minimise f(x1, x2) = −100x1 − 250x2 subject to the constraints

x1 + x2 ≤ 40, 40x1 + 120x2 ≤ 2400 + δ, 6x1 + 12x2 ≤ 312, x1, x2 ≥ 0.

In Example 1.3.1 we solved the unperturbed problem for δ = 0 graphically:
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10 20 30 40 50 60 70 x_1

40

30

20

10

0

x_2

x1 + x2 = 40

40x1 + 120x2 = 2400

6x1 + 12x2 = 312

f : −100x1 − 250x2 = −5500

Figure 3.1: Solution of the unperturbed problem for δ = 0. The optimal solution is

(x1, x2)
⊤ = (30, 10)⊤ with objective function value −5500.

The optimal solution is obtained at the point where the first and second constraint intersect

(this corresponds to x1, x2 being basic variables in the simplex method). What happens

if perturbations δ 6= 0 are considered? Well, δ influences only the second constraint.

Moreover, the slope of this constraint is not affected by changing δ. Hence, changing δ

results in lines which are in parallel to the red line in Figure 3.1. Figure 3.2 depicts the

situation for δ = −600.

10 20 30 40 50 60 70 x_1

40

30

20

10

0

x_2

x1 + x2 = 40
40x1 + 120x2 = 2400 − 600

6x1 + 12x2 = 312

f : −100x1 − 250x2 = −4375

Figure 3.2: Solution of the problem for δ = −600. The optimal solution is (x1, x2)
⊤ =

(37.5, 2.5)⊤ with objective function value −4375.

Clearly, the feasible set and the optimal solution have changed. But still, the optimal

solution is obtained at the point where the first and second constraint intersect (again,

x1, x2 are among the basic variables in the simplex method).
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What happens if we further reduce δ, say δ = −1200? Figure 3.3 depicts the situation for

δ = −1200.

10 20 30 40 50 60 70 x_1

40

30

20

10

0

x_2

x1 + x2 = 40

40x1 + 120x2 = 2400 − 1200

6x1 + 12x2 = 312

f : −100x1 − 250x2 = −3000

Figure 3.3: Solution of the problem for δ = −1200. The optimal solution is (x1, x2)
⊤ =

(30, 0)⊤ with objective function value −3000.

Clearly, the feasible set and the optimal solution have changed again. But now, the optimal

solution is obtained at the point where the second constraint intersects with the constraint

x2 = 0. So, the structure of the solution has changed (now, x2 became a non-basic variable

and thus a switch of the basis index set occurred).

Finally, we could ask ourselves, how the optimal objective function value depends on δ?

A graphical investigation of the problem for all values of δ yields the optimal solutions

(

x1(δ)

x2(δ)

)

=







(

0

26

)

, if 720 ≤ δ,

(

36 − 1
20

δ

8 + 1
40

δ

)

, if 160 ≤ δ < 720,

(

30 − 1
80

δ

10 + 1
80

δ

)

, if − 800 ≤ δ < 160,

(

60 + 1
40

δ

0

)

, if − 2400 ≤ δ < −800,

no solution, if δ < −2400,

and the optimal value function, cf. Definition 3.4.3,

w(δ) = c⊤x(δ) =







−6500, if 720 ≤ δ,

−5600 − 1.25δ, if 160 ≤ δ < 720,

−5500 − 1.875δ, if − 800 ≤ δ < 160,

−6000 − 2.5δ, if − 2400 ≤ δ < −800,

∞, if δ < −2400,
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which is piecewise linear and convex:
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optimal value function

In the sequel we restrict the discussion to perturbations of the vector b only. Perturbations

in A and c can be investigated as well, but the situation is more complicated. We consider

the perturbed primal problem in Definition 3.4.1, i.e.

Minimise c⊤x subject to Ax = b + δ, x ≥ 0.

Obviously, for δ = 0 the primal problem (cf. Definition 3.1.2) arises. This problem is

referred to as the unperturbed problem or nominal problem.

Each perturbation δ may be assigned the corresponding optimal solution (if it exists), i.e.

δ 7→ x(δ).

Introducing this function x(δ) into the objective function c⊤x leads to the optimal value

function w(δ), which is defined as follows.

Definition 3.4.3 (Optimal value function)

The optimal value function is defined as

w(δ) :=

{

inf{c⊤x | Ax = b + δ, x ≥ 0}, if Mδ 6= ∅,

∞, if Mδ = ∅.

We now intend to investigate the optimal solution x(δ) of the perturbed problem 3.4.1 in a

small neighbourhood of the unperturbed solution at δ = 0, i.e. we consider perturbations

δ ∈ R
m sufficiently close to zero.

Moreover, we will assume the following:
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• the unperturbed problem with δ = 0 possesses the feasible basic solution xB(0) =

A−1
B b, xN (0) = 0 with basis index set B and non-basis index set N .

• the solution is not degenerate, i.e. xB(0) > 0.

An extension to degenerate solutions is possible, but more involved.

Now we introduce perturbations δ 6= 0 sufficiently close to zero and define

xB(δ) := A−1
B (b + δ), xN(δ) := 0. (3.1)

The point given by xB(δ) and xN (δ) is feasible as long as

xB(δ) = A−1
B (b + δ) = xB(0) + A−1

B δ ≥ 0

holds. As x is supposed to be non-degenerate, i.e. xB(0) = A−1
B b > 0, feasibility can

be guaranteed for perturbations δ sufficiently close to zero owing to the continuity of the

function δ 7→ xB(0) + A−1
B δ.

What about the optimality criterion for xB(δ) and xN (δ)? Interestingly, perturbations δ

in b do not influence the optimality criterion of the simplex method at all because the

vector ζ does not depend on b:

ζ⊤ = c⊤BA−1
B AN − c⊤N .

As xB(0) was supposed to be optimal it holds ζ ≤ 0. This optimality condition is still

satisfied for xB(δ) and xN(δ) in (3.1) and hence, (3.1) is optimal for the perturbed problem!

The corresponding optimal objective function value computes to

w(δ) = c⊤BxB(δ) = c⊤BxB(0) + c⊤BA−1
B δ = w(0) + λ⊤δ,

where λ = (A−1
B )⊤cB is a solution of the dual problem. Hence:

Theorem 3.4.4 (Sensitivity Theorem)

Let rank(A) = m and let the unperturbed problem possess an optimal feasible basic solution

with basis index set B and non-basis index set N which is not degenerate. Then, for all

perturbations δ = (δ1, . . . , δm)⊤ sufficiently close to zero,

xB(δ) = A−1
B (b + δ), xN(δ) = 0,

is an optimal feasible basic solution for the perturbed problem and it holds

∆w := w(δ) − w(0) = λ⊤δ =

m∑

i=1

λiδi.

The dual solution λ⊤ = c⊤BA−1
B indicates the sensitivity of the optimal objective function

value w.r.t. perturbations in b.

The sensitivity theorem shows:

c© 2008 by M. Gerdts



78 CHAPTER 3. DUALITY AND SENSITIVITY

• If |λi| is large, then perturbations δi with |δi| small have a comparatively large

influence on the optimal objective function value. The problem is sensitive w.r.t. to

perturbations.

• If |λi| is small, then perturbations δi with |δi| small have a comparatively small

influence on the optimal objective function value. The problem is not sensitive

w.r.t. to perturbations.

• If λi = 0, then perturbations δi close to zero have no influence on the optimal

objective function value.

The sensitivity theorem states in particular, that under the assumptions of the theorem,

xB(δ) and w(δ) are continuously differentiable at δ = 0. Differentiation of the optimal

value function w.r.t. δ yields

Shadow price formula:

w′(δ) = λ.

Example 3.4.5 (compare Example 3.4.2)

We consider again Example 3.4.2:

Minimise f(x1, x2) = −100x1 − 250x2 subject to the constraints

x1 + x2 ≤ 40, 40x1 + 120x2 ≤ 2400 + δ, 6x1 + 12x2 ≤ 312, x1, x2 ≥ 0.

The simplex method for the unperturbed problem with δ = 0 yields:

Initial table:

x1 x2

x3 1 1 40

x4 40 120 2400

x5 6 12 312

100 250 0

Table 1:

x3 x2

x1 1 1 40

x4 −40 80 800

x5 −6 6 72

−100 150 −4000
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Table 2:
x3 x4

x1 1.5 −0.0125 30

x2 −0.5 0.0125 10

x5 −3 −0.075 12

−25 −1.875 −5500

Table 2 is optimal. The optimal solution x = (30, 10, 0, 0, 12)⊤ is not degenerate. The

corresponding dual solution is

λ⊤ = c⊤BA−1
B = (−25,−1.875, 0),

where B = {1, 2, 5} and

cB =






−100

−250

0




 , AB =






1 1 0

40 120 0

6 12 1




 , A−1

B =






3
2

− 1
80

0

−1
2

1
80

0

−3 − 3
40

1




 .

The sensitivity theorem states:

(i)





x1(δ)

x2(δ)

x5(δ)






︸ ︷︷ ︸

=xB(δ)

=






x1(0)

x2(0)

x5(0)






︸ ︷︷ ︸

=xB(0)

+A−1
B






0

δ

0




 =






30

10

12




+ δ






− 1
80
1
80

− 3
40






is optimal for δ sufficiently close to zero. How large may the perturbation δ be?

Well, xB(δ) has to be feasible, i.e.

30 −
1

80
δ ≥ 0, 10 +

1

80
δ ≥ 0, 12 −

3

40
δ ≥ 0.

These three inequalities are satisfied if δ ∈ [−800, 160]. Hence, for all δ ∈ [−800, 160],

the above xB(δ) is optimal.

(ii)

∆w = w(δ) − w(0) = λ⊤






0

δ

0




 = −1.875δ.

The change of the negative profit w.r.t. δ amounts to −1.875δ.

Compare this with our graphical investigation in Example 3.4.2!

Remark 3.4.6 (Caution!)

The assumption that the unperturbed solution is not degenerate is essential and cannot be
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dropped! The above analysis only works, if the index sets B and N don’t change! This can

only be guaranteed for perturbations δ sufficiently close to zero. For large perturbations or

in the degenerate case, the index sets B and N usually do change and the optimal value

function is not differentiable at those points, where the index sets change. Example 3.4.2

clearly shows, that this does happen.
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