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Chapter 1

Notation

Numbers: R is the set of reel numbers, Z is the set of integers, N is the set of positive

integers, N0 is the set of non-negative integers.

Vectors and matrices: A vector x ∈ Rn is a column vector with components x1, x2, . . . , xn:

x =


x1

x2

...

xn

 .

A ∈ Rm×n is a matrix with m rows and n columns and entries aij, i = 1, . . . ,m, j =

1, . . . , n:

A = (aij) i=1,...,m
j=1,...,n

=


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2
... amn

 .

A> denotes the transposed matrix of the matrix A.

‖ · ‖ = ‖ · ‖2 denotes the Euclidean norm in Rn, i.e. for x = (x1, . . . , xn)> it holds

‖x‖ =
√

x>x =
√∑n

i=1 x2
i .

2



Chapter 2

Introduction

Combinatorial optimisation is a branch of optimisation in applied mathematics and com-

puter science, related to operations research, algorithm theory and computational com-

plexity theory. Combinatorial optimisation algorithms solve instances of problems that

are believed to be hard in general. Usually, the set of feasible solutions of combinatorial

optimisation problems is discrete or can be reduced to a discrete one, and the goal is to

find the best possible solution. Most often, the feasible set contains a finite number of

points only, but the number grows very rapidly with increasing problem size.

There are very many examples of combinatorial optimisation problems such as

• routing and shortest path problems

• matching and assignment problems

• VLSI design problems

• traveling salesman problems

• knapsack problems

• scheduling problems

• network optimisation problems (network flows, transportation problems)

• sequence alignment problems in DNA sequencing

• (mixed-)integer linear or nonlinear programming

• and many more...

2.1 Efficiency and Complexity

Our main aim is to construct efficient algorithms for combinatorial optimisation problems

– if possible at all. However, it will turn out that for certain problems no efficient algorithm

is known as yet. Even worse, for these problems an efficient algorithm is unlikely to exist.

What is an efficient algorithm?

3



4 CHAPTER 2. INTRODUCTION

Example 2.1.1 (Polynomial and exponential complexity)

Suppose a computer with 1010 ops/sec (10 GHz) is given. A problem P (e.g. a linear

program) has to be solved on the computer. Let n denote the size of the problem (e.g. the

number of variables). Let five different algorithms be given, which require n, n2, n4, 2n,

and n! operations (e.g. steps in the simplex method), respectively, to solve the problem P

of size n.

The following table provides an overview on the time which is needed to solve the problem.

ops \ size n 20 60 · · · 100 1000

n 0.002 µs 0.006 µs · · · 0.01 µs 0.1 µs

n2 0.04 µs 0.36 µs · · · 1 µs 0.1 ms

n4 16 µs 1.296 ms · · · 10 ms 100 s

2n 0.1 ms 3 yrs · · · 1012 yrs ·
n! 7.7 yrs · · · ·

Clearly, only the algorithms with polynomial complexity n, n2, n4 can be regarded as

efficient while those with exponential complexity 2n and n! are very inefficient.

We don’t want to define the complexity or effectiveness of an algorithm in a mathe-

matically sound way at this stage. Instead we use the following informal but intuitive

definition:

Definition 2.1.2 (Complexity (informal definition))

A method for solving a problem P has polynomial complexity if it requires at most a

polynomial (as a function of the size) number of operations for solving any instance of the

problem P. A method has exponential complexity, if it has not polynomial complexity.

To indicate the complexity of an algorithm we make use of the O-notation. Let f and g

be real-valued functions. We write

f(n) = O(g(n))

if there is a constant C such that

|f(n)| ≤ C|g(n)| for every n.

In complexity theory the following problem classes play an important role. We don’t want

to go into details at this stage and provide informal definitions only:

• The class P consists of all problems for which an algorithm with polynomial com-

plexity exists.

• The class NP (Non-deterministic Polynomial) consists of all problems for which

an algorithm with polynomial complexity exists that is able to certify a solution of

c© 2009 by M. Gerdts



2.2. EXAMPLES 5

the problem. In other words: If a solution x of the problem P is given, then the

algorithm is able to certify in polynomial time that x is actually a solution of P .

On the other hand, if x is not a solution of P then the algorithm may not be able

to recognise this in polynomial time.

Clearly, P ⊆ NP, but it is an open question whether P = NP holds or not. If you are

the first to answer this question, then the Clay Institute (www.claymath.org) will pay

you one million dollars, see http://www.claymath.org/millennium/ for more details. It is

conjectured that P 6= NP . Good luck!

2.2 Examples

Example 2.2.1 (Assignment Problem)

Given:

• n employees E1, E2, . . . , En

• n tasks T1, T2, . . . , Tn

• cost cij for the assignment of employee Ei to task Tj

Goal:

Find an assignment of employees to tasks at minimal cost!

Mathematical formulation: Let xij ∈ {0, 1}, i, j = 1, . . . , n, be defined as follows:

xij =

{
0, if employee i is not assigned to task j,

1, if employee i is assigned to task j

The assignment problem reads as follows:

Minimise
n∑

i,j=1

cijxij

subject to
n∑

j=1

xij = 1, i = 1, . . . , n,

n∑
i=1

xij = 1, j = 1, . . . , n,

xij ∈ {0, 1}, i, j = 1, . . . , n.

As xij ∈ {0, 1}, the constraints

n∑
j=1

xij = 1, i = 1, . . . , n,

c© 2009 by M. Gerdts



6 CHAPTER 2. INTRODUCTION

guarantee that each employee i does exactly one task. Likewise, the constraints

n∑
i=1

xij = 1, j = 1, . . . , n,

guarantee that each task j is done by one employee.

From a theoretical point of view, this problem seems to be rather simple as only finitely

many possibilities for the choice of xij, i, j = 1, . . . , n exist. Hence, in a naive approach

one could enumerate all feasible points and choose the best one. How many feasible points

are there? Let xij ∈ {0, 1}, i, j = 1, . . . , n, be the entries of an n × n-matrix. The

constraints of the assignment problem require that each row and column of this matrix

has exactly one non-zero entry. Hence, there are n choices to place the 1 in the first

row, n − 1 choices to place the 1 in the second row and so on. Thus there are n! =

n(n−1) ·(n−2) · · · 2 ·1 feasible points. The naive enumeration algorithm needs to evaluate

the objective function for all feasible points. The following table shows how rapidly the

number of evaluations grows:

n 10 20 30 50 70 90

eval 3.629 · 106 2.433 · 1018 2.653 · 1032 3.041 · 1064 1.198 · 10100 1.486 · 10138

Example 2.2.2 (VLSI design, see Korte and Vygen [5])

A company has a machine which drills holes into printed circuit boards.

Since it produces many boards and as time is money, it wants the machine to complete

one board as fast as possible. The drilling time itself cannot be influenced, but the time

needed to move from one position to another can be minimised by finding an optimal

route. The drilling machine can move in horizontal and vertical direction simultaneously.

c© 2009 by M. Gerdts



2.2. EXAMPLES 7

Hence, the time needed to move from a position pi = (xi, yi)
> ∈ R2 to another position

pj = (xj, yj)
> ∈ R2 is proportional to the l∞-distance

‖pi − pj‖∞ = max{|xi − xj|, |yi − yj|}.

Given a set of points p1, . . . , pn ∈ R2, the task is to find a permutation π : {1, . . . , n} →
{1, . . . , n} of the points such that the total distance

n−1∑
i=1

‖pπ(i) − pπ(i+1)‖

becomes minimal.

Again, the most naive approach to solve this problem would be to enumerate all n! per-

mutations of the set {1, . . . , n}, to compute the total distance for each permutation and

to choose that permutation with the smallest total distance.

Example 2.2.3 (Network flow)

An oil company intends to transport as much oil as possible through a given system of

pipelines from node R to node 5, see the graph below. Depending on the diameter of each

pipeline the capacity is limited by the numbers (in million barrel per hour) next to the

edges of the graph.

R 1 5

3

772

2

4

6

3

31

2

This problem is a so-called maximum flow problem or max-flow problem.

Example 2.2.4 (Transportation problem)

A transport company has m stores and wants to deliver a product from these stores to n

consumers. The delivery of one item of the product from store i to consumer j costs cij

pound. Store i has stored ai items of the product. Consumer j has a demand of bj items

of the product. Of course, the company wants to satisfy the demand of all consumers. On

the other hand, the company aims at minimising the delivery costs.

c© 2009 by M. Gerdts



8 CHAPTER 2. INTRODUCTION
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Let xij denote the amount of products which are delivered from store i to consumer j.

In order to find the optimal transport plan, the company has to solve the following linear

program:

Minimise
m∑

i=1

n∑
j=1

cijxij (minimise delivery costs)

s.t. n∑
j=1

xij ≤ ai, i = 1, . . . ,m, (can’t deliver more than it is there)

m∑
i=1

xij ≥ bj, j = 1, . . . , n, (satisfy demand)

xij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n. (can’t deliver negative amount)

In practical problems the variables xij often may only assume non-negative integer values,

i.e. xij ∈ N0.

Example 2.2.5 (Facility location problem)

Let a set I = {1, . . . ,m} of clients and a set J = {1, . . . , n} of potential depots be given.

Opening a depot j ∈ J causes fixed maintainance costs cj.

Each client i ∈ I has a total demand bi and every depot j ∈ J has a capacity uj. The

costs for the transport of one unit from depot j ∈ J to customer i ∈ I are denoted by hij.

The facility location problem aims at minimising the total costs (maintainance and trans-

portation costs) and leads to a mixed-integer linear program:

Minimise ∑
j∈J

cjxj +
∑
i∈I
j∈J

hijyij

c© 2009 by M. Gerdts



2.2. EXAMPLES 9

subject to the constraints

xj ∈ {0, 1}, j ∈ J,

yij ≥ 0, i ∈ I, j ∈ J,∑
j∈J

yij = bi, i ∈ I,∑
i∈I

yij ≤ xjuj, j ∈ J.

Herein, the variable xj ∈ {0, 1} is used to decide whether depot j ∈ J is opened (xj = 1)

or not (xj = 0). The variable yij denotes the demand of client i satisfied from depot j.

Example 2.2.6 (Traveling salesman problem)

Let a number of cities V = {1, . . . , n} and a number of directed connections between the

cities E ⊂ V × V be given.

Let cij denote the length (or time or costs) of the connection (i, j) ∈ E. A tour is a closed

directed path which meets each city exactly once. The problem is to find a tour of minimal

length.

Let the variables

xij ∈ {0, 1}

c© 2009 by M. Gerdts



10 CHAPTER 2. INTRODUCTION

be given with

xij =

{
1, if (i, j) is part of a tour,

0 otherwise

for every (i, j) ∈ E.

These are finitely many vectors only, but usually very many!

The constraint that every city is met exactly once can be modeled as∑
{i:(i,j)∈E}

xij = 1, j ∈ V, (2.1)

∑
{j:(i,j)∈E}

xij = 1, i ∈ V. (2.2)

These constraints don’t exclude disconnected sub-tours (actually, these are the constraints

of the assignment problem).

Hence, for every disjoint partition of V in non-empty sets

U ⊂ V

U c ⊂ V

we postulate: There exists a connection

(i, j) ∈ E with i ∈ U, j ∈ U c

and a connection

(k, `) ∈ E with k ∈ U c, ` ∈ U .

The singletons don’t have to be considered according to (2.1) and (2.2), respectively. We

obtain the additional constraints ∑
{(i,j)∈E:i∈U,j∈V \U}

xij ≥ 1 (2.3)

for every U ⊂ V with 2 ≤ |U | ≤ |V | − 2.

The Traveling Salesman Problem reads as:

Minimise ∑
(i,j)∈E

cijxij

subject to

xij ∈ {0, 1}, (i, j) ∈ E,

and (2.1), (2.2), (2.3).

Example 2.2.7 (Knapsack Problems)

c© 2009 by M. Gerdts



2.3. A LINEAR PROGRAMMING REMINDER 11

There is one knapsack and N items. Item j has weight aj and value cj for j = 1, . . . , N .

The task is to create a knapsack with maximal value under the restriction that the maximal

weight is less than or equal to A. This leads to the optimization problem

Maximise
N∑

j=1

cjxj subject to
N∑

j=1

ajxj ≤ A, xj ∈ {0, 1}, j = 1, . . . , N,

where

xj =

{
1, item j is put into the knapsack,

0, item j is not put into the knapsack.

A naive approach is to investigate all 2N possible combinations.

2.3 A Linear Programming Reminder

In this section we restrict the discussion to linear programs in standard form. This is not

a restriction as any linear program can be transformed to standard form using well-known

transformation techniques that can be found in every textbook on linear programming.

In the sequel it is assumed that the reader is familiar with these techniques.

Definition 2.3.1 (Standard Linear Program (LP))

Let

c =


c1

c2

...

cn

 ∈ Rn, b =


b1

b2

...

bm

 ∈ Rm, A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

 ∈ Rm×n

with Rank(A) = m be given. The standard linear program reads as follows: Find x =

(x1, . . . , xn)> ∈ Rn such that the objective function

c>x =
n∑

i=1

cixi

c© 2009 by M. Gerdts



12 CHAPTER 2. INTRODUCTION

becomes minimal subject to the constraints

n∑
j=1

aijxj = bi, i = 1, . . . ,m, (2.4)

xj ≥ 0, j = 1, . . . , n. (2.5)

In matrix notation:

Minimise c>x subject to Ax = b, x ≥ 0. (2.6)

We need some notation.

Definition 2.3.2 (objective function, feasible set, feasible points, optimality)

(i) The function f(x) = c>x is called objective function.

(ii) The set

M := {x ∈ Rn | Ax = b, x ≥ 0}

is called feasible (or admissible) set (of LP). M is a convex set.

(iii) A vector x ∈M is called feasible (or admissible) (for LP).

(iv) x̂ ∈M is called optimal (for LP), if

c>x̂ ≤ c>x ∀x ∈M.

The feasible set M is the intersection of the affine set {x ∈ Rn | Ax = b} and the non-

negative orthant {x ∈ Rn | x ≥ 0} and has vertices. Those vertices play an important

role in linear programming. The following theorem states that it is sufficient to visit only

the vertices of the feasible set in order to find one (not every!) optimal solution.

Theorem 2.3.3 (Fundamental Theorem of Linear Programming)

Let a standard LP 2.3.1 be given with M 6= ∅. Then:

(a) Either the objective function is unbounded from below on M or Problem 2.3.1 has

an optimal solution and at least one vertex of M is among the optimal solutions.

(b) If M is bounded, then an optimal solution exists and x ∈M is optimal, if and only

if x is a convex combination of optimal vertices.

c© 2009 by M. Gerdts



2.3. A LINEAR PROGRAMMING REMINDER 13

The geometric definition of a vertex is as follows: x ∈ M is a vertex of M if and only if

x cannot be expressed as a strict convex combination of feasible points in M . This defi-

nition is not very useful for numerical computations. Fortunately, there is an equivalent

characterisation of a vertex as a feasible basic solution.

Notation:

• The columns of A are denoted by

aj := (a1j, . . . , amj)
> ∈ Rm, j = 1, . . . , n,

i.e.

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

 =
(

a1 a2 · · · an
)

.

• Let B ⊆ {1, . . . , n} be an index set.

– Let x = (x1, . . . , xn)> be a vector. Then, xB is defined to be the vector with

components xi, i ∈ B.

– Let A be a m × n-matrix with columns aj, j = 1, . . . , n. Then, AB is defined

to be the matrix with columns aj, j ∈ B.

Definition 2.3.4 (feasible basic solution)

Let A ∈ Rm×n, rank(A) = m, b ∈ Rm, and M = {x ∈ Rn | Ax = b, x ≥ 0}.
Let B ⊆ {1, . . . , n} be an index set with |B| = m, N = {1, . . . , n}\B, and let the columns

ai, i ∈ B, be linearly independent. Then, x is called a basic solution (of M) if

ABxB = b, xN = 0.

x is called feasible basic solution (of M) if x is a basic solution and xB ≥ 0.

The following theorem states that a feasible basic solution is a vertex of the feasible set

and vice versa.

Theorem 2.3.5

x ∈M is a vertex of M if and only if x is a feasible basic solution of M .

We need some more definitions.

Definition 2.3.6

c© 2009 by M. Gerdts



14 CHAPTER 2. INTRODUCTION

• (Basis)

Let rank(A) = m and let x be a feasible basic solution of the standard LP. Every

system {aj | j ∈ B} of m linearly independent columns of A, which includes those

columns aj with xj > 0, is called basis of x.

• ((Non-)basis index set, (non-)basis matrix, (non-)basic variable)

Let {aj | j ∈ B} be a basis of x. The index set B is called basis index set, the

index set N := {1, . . . , n}\B is called non-basis index set, the matrix AB := (aj)j∈B

is called basis matrix, the matrix AN := (aj)j∈N is called non-basis matrix, the

vector xB := (xj)j∈B is called basic variable and the vector xN := (xj)j∈N is called

non-basic variable.

The fundamental theorem of linear programming suggests to compute the feasible basic

solutions of the feasible set M . This is the basic idea of the simplex method.

Algorithm 2.3.7 (Revised Simplex Method)

(0) Phase 0:

Transform the linear program into standard form 2.3.1, if necessary at all.

(1) Phase 1:

Determine a feasible basic solution (vertex) x for the standard LP 2.3.1 with basis

index set B, non-basis index set N , basis matrix AB, basic variable xB ≥ 0 and

non-basic variable xN = 0.

If no feasible solution exists, STOP. The problem is infeasible.

(2) Phase 2:

(i) Compute β = (βi)i∈B as the solution of the linear equation ABβ = b.

(ii) Solve the linear equation A>
Bλ = cB for λ ∈ Rm and compute ζ = (ζj)j∈N by

ζ> = λ>AN − c>N .

(ii) Check for optimality:

If ζj ≤ 0 for every j ∈ N , then STOP. The current feasible basic solution

xB = β, xN = 0 is optimal. The objective function value is d = c>Bβ.

(iii) Determine pivot column: Choose an index q with ζq > 0 (according to Bland’s

rule).

(iv) Compute pivot column: Solve the linear equation ABγ = aq, where aq denotes

column q of A.

(v) Check for unboundedness:

If γ ≤ 0, then the linear program does not have a solution and the objective

function is unbounded from below. STOP.

c© 2009 by M. Gerdts



2.3. A LINEAR PROGRAMMING REMINDER 15

(vi) Determine pivot row:

Choose an index p (according to Bland’s rule) with

βp

γp

= min

{
βi

γi

∣∣∣∣ γi > 0, i ∈ B

}
.

(vii) Perform basis change:

Set B := (B \ {p}) ∪ {q} and N := (N \ {q}) ∪ {p}.
(viii) Go to (i).

The revised simplex algorithm requires to solve three linear equations only, namely two

linear equations with AB in steps (i) and (iv) and one linear equation with A>
B in (ii):

ABβ = b, ABγ = aq, A>
Bλ = cB.

Bland’s rule [3]

Among all possible choices for the pivot element, always choose the pivot column q ∈ N

and the pivot column p ∈ B in steps (iii) and (vi) of Algorithm 2.3.7 with the smallest

indices q and p.

Finally, we state the main result of this section:

Theorem 2.3.8 (Finite termination)

If the pivot element is chosen according to Bland’s rule, the revised simplex algorithm 2.3.7

either finds an optimal solution or it detects that the objective function is unbounded from

below. In both cases Algorithm 2.3.7 terminates after a finite number of steps.

2.3.1 Duality

Many algorithms for combinatorial optimisation problems exploit dual linear programs.

Definition 2.3.9 (Primal problem (P))

The standard LP

(P ) Minimise c>x subject to Ax = b, x ≥ 0

with A ∈ Rm×n, c ∈ Rn, b ∈ Rm is called primal problem.

Each primal problem can be associated another linear program – the dual problem.

Definition 2.3.10 (Dual problem (D))

The linear program

(D) Maximise b>λ subject to A>λ ≤ c

c© 2009 by M. Gerdts



16 CHAPTER 2. INTRODUCTION

is called the dual problem of (P).

Example 2.3.11

Let the primal LP be given by the following linear program:

Minimise −3x1 − 4x2 subject to

2x1 + x2 + x3 = 8,

4x1 + x2 + x4 = 10,

x1, x2, x3, x4 ≥ 0.

The dual problem reads as:

Maximise 8λ1 + 10λ2 subject to

2λ1 + 4λ2 ≤ −3,

λ1 + λ2 ≤ −4,

λ1 ≤ 0,

λ2 ≤ 0.

By application of the well-known transformation techniques, which allow to transform

a general LP into a standard LP, and writing down the dual problem of the resulting

standard problem, it is possible to formulate the dual problem of a general LP. The

following dualisation scheme applies. Notice in the scheme below, that the primal problem

is supposed to be a minimisation problem.

primal constraints dual constraints

(minimise c>x) (maximise b>λ)

x ≥ 0 A>λ ≤ c

x ≤ 0 A>λ ≥ c

x free A>λ = c

Ax = b λ free

Ax ≤ b λ ≤ 0

Ax ≥ b λ ≥ 0

The same scheme applies component-wise if primal constraints of the different types

xi


≥ 0

≤ 0

free

 , i = 1, . . . , n,
n∑

j=1

aijxj


=

≤
≥

 bi, i = 1, . . . ,m,

occur simultaneously in a general LP. More precisely, the dual variable λi is associated
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with the i-th primal constraint according to the scheme

n∑
j=1

aijxj


=

≤
≥

 bi ↔ λi


free

≤ 0

≥ 0

 .

Moreover, the i-th primal variable xi is associated with the i-th component of the dual

constraint according to the scheme

xi


≥ 0

≤ 0

free

 ↔ (A>λ)i


≤
≥
=

 ci.

In the latter, (A>λ)i denotes the i-th component of the vector A>λ, where A = (aij)

denotes the matrix of coefficients of the primal constraints (excluding sign conditions of

course). Again, the above relations assume that the primal problem is a minimisation

problem.

It holds

Theorem 2.3.12

Dualisation of the dual problem yields the primal problem again.

Using this theorem, the above scheme can be read backwards, i.e. the primal and dual

problems can be interchanged.

We summarise important relations between the primal problem and its dual problem.

Theorem 2.3.13 (Weak Duality Theorem)

Let x be feasible for the primal problem (P) (i.e. Ax = b, x ≥ 0) and let λ be feasible for

the dual problem (D) (i.e. A>λ ≤ c). Then it holds

b>λ ≤ c>x.

The weak duality theorem provides a motivation for the dual problem: dual feasible points

provide lower bounds for the optimal objective function value of the primal problem. Vice

versa, primal feasible points provide upper bounds for the optimal objective function value

of the dual problem. This property is very important in the context of Branch & Bound

methods for integer programs.

Moreover, it holds

Theorem 2.3.14 (Sufficient Optimality Criterion)

Let x be feasible for the primal problem (P) and let λ be feasible for the dual problem (D).

(i) If b>λ = c>x, then x is optimal for the primal problem (P) and λ is optimal for the

dual problem (D).
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(ii) b>λ = c>x holds if and only if the complementary slackness condition holds:

xj

(
m∑

i=1

aijλi − cj

)
= 0, j = 1, . . . , n.

Remark 2.3.15

The complementary slackness condition is equivalent with the following: For j = 1, . . . , n

it holds

xj > 0 ⇒
m∑

i=1

aijλi − cj = 0

and
m∑

i=1

aijλi − cj < 0 ⇒ xj = 0.

This means: Either the primal constraint xj ≥ 0 is active (i.e. xj = 0) or the dual

constraint
∑m

i=1 aijλi ≤ ci is active (i.e.
∑m

i=1 aijλi = ci). It cannot happen that both

constraints are inactive at the same time (i.e. xj > 0 and
∑m

i=1 aijλi < ci).

The following theorem is the main result of this section.

Theorem 2.3.16 (Strong Duality Theorem)

The primal problem (P) has an optimal solution x if and only if the dual problem (D) has

an optimal solution λ. Moreover, the primal and dual objective function values coincide

if an optimal solution exists, i.e. c>x = b>λ.

Combining the strong duality theorem and the sufficient optimality criterion we obtain

Corollary 2.3.17

Let x be feasible for the primal problem (P) and let λ be feasible for the dual problem (D).

Then the following statements are equivalent.

• x is optimal for (P) and λ is optimal for (D).

• It holds c>x = b>λ.

• The complementary slackness condition holds.

Remark 2.3.18

The primal (revised) simplex method, compare Algorithm 2.3.7, computes vertices x, which

are primally feasible, and dual variables λ, which satisfy c>x = b>λ in each step. The

primal simplex method stops as soon as λ becomes feasible for the dual problem, i.e. dual

feasibility is the optimality criterion for the primal simplex method.
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2.4 A Primal-Dual Algorithm

We consider the primal linear program

(P ) Minimise c>x subject to Ax = b, x ≥ 0

and the corresponding dual problem

(D) Maximise b>λ subject to A>λ ≤ c

with A ∈ Rm×n, b ∈ Rm, c ∈ Rn, x ∈ Rn, and λ ∈ Rm. Without loss of generality we

assume b ≥ 0. Moreover, let aj, j = 1, . . . , n, denote the columns of A.

Our aim is to construct an algorithm that computes a feasible x for (P) and a feasible λ

for (D) such that the complementary slackness conditions

xj

(
(A>λ)j − cj

)
= 0, j = 1, . . . , n,

hold, where (A>λ)j = (aj)>λ denotes the j-th component of the vector A>λ. Theo-

rem 2.3.14 guarantees then the optimality of x and λ.

Construction of the algorithm:

• Let a feasible λ ∈ Rm for (D) be given (if c ≥ 0, we can choose λ = 0; otherwise we

have to solve an auxiliary problem first).

Define the index set

B := {j ∈ {1, . . . , n} | (A>λ)j = cj}

of active dual constraints.

• The complementary slackness conditions will be satisfied if we can find a feasible x

for (P) with

xj

(
(A>λ)j − cj

)︸ ︷︷ ︸
<0 for j 6∈B

= 0, ∀j 6∈ B,

which is the case if and only if xj = 0 holds for all j 6∈ B. Summarising, we have to

find x ∈ Rn with ∑
j∈B

ajxj = ABxB = b,

xj ≥ 0, ∀j ∈ B,

xj = 0, ∀j 6∈ B.

This can be achieved by solving an auxiliary linear program which was already

useful to find an initial feasible basic solution for the simplex method (Phase 1).
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This problem is obtained by introducing an artificial slack variable y ∈ Rm with

non-negative components yi ≥ 0, i = 1, . . . ,m, and is referred to as Restricted

Primal:

(RP )

Minimise
m∑

i=1

yi

subject to ABxB + y = b,

xj ≥ 0, j ∈ B,

xj = 0, j 6∈ B,

yi ≥ 0, i = 1, . . . ,m.

This linear program can be solved by, e.g., the simplex method. Notice that (RP)

always has an optimal solution as the objective function is bounded below by 0 on

the feasible set and x = 0 and y = b ≥ 0 is feasible.

Let fopt denote the optimal objective function value of (RP) and let (xopt, yopt) be

an optimal solution of (RP).

• Two cases may occur:

(i) If fopt = 0, then the corresponding solution xopt is feasible for (P) and satisfies

the complementary slackness conditions. Thus, xopt is optimal for (P) and λ is

optimal for (D).

(ii) If fopt > 0, then the corresponding solution xopt is not feasible for (P) as it only

satisfies Axopt + yopt = b with a non-zero vector yopt. How can we proceed?

To answer this question, we will exploit the dual problem of (RP) which is

given by

(DRP )

Maximise b>λ

subject to A>
Bλ ≤ 0,

λj ≤ 1, j = 1, . . . ,m.

Let λ̄ denote an optimal solution of this problem. Owing to the strong duality

theorem we have b>λ̄ = fopt > 0.

We intend to improve the dual objective function by computing a better dual

vector

λ∗ = λ + tλ̄

for some t ∈ R. The dual objective function value then computes to

b>λ∗ = b>λ + t b>λ̄︸︷︷︸
>0

and it will increase for t > 0.
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Moreover, we want to maintain dual feasibility of λ∗, i.e.

(A>λ∗)j = (A>λ)j︸ ︷︷ ︸
≤cj

+t(A>λ̄)j ≤ cj, ∀j = 1, . . . , n.

As λ̄ satisfies A>
Bλ̄ ≤ 0 resp. (aj)>λ̄ = (A>λ̄)j ≤ 0 for j ∈ B, the above

inequality is satisfied for every t ≥ 0 for j ∈ B.

It remains to check dual feasibility for j 6∈ B. Two cases:

(iia) If (A>λ̄)j ≤ 0 for all j 6∈ B, then dual feasibility is maintained for every

t ≥ 0. For t → ∞ the dual objective function is unbounded because

b>λ∗ → ∞ for t → ∞. Hence, in this case the dual objective function

is unbounded above and the dual does not have a solution. According to

the strong duality theorem the primal problem does not have a solution as

well.

(iib) If (A>λ̄)j > 0 for some j 6∈ B, then dual feasibility is maintained for

tmax := min

{
cj − (A>λ)j

(A>λ̄)j

∣∣∣ j 6∈ B, (A>λ̄)j > 0

}
.

Hence, λ∗ = λ + tmaxλ̄ is feasible for (D) and improves the dual objective

function value.

These considerations lead to the following algorithm.

Algorithm 2.4.1 (Primal-Dual Algorithm)

(0) Let λ be feasible for (D).

(1) Set B = {j ∈ {1, . . . , n} | (A>λ)j = cj}.

(2) Solve (RP) (for the time being by the simplex method). Let fopt denote the optimal

objective function value and let λ̄ be an optimal solution of (DRP).

(3) If fopt = 0, then STOP: optimal solution found; x is optimal for (P) and λ is optimal

for (D).

(4) If fopt > 0 and (A>λ̄)j ≤ 0 for every j 6∈ B, then STOP: (D) is unbounded and (P)

is infeasible.

(5) Compute

tmax := min

{
cj − (A>λ)j

(A>λ̄)j

∣∣∣ j 6∈ B, (A>λ̄)j > 0

}
set λ := λ + tmaxλ̄, and go to (1).
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Example 2.4.2

Consider the standard LP

(P ) Minimise c>x subject to Ax = b, x ≥ 0,

with

c =


−2

−3

0

0

 , b =

(
8

9

)
, A =

(
1 2 1 0

2 1 0 1

)
.

The dual is given by

(D) Maximise b>λ subject to A>λ ≤ c,

i.e. by

Maximise 8λ1 + 9λ2

subject to λ1 + 2λ2 ≤ −2,

2λ1 + λ1 ≤ −3,

λ1 ≤ 0,

λ2 ≤ 0.

Iteration 1:

λ = (−1,−1)> is feasible for (D) because A>λ = (−3,−3,−1,−1)> ≤ c and only the

second constraint is active, i.e. B = {2}. The restricted primal reads as follows:

Minimise y1 + y2

subject to 2x2 + y1 = 8,

x2 + y2 = 9, x2, y1, y2 ≥ 0.

This LP has the solution x2 = 4, y1 = 0, y2 = 5 and fopt = 5 > 0. A solution of the dual

of the restricted primal is λ̄ = (−1/2, 1)>. We find A>λ̄ = (3/2, 0,−1/2, 1)> and thus the

unboundedness criterion is not satisfied. We proceed with computing

tmax = min

{
−2− (−3)

3/2
,
0− (−1)

1

}
=

2

3

and update λ = λ + tmaxλ̄ = (−4/3,−1/3)>.

Iteration 2:

A>λ = (−2,−3,−4/3,−1/3)> and thus B = {1, 2}. The restricted primal is

Minimise y1 + y2

subject to x1 + 2x2 + y1 = 8,

2x1 + x2 + y2 = 9, x1, x2, y1, y2 ≥ 0.
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This LP has the solution x1 = 10/3, x2 = 7/3, y1 = y2 = 0 and fopt = 0. Hence,

x = (10/3, 7/3, 0, 0)> is optimal for (P) and λ = (−4/3,−1/3)> is optimal for (D).
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Chapter 3

Minimum Spanning Trees

Many combinatorial optimisation problems like routing problems, network flow problems,

traveling salesman problems, and transportation problems use graphs and networks. For

instance, a roadmap is a graph which defines connections between cities.

This chapter will be used to

• introduce basic notations and terminologies from graph theory

• discuss minimum spanning tree problems

• introduce a greedy strategy for minimum spanning tree problems

As a motivation for this chapter, consider the following practically relevant problem.

A telephone company wants to rent a subset of an existing telephone network. The subset

of the network should be large enough to connect all cities, but at the same time renting

it should be as cheap as possible. Figure 3.1 illustrates the situation with 6 cities.

How to model this problem? The telephone network is naturally modeled by a graph or,

more precisely, by a network. Intuitively, we think of a graph as a set of nodes and edges,

which describe connections between nodes in terms of undirected lines or directed lines

(arrows), compare Figure 3.1.

10

1

2

3

4

5
6
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1

4

62

8

3

Figure 3.1: Spanning tree in a (undirected) graph.

24
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In our example the nodes of the graph correspond to the cities and the edges correspond

to the telephone connections between cities. The weight of each edge corresponds to the

cost of renting the connection. We are looking for a so-called spanning tree of minimum

weight which will be defined below.

Finding a spanning tree of minimum weight in a network belongs to the oldest problems

in combinatorial optimisation and a first algorithm was given by Boruvka in 1926.

3.1 Elements from Graph Theory

Many combinatorial optimisation problems like the spanning tree problem, routing prob-

lems, network flow problems, traveling salesman problems, and transportation problems

use graphs and networks. For instance, a roadmap or an electricity network is a graph

which defines connections between cities. Basic notations and terminologies are sum-

marised in the sequel.

Definition 3.1.1 (Graph)

A graph G is a tupel G = (V, E), where V 6= ∅ is a finite set of nodes (or vertices) and

E ⊆ V × V are the edges of G.

Let e = (v, w) ∈ E be an edge with v, w ∈ V . We say:

• e = (v, w) joins the nodes v and w and v and w are adjacent.

• v is a neighbour of w and vice versa. The set of all neighbours of a node v is denoted

by N(v).

• v and w are the endpoints of e.

• v and w are incident with e.

Sometimes, the edges of a graph are just used to indicate that some kind of relation

between two nodes exists while the orientation of the edge is not important. But often,

the edges of a graph describe flow directions or one-way street connections. In this case,

the orientation of an edge is actually important as it is only possible to reach some node

from another node following the connecting edge in the right direction. Hence, it is useful

and necessary to distinguish directed and undirected graphs.

Definition 3.1.2 (directed graph, undirected graph, underlying undirected graph)

• A graph (V, E) is called undirected, if all edges e ∈ E are undirected, i.e. all tupels

(v, w) ∈ E are not ordered.

• A graph (V, E) is called digraph, if all edges e ∈ E are directed, i.e. all tupels

(v, w) ∈ E are ordered.
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• The underlying undirected graph of a digraph (V, E) is the undirected graph (V, Ẽ)

with (v, w) ∈ E ⇔ (v, w) ∈ Ẽ, i.e. the underlying undirected graph has the same

nodes and edges as the directed graph but the orientation of the edges are omitted.

We introduce some terminologies for digraphs only.

Definition 3.1.3

Let e = (v, w) ∈ E with v, w ∈ V be an edge of a digraph G = (V, E). We say:

• e leaves the node v and enters the node w.

• v is the tail of e and w is the head of e.

• v is the predecessor of w. The set of all predecessors of a node w ∈ V is denoted by

P (w) and δ−(w) := |P (w)| denotes the in-degree of w.

• w is the successor of v. The set of all successors of a node v ∈ V is denoted by S(v)

and δ+(v) := |S(v)| denotes the out-degree of v.

In a digraph a node without predecessor is called source and a node without successor is

called sink.

In the sequel we always assume that the number of nodes in a graph is finite. Moreover,

we exclude parallel edges, i.e. edges having the same endpoints (undirected graphs) or

the same tail and head (directed graphs), respectively. Finally, we exclude sweeps, i.e.

edges of type (i, i) with i ∈ V .

Usually, nodes are visualised by circles. Edges in an undirected graph are visualised by

lines connecting two nodes. Edges in a digraph are visualised by arrows and indicate, e.g.,

flow directions or one-way street connections.

Example 3.1.4

Undirected graph G = (V, E) with nodes V = {R, 1, 2, 3, 4, S} and edges

E = {(R, 1), (R, 2), (1, 2), (1, 3), (1, 4), (2, 3), (3, S), (4, S)}:

S1

3

4

2

R
The neighbours of the node 1 are N(1) = {R, 2, 3, 4}.
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Directed graph G = (V, E) with nodes V = {R, 1, 2, 3, 4, S} and edges

E = {(R, 1), (R, 2), (2, 1), (1, 4), (2, 3), (3, 1), (3, S), (4, S)}:

R 1

3

4

2

S
The successors of node 2 are S(2) = {1, 3}. The predecessors of node 1 are P (1) =

{R, 2, 3}. Node R is the only source and S is the only sink of the digraph.

Caution: Let i and j be nodes and let e = (i, j) be an edge. In an undirected graph the

edges (i, j) and (j, i) are considered to be the same. Whereas in a digraph the ordering of

the nodes i and j in the edge (i, j) is highly relevant, i.e. (i, j) and (j, i) denote different

edges and only one of which may be present in the directed graph.

A graph G = (V, E) is called complete, if for any choice of distinct nodes v, w ∈ V it holds

(v, w) ∈ E. Notice that a complete digraph includes both, the edges (v, w) and (w, v). It

is easy to see that a complete graph with n nodes has n(n − 1)/2 edges and a digraph

with n nodes has n(n− 1) edges.

A digraph G = (V, E) is called symmetric, if (v, w) ∈ E implies (w, v) ∈ E. It is called

antisymmetric if (v, w) ∈ E implies (w, v) 6∈ E.

Often it is important to find a way through a given graph starting at some node and

ending at another node.

Definition 3.1.5 (Walks and Paths)

Let G = (V, E) be a graph.

• Each sequence

W = v1, e1, v2, e2, . . . , vk, ek, vk+1, k ≥ 0, (3.1)

of nodes v1, . . . , vk+1 ∈ V and edges e1, . . . , ek ∈ E with ei = (vi, vi+1) for i =

1, . . . , k is called edge progression (in G) with initial node v1 and final node vk+1.

We use the shorthand notation W = [v1, v2, . . . , vk, vk+1].

• An edge progression (3.1) is called walk (in G), if ei 6= ej for 1 ≤ i < j ≤ k. A walk

is closed if v1 = vk+1.

• A walk (3.1) is called v1 − vk+1−path (in G), if vi 6= vj for 1 ≤ i < j ≤ k + 1. The

length of a path is the number of its edges.
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• A circuit is a closed walk (3.1) with vi 6= vj for 1 ≤ i < j ≤ k.

• A node w is said to be reachable from a node v, if a v − w−path exists.

Example 3.1.6

4

2

SR 1

3

Edge progression W=R,(R,1),1,(1,2),2,(2,3),3,(3,1),1,(1,2),2,(2,3),3,(3,S),S
not a walk as the edges (1,2) and (2,3) are visited twice!

3

4

2

SR 1

Walk W=R,(R,1),1,(1,2),2,(2,3),3,(3,1),1,(1,4),4,(4,S),S
not a path as vertex 1 is visited twice!
The walk contains a circuit: 1,(1,2),2,(2,3),3,(3,1),1

3

4

2

SR 1

S is reachable from every other vertex,
vertices R,1,2,3 are not reachable from vertex 4

Path W=R,(R,1),1,(1,2),2,(2,3),3,(3,S),S

Often, we are interested in connected graphs.

Definition 3.1.7 (connected graphs)

An undirected graph G is called connected, if there is a v − w−path for every v, w ∈ V .
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A digraph G is called connected, if its underlying undirected graph is connected.

Often, edges in graphs are weighted, for instance moving along an edge causes costs or an

edge corresponds to the length of a street or an edge has a certain capacity.

Definition 3.1.8 (Weighted Graph, Network)

A weighted graph or network N is a tripel N = (V, E, c), where (V, E) is a graph and

c : E → R is a weight function with e = (i, j) ∈ E 7→ c(e) = cij. The network is called

directed (undirected), if the underlying graph (V, E) is directed (undirected).

Example 3.1.9

Network N = (V, E, c) with nodes V = {R, 1, 2, 3, 4, S}, edges

E = {(R, 1), (R, 2), (2, 1), (1, 4), (2, 3), (3, 1), (3, S), (4, S)}, and mapping c : E → R
with c(R, 1) = cR1 = 2, c(R, 2) = cR2 = 6, c(2, 1) = c21 = 1, c(1, 4) = c14 = 7,

c(2, 3) = c23 = 3, c(3, 1) = c31 = 3, c(3, S) = c3S = 2, c(4, S) = c4S = 7.

SR 1

3

772

2

4

6

3

31

2

3.2 Minimum Spanning Tree Problem

Before we formulate the problem in a formal way we need to clarify what a tree and a

spanning tree are.

Definition 3.2.1 (Tree, spanning tree)

• G′ = (V ′, E ′) is a subgraph of the graph G = (V, E), if V ′ ⊆ V and E ′ ⊆ E. A

subgraph G′ = (V ′, E ′) of G is called spanning, if V ′ = V .

• An undirected graph which is connected and does not have a circuit (as a subgraph)

is called a tree.

• A spanning tree of an undirected graph is a spanning subgraph which is a tree.

Example 3.2.2

A tree and a spanning tree (red) in a graph:
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Theorem 3.2.3

Let G be an undirected graph with n nodes. Then the following statements are equivalent:

(a) G is a tree.

(b) G has n− 1 edges and no circuits.

(c) G has n− 1 edges and is connected.

(d) G is a maximal circuit-free graph, i.e. any additional edge creates a circuit.

(e) For any two distinct nodes v, w there exists a unique v − w−path.

With these definitions we can state the

Minimum Spanning Tree Problem:

Let an undirected graph G = (V, E) with nodes V = {v1, . . . , vn} and edges E =

{e1, . . . , em}, and a weight function c : E → R be given. The task is either to find a

spanning tree T = (V, E ′) in G with E ′ ⊆ E such that
∑

e∈E′ c(e) becomes minimal or

to decide that G is not connected.

Note that a graph has at least one spanning tree, if and only if it is connected.

3.3 Kruskal’s Algorithm: A Greedy Algorithm

How can we solve the problem? We know already that the result will be a spanning tree

(provided such a tree exists) and thus by definition the nodes of the spanning tree are the

nodes of G. So, all we have to do is to find the subset of edges E ′ ⊂ E which defines the

spanning tree and minimises the costs ∑
e∈E′

c(e).
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How can the set of edges E ′ be constructed? A straightforward idea is to construct E ′ step

by step by adding successively edges from E to E ′. Let’s do this in a greedy fashion: as

a spanning tree with minimum weight is sought, in each step we prefer edges (vi, vj) ∈ E

with small costs c(vi, vj) = cij. Of course, we have to check whether adding an edge

creates a circuit. This outline of an algorithm is essentially Kruskal’s Algorithm.

Algorithm 3.3.1 (Kruskal’s Algorithm)

(0) Let an undirected Graph G = (V, E) with V = {v1, . . . , vn} and |E| = m and a

weight function c : E → R be given.

(1) Sort the edges in E such that c(e1) ≤ c(e2) ≤ . . . ≤ c(em), where ei ∈ E, i =

1, . . . ,m, denote the edges after sorting.

(2) Set E ′ = ∅ and T = (V, E ′).

(3) For i = 1 to m do

If (V, E ′ ∪ {ei}) contains no circuit then set E ′ := E ′ ∪ {ei} and T := (V, E ′).

Example 3.3.2

Consider the following example:

7

1

2

3

4

5
6

1

4

2

8

310

E={(1,2),(1,4),(2,3),(3,4),(3,6),(4,5),(4,6),(5,6)}.
Graph G=(V,E) with V={1,2,3,4,5,6} and 

5

Sorting the edges in step (1) leads to the ordering

e1 = (2, 3), e2 = (4, 5), e3 = (3, 6), e4 = (3, 4), e5 = (4, 6), e6 = (1, 2), e7 = (5, 6), e8 = (1, 4).

Kruskal’s algorithm produces the following subgraphs:
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i=4,5

1

2

3

4

5
6

1

1

2

3

4

5
6
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2
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3

4
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3

4

5
6

1

2

3

4
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i=6,7,8

i=1

i=2

i=3

1

2

3

4

5
6

1

2

3

4

Add edge e1 = (2, 3) with weight c(e1) = 1.

Add edge e2 = (4, 5) with weight c(e2) = 2.

Add edge e3 = (3, 6) with weight c(e3) = 3.

Add edge e4 = (3, 4) with weight c(e4) =

4. Adding edge e5 = (4, 6) with weight

c(e5) = 5 would lead to a cycle, so e5 is

not added.

Add edge e6 = (1, 2) with weight c(e6) =

7. Adding edges e7 = (5, 6) with weight

c(e7) = 8 and e8 = (1, 4) with weight

c(e8) = 10 would lead to cycles, so e7 and

e8 are not added.

Kruskal’s algorithm is a so-called greedy algorithm. Greedy algorithms exist for many

other applications. All greedy algorithms have in common that they use locally optimal
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decisions in each step of the algorithm in order to construct a hopefully globally optimal

solution. With other words: Greedy algorithms choose the best possible current decision

in each step of an algorithm. In Kruskal’s algorithm in each step the edge with the

smallest cost was used. In general, it is not true that this strategy leads to an optimal

solution. But for the minimum spanning tree problem it turns out to work successfully.

Theorem 3.3.3

Kruskal’s algorithm constructs a spanning tree with minimal costs for the graph G, pro-

vided G has a spanning tree.

Proof: a proof can be found in Korte and Vygen [5], Theorem 6.3, p. 129. 2

The complexity of Kruskal’s algorithm depends on the complexity of the sorting algo-

rithm used in step (1) and the complexity of the circuit checking algorithm in step (3) of

Kruskal’s algorithm.

A well-known sorting algorithm is the Merge-Sort algorithm. It divides the list a1, a2, . . . , an

of n real numbers to be sorted into two sublists of approximately the same size. These

sublists are sorted recursively by the same algorithm. Finally, the sorted sublists are

merged together. This strategy is known as a divide-and-conquer strategy.

The Merge-Sort algorithm below computes a permutation π : {1, . . . , n} → {1, . . . , n}
such that

aπ(1) ≤ aπ(2) ≤ . . . ≤ aπ(n).

It can be shown that the Merge-Sort algorithm needs O(n log n) operations, compare

Korte and Vygen [5], Theorem 1.5, page 10.

Algorithm 3.3.4 (Merge-Sort)

(0) Let a list a1, . . . , an of real numbers be given.

(1) If n = 1 then set π(1) = 1 and STOP.

(2) Set m = bn
2
c. Let ρ = Merge-Sort(a1, . . . , am) and σ = Merge-Sort(am+1, . . . , an).

(3) Set k = 1 and ` = 1.

While k ≤ m and ` ≤ n−m do

If aρ(k) ≤ am+σ(`) then

set π(k + `− 1) = ρ(k) and k = k + 1.

else

set π(k + `− 1) = m + σ(`) and ` = ` + 1.

endif

end do

While k ≤ m do
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set π(k + `− 1) = ρ(k) and k = k + 1.

end do

While ` ≤ n−m do

set π(k + `− 1) = m + σ(`) and ` = ` + 1.

end do

Detecting a cycle in a graph can be done by the following labeling algorithm. Herein,

every node initially gets assigned the label ‘not explored’. Using a recursive depth first

search, those nodes which are adjacent to the current node and are labeled ‘not explored’,

are labeled ‘active’. This is done until no adjacent node exists anymore or in the function

CircDetectRec a node labeled ‘active’ is adjacent to the current ‘active’ node. In the

latter case a circuit has been detected. The second argument u in CircDetectRec

denotes the predecessor of v w.r.t. the calling sequence of CircDetectRec.

Algorithm 3.3.5 (CircDetect)

(0) Let a graph G = (V, E) with n nodes be given.

(1) Label every node v ∈ V to be ‘not explored’.

(2) For each v ∈ V do

If v is ‘not explored’ then

If CircDetectRec(v,v)=false then STOP: Graph contains cycle.

end do

Function: result=CircDetectRec(v,u):

(0) Label node v as ‘active’.

(1) For each w ∈ V adjacent to v and w 6= u do

If w is ‘active’ then

result=false

return

else if w is ‘not explored’ then

If CircDetectRec(w,v)=false then

result=false

return

end if

end if

end do

Label node v to be ‘explored’, set result=true, and return.
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The complexity of the CircDetect algorithm for a graph with n nodes and m edges is

O(n + m). As every graph (V, E ′ ∪ {ei}) in step (3) of Kruskal’s algorithms has at most

n edges (finally it will be a spanning tree which has n − 1 edges), the complexity of the

circuit detection algorithm is given by O(n). Step (3) is executed m times and together

with the complexity O(m log m) of the Merge-Sort algorithm we obtain

Corollary 3.3.6 (Complexity of Kruskal’s algorithm)

Kruskal’s algorithm can be implemented in O(m log(m) + mn) operations and Kruskal’s

algorithm has polynomial complexity. The minimum spanning tree problem belongs to the

class P of polynomially time solvable problems.

Remark 3.3.7

There are even more efficient implementations of Kruskal’s algorithm which use better

data structures and need O(m log n) operations only. Details can be found in Korte and

Vygen [5], page 130, and in Papadimitriou and Steiglitz [7], section 12.2, page 274.

3.4 Prim’s Algorithm: Another Greedy Algorithm

Kruskal’s algorithm added successively edges to a graph with node set V . Prim’s algorithm

starts with a single node and constructs successively edges and adjacent nodes. This leads

to a growing tree. Again, the greedy idea is employed as the edge with smallest cost is

chosen in each step.

Algorithm 3.4.1 (Prim’s Algorithm)

(0) Let an undirected Graph G = (V, E) with V = {v1, . . . , vn} and E = {e1, . . . , em}
and a weight function c : E → R be given.

(1) Choose v ∈ V . Set V ′ := {v}, E ′ := ∅, and T := (V ′, E ′).

(2) While V ′ 6= V do

Choose an edge e = (v, w) with v ∈ V ′ and w ∈ V \V ′ of minimum weight c(e).

Set V ′ := V ′ ∪ {w}, E ′ := E ′ ∪ {e}, and T := (V ′, E ′).

end do

Example 3.4.2

Consider the following example:
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7

1

2

3

4

5
6

1

4

2

8

310

E={(1,2),(1,4),(2,3),(3,4),(3,6),(4,5),(4,6),(5,6)}.
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Prim’s algorithm produces the following subgraphs, starting with node 2:

i=6

i=3
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The correctness of the algorithm is established in

Theorem 3.4.3

Prim’s algorithm constructs a spanning tree with minimal costs for the graph G, pro-

vided G has a spanning tree. Prim’s algorithm can be implemented in O(n2) operations
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(polynomial complexity).

Proof: a proof can be found in Korte and Vygen [5], Theorem 6.5, p. 131. 2

Remark 3.4.4

There are even more efficient implementations of Prim’s algorithm which use better data

structures (Fibonacci heap) and need O(m+n log n) operations only. Details can be found

in Korte and Vygen [5], pages 131-133.
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Chapter 4

Shortest Path Problems

Many combinatorial optimisation problems can be formulated as linear optimisation prob-

lems on graphs or networks. Among them are

• transportation problems

• maximum flow problems

• assignment problems

• shortest path problems

In this chapter we will discuss shortest path problems and the algorithms of Dijkstra and

Floyd-Warshall. We will see that these algorithms have polynomial complexity.

Typical applications for shortest path problems arise for instance in satellite navigation

systems for cars and routing tasks in computer networks.

Let a directed network N = (V, E, c) with set of nodes V = {Q = 1, 2, . . . , n = S} and

set of edges E, |E| = m, be given with:

• Let Q be a source (i.e. Q has no predecessor and no edge enters Q) and let S be a

sink (i.e. S has no successor and no edge leaves S).

• Let c : E → R with (i, j) ∈ E 7→ c(i, j) = cij denote the length of the edge (i, j).

• N is connected.

The task is to find a shortest path from Q to S that is a path of minimal length. Herein,

the length of a path P = [v1, . . . , vk, vk+1] in the network N with vi ∈ V , i = 1, . . . , k + 1,

is defined by
k∑

i=1

c(vi, vi+1) =
k∑

i=1

cvivi+1
.

Shortest path problem:

Find a shortest Q−S−path in the network N or decide that S is not reachable from Q.

38
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4.1 Linear Programming Formulation

The shortest path problem can be written as a linear program. The idea is to transport

one unit from Q to S through the network. You may think of a car that is driving on the

road network. The task is then to find a shortest Q− S−path for this car.

Let’s formalise this idea and let x : E → R, (i, j) ∈ E 7→ x(i, j) = xij, denote the amount

which moves along the edge (i, j). Of course we want xij to be either one or zero indicating

whether an edge (i, j) is used or not. But for the moment let’s neglect this additional

restriction. We will see later that our linear program will always have a zero-one solution.

We supply one unit at Q and demand one unit at S. Moreover, nothing shall be lost at

intermediate nodes i = 2, 3, . . . , n− 1, i.e. the so-called conservation equations∑
k:(j,k)∈E

xjk︸ ︷︷ ︸
outflow out of node j

−
∑

i:(i,j)∈E

xij︸ ︷︷ ︸
inflow into node j

= 0, j ∈ V \{Q, S}.

have to hold at every interior node j = 2, . . . , n − 1. As we supply one unit at source Q

and demand one unit at sink S, the following conservation equations have to hold:∑
k:(Q,k)∈E

xQk︸ ︷︷ ︸
outflow out of node Q

= 1,

−
∑

i:(i,S)∈E

xiS︸ ︷︷ ︸
inflow into node S

= −1.

These linear equations conservation equations can be written in compact form as

Hx = d,

where d = (1, 0, . . . , 0,−1)> and H is the so-called node-edge incidence matrix.

Definition 4.1.1 (Node-edge incidence matrix)

Let G = (V, E) be a digraph with nodes V = {1, . . . , n} and edges E = {e1, . . . , em}. The

matrix H ∈ Rn×m with entries

hij =


1, if i is the tail of edge ej,

−1, if i is the head of edge ej,

0, otherwise

, i = 1, . . . , n, j = 1, . . . ,m,

is called (node-edge) incidence matrix of G.

Remark 4.1.2
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• Every column of H refers to an edge (i, j) ∈ E and is defined as follows:

(i, j)
1

−1


← row i

← row j

consequence: outflow is positive

inflow is negative

• Some authors define the incidence matrix to be the negative of H.

Example 4.1.3

Directed graph G = (V, E) with nodes V = {Q, 1, 2, 3, 4, S} and edges

E = {(Q, 1), (Q, 2), (2, 1), (1, 4), (2, 3), (3, 1), (3, S), (4, S)}:

Q 1

3

4

2

S
Incidence matrix H:

(Q, 1) (Q, 2) (2, 1) (1, 4) (2, 3) (3, 1) (3, S) (4, S)

H =



1 1 0 0 0 0 0 0

−1 0 −1 1 0 −1 0 0

0 −1 1 0 1 0 0 0

0 0 0 0 −1 1 1 0

0 0 0 −1 0 0 0 1

0 0 0 0 0 0 −1 −1



node Q

node 1

node 2

node 3

node 4

node S

Each row of H corresponds to a node in V and each column of H corresponds to an edge

in E according to the ordering in V and E.

We can immediately see that the conservation equation is equivalent to Hx = d where

each component di of d denotes a demand (di < 0) or a supply (di ≥ 0). For instance,

with

x = (xQ1, xQ2, x21, x14, x23, x31, x3S, x4S)>
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conservation at the intermediate node 2 with d2 = 0 reads as

−xQ2 + x21 + x23 = 0(= d2),

which on the left is just the row corresonding to node 2 in H multiplied by x.

Summarising, the shortest path problem can written as the following linear program.

Minimise
∑

(i,j)∈E

cijxij subject to Hx = d, xij ≥ 0, (i, j) ∈ E. (4.1)

Herein, the vector x has the components xij, (i, j) ∈ E, in the same order as in E.

What can we say about solvability of the problem? The problem is feasible, if there exists

a Q−S−path. If, in addition, cij ≥ 0 holds, then the objective function is bounded below

on the feasible set and thus an optimal solution exists.

There remains one question: Does the problem always have a solution with xij ∈ {0, 1}?
Fortunatel yes, because the matrix H is a so-called totally unimodular matrix and d is

integral.

Definition 4.1.4 (unimodular, totally unimodular)

• An integer matrix A ∈ Zn×n is called unimodular if det(A) = ±1.

• An integer matrix H is called totally unimodular, if every square, non-singular sub-

matrix of H is unimodular.

It can be shown that the incidence matrix H as defined above is totally unimodular,

see Papadimitriou and Steiglitz [7], Section 13.2, Corollary on page 318. Moreover, the

following result holds:

Theorem 4.1.5

Let H ∈ Zm×n be totally unimodular and let b ∈ Zm be integral. Then all vertices of the

sets

{x ∈ Rn | Hx = b, x ≥ 0}

and

{x ∈ Rn | Hx ≤ b, x ≥ 0}

are integral.

Proof: see Papadimitriou and Steiglitz [7], Section 13.2.

This theorem has a very important consequence. Recall that the simplex method always

terminates in an optimal vertex of the feasible set (assuming that an optimal solution
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exists). Hence, the simplex method, when applied to the above LP formulation (4.1) of the

shortest path problem, automatically terminates in an integer solution with xij ∈ {0, 1}.
Hence, constraints of type xij ∈ {0, 1} or xij ∈ Z can be omitted.

More generally, the above holds for every LP formulation of network optimisation prob-

lems which involve the node-edge incidence matrix H and involve integer data only, for

instance transportation problems, assignment problems, and maximum flow problems.

Remark 4.1.6

Caution: The above does not imply that every optimal solution is integral! It just states

that optimal vertex solutions are integral, but there may be non-vertex solutions as well

which are not integral.

4.2 Dijkstra’s Algorithm

In this section we restrict the discussion to shortest paths problems with non-negative

weights:

Assumption 4.2.1 (Non-negative weights)

It holds cij ≥ 0 for every (i, j) ∈ E in the network N .

It can be shown that the rank of the n × m incidence matrix H is n − 1 if the graph

(V, E) is connected. In particular, the last constraint in Hx = d which corresponds to

the sink S is linearly dependent (redundant) and can be omitted. This can be seen as

follows: As each column of H has one entry 1 and one entry −1, summing up all rows of

H yields a zero vector. Hence, the rank of H is at most n−1. As (V, E) is supposed to be

connected the underlying undirected graph has a spanning tree T with n− 1 edges. As S

is a sink, there exists exactly one edge connecting a node v with S in T . Deleting S from

the tree (i.e. deleting the last row of H) shows that in the corresponding column in H

only one entry 1 is left. By row and column permutations we can move this entry 1 into

the left upper position of the matrix. Now we can apply the same procedure to the node v

connected to S and after n−1 steps we end up with a permuted matrix which has entries

±1 on the diagonal and zeros below the diagonal and thus the matrix is non-singular.

Using this reasoning, (4.1) is equivalent to the problem

Minimise
∑

(i,j)∈E

cijxij subject to H̃x = d̃, xij ≥ 0, (i, j) ∈ E, (4.2)

where d̃ = (1, 0, . . . , 0)> ∈ Rn−1 and H̃ is the incidence matrix H with the last row

omitted.

The dual of (4.2) reads as

Maximise λ1 subject to λi − λj ≤ cij, (i, j) ∈ E. (4.3)
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As cij ≥ 0 we can easily provide a feasible dual point: λi = 0 for every i = 1, . . . , n− 1.

We intend to apply the Primal-Dual Algorithm 2.4.1 to (4.2) and define the index set

B = {(i, j) ∈ E | λi − λj = cij}.

The restricted primal problem with artificial slack variables y = (y1, . . . , yn−1)
> reads as

Minimise
n−1∑
i=1

yi subject to H̃BxB + y = d̃, xij ≥ 0, (i, j) ∈ B, y ≥ 0. (4.4)

The dual of the restricted primal is given by

Maximise λ1

subject to λi − λj ≤ 0, (i, j) ∈ B,

λi ≤ 1, i = 1, . . . , n− 1,

λn = 0.

(4.5)

The constraint λn = 0 is due to the fact, that we deleted the last row of H. The problem

(4.5) can be easily solved. As λ1 = λQ ≤ 1 has to be maximised, we can set λ1 = 1

and propagate the 1 to all nodes reachable from node 1 in order to satisfy the constraints

λi − λj ≤ 0. Hence, an optimal solution of (4.5) is given by

λ̄i =


1, if node i is reachable from node Q = 1 using edges in B,

0, if node S = n is reachable from node i using edges in B,

1, otherwise,

i = 1, . . . , n− 1.

Notice that there may be other solutions to (4.5). We then proceed with the primal-dual

algorithm by computing the step-size

tmax = min
(i,j) 6∈B:λ̄i−λ̄j>0

{cij − (λi − λj)} ,

updating λ = λ + tmaxλ̄, and performing the next iteration of the primal-dual algorithm.

Optimality:

If it turns out that there is a path from the source Q to the sink S using edges in the

index set B, then λ1 = 0 and the optimal objective function values of the dual of the

restricted primal and the restricted primal are both zero and the primal-dual algorithm

stops with an optimal solution.

Observations and interpretations:

The following theorem gives an important explanation of what is going on in the primal-

dual algorithm for the shortest path problem. We use the set

W = {i ∈ V | S is reachable from i by edges in B} = {i ∈ V | λ̄i = 0}.
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Theorem 4.2.2

Let N = (V, E, c) with |V | = n be a network with positive weight cij > 0 for every

(i, j) ∈ E.

(a) If the primal-dual algorithm starts with the feasible dual point λi = 0, i = 1, . . . , n,

then the shortest path from Q to S is found after at most n− 1 iterations.

(b) In every iteration an edge (i, j) ∈ E with i 6∈ W and j ∈ W is added to the index

set B. This edge will stay in B for all following iterations.

(c) The value of the variable λi with i ∈ W is the length of a shortest path from node i

to node S = n.

Proof: The assertions can be shown by induction.

Remark 4.2.3

• The assumption of positive weights cij in the theorem is essential for the interpre-

tation of the dual variables as lengths of shortest paths.

• The algorithm not only finds the lengths of shortest paths but also for every node in

W the shortest path to S.

• If tmax is not uniquely determined by some (i, j) 6∈ B, then every such (i, j) can be

added to B. Notice that the above theorem only provides an interpretation for those

dual variables λi for which i belongs to W (there may be other variables in B).

This essentially is the working principle of Dijkstra’s algorithm. An efficient implemen-

tation looks as follows (in contrast to the primal-dual algorithm we start with node Q

instead of S):

Algorithm 4.2.4 (Dijkstra’s Algorithm)

(0) Initialisation: Set W = {1}, d(1) = 0, and d(i) =∞ for every i ∈ V \ {1}.

(1) For every i ∈ V \ {1} with (1, i) ∈ E set d(i) = c1i and p(i) = 1.

(2) While W 6= V do

Find k ∈ V \W with d(k) = min{d(i) | i ∈ V \W}.
Set W = W ∪ {k}.
For every i ∈ V \W with (k, i) ∈ E do
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If d(i) > d(k) + cki then

Set d(i) = d(k) + cki and p(i) = k.

end if

end do

end do

Output:

• shortest paths from node Q = 1 to all i ∈ V and their lengths.

• for every i ∈ V , d(i) is the length of the shortest Q − i−path. p(i) denotes the

predecessor of node i on the shortest path.

• if i is not reachable from Q, then d(i) =∞ and p(i) is undefined.

Complexity:

The While-loop has n− 1 iterations. Each iteration requires at most n steps in the For-

Loop within the While-loop to update d. Likewise at most n steps are needed to find

the minimum d(k) within the While-loop. Hence, the overall complexity of Dijkstra’s

algorithm is O(n2) where n denotes the number of nodes in the network.

Example 4.2.5

Find the shortest path from Q = 1 to S = 6 using Dijkstra’s algorithm for the following

network.

Q=1 6=S

5

42

3

3

2 3

4

25

7

1

Dijkstra’s algorithm produces the following intermediate steps:
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Q=1 6=S

5

42

3

3

2 3

4

25

7

1

d(Q)=0

d(3)=inf d(5)=inf

d(S)=inf

d(4)=infd(2)=inf

Initialisation: W={1}

Q=1 6=S

5

42

3

3

2 3

4

25

7

1

d(Q)=0

d(5)=inf

d(S)=inf

d(4)=inf

Step (1): W={1}
d(2)=5
p(2)=Q

d(3)=3
p(3)=Q

Q=1 6=S

5

42

3

3

2 3

4

25

7

1

d(Q)=0 d(S)=inf

d(4)=inf
d(2)=5
p(2)=Q

d(3)=3
p(3)=Q

d(5)=4
p(5)=3

Step (2), Iteration 1: W={1,3}, k=3
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Q=1 6=S

5

42

3

3

2 3

4

25

7

1

d(Q)=0

d(2)=5
p(2)=Q

d(3)=3
p(3)=Q

d(5)=4
p(5)=3

Step (2), Iteration 2: W={1,3,5}, k=5

d(S)=11

d(4)=7
p(4)=5

p(S)=5

Q=1 6=S

5

42

3

3

2 3

4

25

7

1

d(Q)=0

d(2)=5
p(2)=Q

d(3)=3
p(3)=Q

d(5)=4
p(5)=3

d(S)=11

d(4)=7
p(4)=5

p(S)=5

Step (2), Iteration 3: W={1,2,3,5}, k=2

Q=1 6=S

5

42

3

3

2 3

4

25

7

1

d(Q)=0

d(2)=5
p(2)=Q

d(3)=3
p(3)=Q

d(5)=4
p(5)=3

d(4)=7
p(4)=5

Step (2), Iteration 3: W={1,2,3,4,5}, k=4

d(S)=9
p(S)=4

Final result: The shortest path from Q to S is the path [Q, 3, 5, 4, S] with length 9.
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Q=1 6=S

5

42

3

3

2 3

4

25

7

1

d(Q)=0

d(2)=5
p(2)=Q

d(3)=3
p(3)=Q

d(5)=4
p(5)=3

d(4)=7
p(4)=5

d(S)=9
p(S)=4

Step (2), Iteration 4: W={1,2,3,4,5,6}, k=6

Remark 4.2.6

• Dijkstra’s algorithm only works for non-negative weights cij ≥ 0. In the presence of

negative weights it may fail.

• The assumptions that Q be a source and S be a sink are not essential and can be

dropped.

4.3 Algorithm of Floyd-Warshall

In contrast to the previous section, we now allow negative weights cij < 0, but with the

restriction that the network does not contain a circuit of negative length.

Assumption 4.3.1

The network N does not contain a circuit of negative length.

The algorithm of Floyd-Warshall computes not only the shortest paths from Q to any

other node j ∈ V (as Dijkstra’s algorithm) but also the shortest paths between any two

nodes i ∈ V and j ∈ V . Moreover, it is very simple to implement. Finally, the algorithm

works for negative weights and it detects circuits of negative length. It is not a primal-dual

algorithm.

Algorithm 4.3.2 (Floyd-Warshall)

(0) Initialisation:

Set dij =∞ for every (i, j), i, j = 1, . . . , n.

Set dij = cij for every (i, j) ∈ E.
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Set dii = 0 for every i = 1, . . . , n.

Set pij = i for every i, j ∈ V .

(1) For j = 1, . . . , n do

For i = 1, . . . , n, i 6= j do

For k = 1, . . . , n, k 6= j do

If dik > dij + djk then

Set dik = dij + djk and pik = pjk.

end if

end do

end do

end do

Output:

• Distance matrix

D =

 d11 · · · d1n

...
. . .

...

dn1 · · · dnn

 ,

where dij is the length of a shortest path from i to j.

• Predecessor matrix

P =

 p11 · · · p1n

...
. . .

...

pn1 · · · pnn

 ,

where (pij, j) is the final edge of a shortest path from i to j, that is pij is the

predecessor of the node j on a shortest i− j−path (if such a path exists).

Complexity:

Each For-loop has at most n iterations. Hence, the overall complexity of the algorithm of

Floyd-Warshall is O(n3) where n denotes the number of nodes in the network.

The correctness of the algorithm is established in the following theorem.

Theorem 4.3.3

For every i, j ∈ V the algorithm of Floyd-Warshall correctly computes the length dij of a

shortest path from i to j, if no circuit of negative length exists in the network N .

Proof: We will show the following: After the outer loop for j = 1, . . . , j0 is completed, the

variable dik (for all i and k) contains the length of a shortest i−k−path with intermediate

nodes v ∈ {1, . . . , j0} only.
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Induction for j0: For j0 = 0 the assertion is true owing to the initialisation in step (0).

Let the assertion hold for some j0 ∈ {0, . . . , n− 1}. We have to show the assertion to be

true for j0 + 1 as well.

Let i and k be arbitrary nodes. According to the induction assumption, dik contains the

length of an i − k−path with intermediate nodes v ∈ {1, . . . , j0} only. In the loop for

j = j0 + 1, dik is replaced by di,j0+1 + dj0+1,k, if this value is smaller.

It remains to show that the corresponding i− (j0 +1)−path P and the (j0 +1)− k−path

P̃ have no inner nodes in common (otherwise the combined way P ∪ P̃ would not be a

path by definition).

Suppose that P and P̃ have an inner node v in common, see figure below (P is colored

red and P̃ is blue).

j0+1

i v k

Then the combined walk P ∪ P̃ contains at least one circuit from v to j0 + 1 (in P )

and back to v (in P̃ ). By assumption any such circuit does not have negative length

and thus they can be shortcut. Let R denote the shortcut i − k−path. This path uses

nodes in {1, . . . , j0} only and the length is no longer than di,j0+1 + dj0+1,k < dik. But this

contradicts the induction assumption as dik was supposed to be the length of a shortest

i− k−path using nodes in {1, . . . , j0} only. 2

Example 4.3.4

Consider the following network which contains a circuit. Notice that the circuit does not

have negative length.

c© 2009 by M. Gerdts



4.3. ALGORITHM OF FLOYD-WARSHALL 51

2

1
−2 1

3

1

4 3

2

The algorithm of Floyd-Warshall produces the following result:

Initialisation:

D :

0 ∞ ∞ 1

2 0 1 ∞
∞ ∞ 0 ∞
∞ −2 3 0

P :

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

j = 1:

D :

0 ∞ ∞ 1

2 0 1 3

∞ ∞ 0 ∞
∞ −2 3 0

P :

1 1 1 1

2 2 2 1

3 3 3 3

4 4 4 4

j = 2:

D :

0 ∞ ∞ 1

2 0 1 3

∞ ∞ 0 ∞
0 −2 −1 0

P :

1 1 1 1

2 2 2 1

3 3 3 3

2 4 2 4

j = 3:

D :

0 ∞ ∞ 1

2 0 1 3

∞ ∞ 0 ∞
0 −2 −1 0

P :

1 1 1 1

2 2 2 1

3 3 3 3

2 4 2 4

j = 4:

D :

0 −1 0 1

2 0 1 3

∞ ∞ 0 ∞
0 −2 −1 0

P :

1 4 2 1

2 2 2 1

3 3 3 3

2 4 2 4

From the predecessor matrix P we can easily reconstruct an optimal path. For instance:

The shortest path from node 1 to node 3 has length d13 = 0. The entry p13 = 2 in P tells
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us the predecessor of node 3 on that path, that is node 2. In order to get the predecessor

of node 2 on that path we use the entry p12 = 4. Now, the predecessor of node 4 on that

path is p14 = 1. Hence, we have reconstructed an optimal path from node 1 to node 3 by

backtracking. The path is [1, 4, 2, 3].

The reasoning behind this backtracking method is as follows: Suppose the v1 − vk+1−path

[v1, v2, . . . , vk, vk+1] has minimal length. Then for every 1 ≤ j < ` ≤ k+1 the vj−v`−path

[vj, . . . , v`] connecting vj and v` has minimal length as well. In other words: Subpaths of

optimal paths remain optimal.

Remark 4.3.5 (Circuit Detection)

It can be shown that the diagonal elements dii, i = 1, . . . , n, remain non-negative if and

only if the network does not contain a circuit of negative length.

Hence, the algorithm of Floyd-Warshall is able to detect circuits of negative length. It can

be halted if a diagonal element in D becomes negative.

Example 4.3.6 (Exercise)

Apply the algorithm of Floyd-Warshall to the following network which contains a circuit

of negative length.

2

1 1

3

1

4 3

2

−4
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Chapter 5

Maximum Flow Problems

In this chapter we will discuss a special class of network optimisation problems – maximum

flow problems – and the algorithm of Ford and Fulkerson. We will see that this algorithm

has polynomial complexity. We have seen a specific example of a maximum flow problem

already: the oil company problem in Example 2.2.3.

5.1 Problem Statement

Let a directed network N = (V, E, u) with set of nodes V = {Q = 1, 2, . . . , n = S} and

set of edges E, |E| = m, be given. Let u : E → R with (i, j) ∈ E 7→ u(i, j) = uij denote

maxmimal capacities. Let x : E → R with (i, j) ∈ E 7→ x(i, j) = xij denote the amount

of goods (e.g.oil) transported on edge (i, j) ∈ E.

Let Q and S be two distinct nodes (source and sink, respectively). The remaining nodes

2, 3, . . . , n− 1 are called interior nodes.

Assumption 5.1.1

(i) Let Q be a source (i.e. Q has no predecessor and no edge enters Q) and let S be a

sink (i.e. S has no successor and no edge leaves S).

(ii) The amount xij transported on edge (i, j) ∈ E is subject to capacity constraints

0 ≤ xij ≤ uij, uij ≥ 0, ∀(i, j) ∈ E. (5.1)

Herein, uij =∞ is permitted.

(iii) The conservation equations

∑
k:(j,k)∈E

xjk︸ ︷︷ ︸
outflow out of node j

−
∑

i:(i,j)∈E

xij︸ ︷︷ ︸
inflow into node j

= 0, j ∈ V \{Q, S}. (5.2)

hold at every interior node j = 2, . . . , n− 1.
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Q S

Remark 5.1.2

Problems with multiple sources or sinks are not excluded by the above assumptions. In fact,

such problems can be transformed into problems with only one source and one sink. In

order to transform a problem with multiple sources, an artificial ‘super source’ and edges

without capacity restrictions leaving the super source and entering the original sources can

be introduced. Likewise, a ‘super sink’ and edges without capacity restrictions leaving the

original sinks and entering the super sink can be introcuded for problems with multiple

sinks. For the transformed problem, assumption (i) is satisfied.

Definition 5.1.3 (Flow, feasible flow, volume, maximum flow)

• A flow x : E → R through the network is an assignment of values x(i, j) = xij, such

that the conservation equations (5.2) hold.

• A flow x is feasible, if the capacity constraints (5.1) are satisfied.

• The value

v =
∑

(Q,j)∈E

xQj

=
∑

(i,S)∈E

xiS

 (5.3)

is called volume of the flow x.

• A feasible flow with maximum volume is called maximum flow through the network.

Using these definitions, the maximum flow problem reads as follows.

Maximum flow problem:

Find a maximum flow x through the network.

Solvability:
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• The maximum flow problem is feasible as xij = 0 for every (i, j) ∈ E satisfies all

constraints.

• If all capacity bounds uij satisfy 0 ≤ uij <∞, then the maximum flow problem has

an optimal solution as in this case the feasible set is compact and non-empty.

5.2 Linear Programming Formulation

We intend to write the maximum flow problem as a linear program and note that digraphs

can be uniquely described by matrices.

The maximum flow problem can be formulated as a linear program, if an additional edge

(S, Q) from the sink to the source with no capacity restriction is introduced, cf. figure

below.

Q S

The volume v is transported along edge (S, Q) and the conservation equations are extended

to the source Q and the sink S. The conservation equations can be written in a compact

way using the incidence matrix H (compare Definition 4.1.1) of the original network as

Hx + v · d = 0,

where d = (−1, 0, . . . , 0, 1)> ∈ Rn is the incidence column for the additional edge (S, Q).

The maximum flow problem is equivalent to the following linear program:

Maximise v

subject to Hx + v · d = 0,

0 ≤ xij ≤ uij, (i, j) ∈ E,

0 ≤ v.
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The dual problem reads as

Minimise
∑

(i,j)∈E

zijuij

subject to yj − yi − zij ≤ 0, (i, j) ∈ E,

yS − yQ ≥ 1,

zij ≥ 0, (i, j) ∈ E.

where zij, (i, j) ∈ E, and yi, i ∈ V , denote the dual variables. The dual variables yi,

i ∈ V , are known as node numbers.

For the maximum flow problem the complementary slackness conditions read as

0 = xij(yj − yi − zij) for (i, j) ∈ E,

0 = zij(uij − xij) for (i, j) ∈ E, (5.4)

0 = v(−1 + yS − yQ).

5.3 Minimal cuts and maximum flows

Definition 5.3.1 (Cut, capacity of a cut)

• A subset C ⊂ V of nodes is called cut in a network, if Q ∈ C and S 6∈ C.

• The capacity of a cut C is defined to be the value∑
j∈C,k 6∈C

ujk.

Example 5.3.2

The capacity of the cut is 2 + 4 + 5 = 11.

Q

S

6

5

4

74

5

2
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Corollary 5.3.3

Let C be a cut and x a flow with volume v. Then

v =
∑

j∈C,k 6∈C

xjk −
∑

i6∈C,j∈C

xij. (5.5)

Proof: Summation of the conservation equations w.r.t. j 6= Q, j ∈ C and adding the

identy v =
∑

(Q,k)∈E xQk yields

v +
∑

j∈C,j 6=Q

∑
(i,j)∈E

xij =
∑

(Q,k)∈E

xQk +
∑

j∈C,j 6=Q

∑
(j,k)∈E

xjk.

Changing the order of summation leads to

v +
∑

j∈C,i∈C,(i,j)∈E

xij +
∑

j∈C,i6∈C,(i,j)∈E

xij =
∑

(Q,k)∈E

xQk +
∑

j∈C,j 6=Q,k∈C

xjk +
∑

j∈C,j 6=Q,k 6∈C

xjk

=
∑

j∈C,k∈C

xjk +
∑

j∈C,k 6∈C

xjk

The assertion follows immediately:

v =
∑

j∈C,k 6∈C

xjk −
∑

j∈C,i6∈C,(i,j)∈E

xij.

2

Remark 5.3.4

If C = {Q} and C = V \{S}, respectively, are chosen in the preceding corollary, then

(5.3) is obtained immediately.

In particular, it follows that the volume of a flow is bounded by the capacity of a cut:

v =
∑

j∈C,k 6∈C

xjk −
∑

i6∈C,j∈C

xij

xjk≤ujk,xij≥0

≤
∑

j∈C,k 6∈C

ujk (5.6)

This fact can be described by the dual problem:

Theorem 5.3.5

Every cut C defines a feasible point of the dual problem according to

zij =

{
1, if i ∈ C, j 6∈ C,

0, otherwise

yi =

{
0, if i ∈ C,

1, otherwise
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The value of the dual problem at this point equals the capacity of the cut.

Proof: Feasibility immediately follows by computing the inequality constraints for the

cases i, j ∈ C, and i, j 6∈ C, and i ∈ C, j 6∈ C, and i 6∈ C, j ∈ C. The values of the

inequality constraints for these cases turn out to be 0, 0, 0,−1, respectively. As zij = 1

holds exactly for those edges that define the capacity of the cut, the assertion follows. 2

Remark 5.3.6

The theorem states that the capacity of a cut is greater than the volume v of a flow x,

because owing to the weak duality theorem, the objective function value of the dual problem

is always greater than or equal to the objective function value v of the primal problem.

Theorem 5.3.7 (Max-Flow Min-Cut)

Every maximum flow problem has exactly one of the following properties:

(a) There exist feasible flows with arbitrarily large volume and every cut has an un-

bounded capacity.

(b) There exists a maximum flow whose volume is equal to the minimal capacity of a

cut.

Proof: We have seen that every maximum flow problem can be transformed into a

linear program. According to the fundamental theorem of linear programming, every

linear program satisfies exactly one of the following alternatives:

(i) It is unbounded.

(ii) It has an optimal solution.

(iii) It is infeasible.

The third alternative does not apply to maximum flow problems as the zero flow x = 0 is

feasible. Consequently, the problem is either unbounded or it has an optimal solution. If

the problem is unbounded, then there exists a flow with unbounded volume. According

to (5.6) for every cut C and every flow x with volume v it holds

v ≤
∑

j∈C,k 6∈C

ujk. (5.7)

As the volume is unbounded, the capacity of every cut has to be infinity.

If the problem has an optimal solution, the simplex method finds an optimal solution x

with node numbers yk such that

0 > yj − yi ⇒ xij = 0, (5.8)

0 < yj − yi ⇒ xij = uij (5.9)
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hold owing to the complementary slackness conditions (5.4) and the first constraint of

the dual problem. The second constraint of the dual problem implies yS − 1 ≥ yQ, hence

yS > yQ. Hence, the set C of nodes k with yk ≤ yQ defines a cut. Notice that yS does not

belong to C as yS 6≤ yQ holds. (5.9) implies xij = uij for every original edge (i, j) with

i ∈ C, j 6∈ C. (5.8) implies xij = 0 for every original edge (i, j) with i 6∈ C, j ∈ C. For

the cut C we obtain with (5.5) the relation

v =
∑

j∈C,k 6∈C

ujk.

On the other hand, (5.6) holds for an arbitrary cut. Thus, C is a cut with minimal

capacity. As x is a maximum flow the assertion follows. 2

Theorem 5.3.8

If every finite capacity uij is a positive integer and there exists a maximum flow, then

there exists an integral maximum flow.

5.4 Algorithm of Ford and Fulkerson (Augmenting Path Method)

The algorithm of Ford and Fulkerson is motivated by the primal-dual algorithm. It turns

out that the dual of the restricted primal problem corresponds to finding a so-called aug-

menting path from Q to S. The primal-dual algorithm then aims at increasing the volume

of the flow by adapting the current flow such that it meets either a lower or an upper

capacity constraint on this path.

Definition 5.4.1 (useable path, augmenting path)

Let x be a feasible flow with volume v.

• Let a v0 − vr−path [v0, v1, . . . , vr] in the underlying undirected network with nodes

v0, v1, . . . , vr be given. The path is called useable, if xij < uij holds for every forward

edge and xij > 0 for very backward edge. Herein, an edge (i, j) is called forward

edge (f-edge), if i = vk and j = vk+1 hold for some k. Similarly, an edge (i, j) is

called backward arc (b-edge), if i = vk+1 and j = vk hold for some k.

• An useable Q− S−path is called augmenting path.
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Example 5.4.2 (Useable path)

0

1

2

3

4

x01 < u01 f-edge
x13 > 0 b-edge

x34 < u34 f-edge

x12 = u12 f-edge

The idea of the algorithm of Ford and Fulkerson is to create augmenting paths. It is ex-

ploited that a flow is maximal if and only if no augmenting path with useable edges exists.

Algorithm 5.4.3 (Ford and Fulkerson (Augmenting Path Method))

(0) Let a feasible flow x be given (e.g. xij = 0 for every (i, j) ∈ E).

(1) Find an augmenting path W = [Q = v0, v1, . . . , vr = S]. If no augmenting path

exists, STOP: x is a maximum flow.

(2) Compute the flow x̄ according to

x̄ij =


xij + d, if (i, j) is an f-edge in the path W ,

xij − d, if (i, j) is a b-edge in the path W ,

xij, if (i, j) does not appear in the path W .

Herein, d is defined as

d = min{dv, dr}

with

dv = min{uij − xij | (i, j) is an f-edge in the path W},
dr = min{xij | (i, j) is a b-edge in the path W}.

(3) If d =∞, STOP: the problem is unbounded.

(4) Goto (1) with x replaced by x̄.

It holds:
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• As the path W is augmenting it holds d > 0.

• x̄ is a feasible flow because the conservation equations still hold at inner nodes and

d is chosen such that 0 ≤ xij ≤ xij + d ≤ uij (f-edges) and uij ≥ xij ≥ xij − d ≥ 0

(b-edges) hold.

• Let v̄ be the volume of x̄ and v the volume of x. Then v̄ = v + d > v, because

v̄ =
∑

(Q,j)∈E

x̄Qj = (xQv1 + d) +
∑

(Q,j)∈E,j 6=v1

xQj = v + d
d>0
> v.

It remains to clarify how an augmenting path can be constructed. Ford and Fulkerson

developed a labeling algorithm which divides the nodes in ‘labeled’ and ‘unlabeled’. Let

the set C denote the set of labeled nodes. The labeled nodes are once more divided into

‘explored’ and ‘not explored’.

Exploring a labeled node i ∈ C means the following:

• Consider every edge (i, j). If the conditions xij < uij and j 6∈ C are satisfied, add

node j to C.

• Consider every edge (j, i). If the conditions xji > 0 and j 6∈ C are satisfied, add

node j to C.

The following algorithm constructs an augmenting path needed in step (1) of the Algo-

rithm of Ford and Fulkerson.

Algorithm 5.4.4 (Labeling Algorithm of Ford and Fulkerson)

(0) Label the source Q and set C = {Q}. The remaining nodes are unlabeled.

(1) If all labeled nodes have been explored, STOP. Otherwise choose a labeled node i ∈ C

which is not explored.

(2) Explore i. If the sink S has been labeled, STOP. Otherwise go to step (1).

The labeling algorithm stops if either an augmenting path is found (the sink is labeled)

or no useable path from the source to the sink exists. In the latter case the set C of all

labeled nodes defines a cut, because Q ∈ C and S 6∈ C.

The cut C by construction has the following properties:

xjk = ujk, for every edge (j, k) with j ∈ C, k 6∈ C,

xij = 0, for every edge (i, j) with i 6∈ C, j ∈ C.
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Particularly, C is a cut of minimal capacity, because with (5.5) we find

v =
∑

j∈C,k 6∈C

xjk︸︷︷︸
=ujk

−
∑

i6∈C,j∈C

xij︸︷︷︸
=0

=
∑

j∈C,k 6∈C

ujk.

It follows that x is a flow with maximum volume v, because v is always bounded by the

capacity of a cut.

Example 5.4.5 (Passenger Scheduling)

As many passengers as possible shall be transported from Q to S. As direct flights are not

available anymore, flights via alternative cities have to be considered. For the respective

connections only a limited number of free seats are available.
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5 (4)

6 (5) 5 (5)

7 (7)

4 (2)

2 (2) 4 (2)

Q

S

1

2

3

4

max flow = 4+5=9

min cut = 2+7=9

5 (0)

6 (5) 5 (5)

7 (5)

4 (0)

2 (0) 4 (0)

Q

S

1

2

3

4

6

5

d = 2

5 (0)

6 (0) 5 (0)

7 (0)

4 (0)

2 (0) 4 (0)

Q

S

1

2

3

4

6

5

d = 5

5 (2)

6 (5) 5 (5)

7 (7)

4 (2)

2 (0) 4 (0)

Q

S

1

2

3

4

6

5

d = 2

6

5

C={1,2,3,4} defines a 
cut of minimal capacity.
It is the result of the 
labeling procedure.
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5.4.1 Finiteness and Complexity

So far, we haven’t specified in which order the labeled nodes should be investigated.

This flaw may lead to cycles in the algorithm of Ford and Fulkerson and in this case the

algorithm does not terminate. Fortunately, there are certain conditions that guarantee

finite termination.

Theorem 5.4.6

Under the assumptions

• Every finite uij is a positive integer.

• At least one cut C possesses a finite capacity M .

• The flow, which is used to initialise the algorithm, is integral.

the algorithm of Ford and Fulkerson terminates after at most M + 1 steps.

Proof: Let the initial flow be integral. Then in each step an integral flow is generated

because d > 0 is integral. In particular, the volume of the flow is increased by at least

1 in each iteration. The flow at the beginning of iteration k has at least volume k − 1.

On the other hand, the volume of every feasible flow is bounded by the finite capacity M

of the cut. Hence, the k-th iteration takes place only if k − 1 ≤ M , i.e. the algorithm

terminates after at most M + 1 iterations. 2

Remark 5.4.7

• The algorithm may fail if at least one of the above conditions fails to hold.

• A variant of the algorithm of Ford and Fulkerson exists which terminates even for in-

finite and/or non-integral capacity bounds. This version considers the labeled nodes

according to the first-labeled, first scanned principle, compare Edmonds and Karp

(1972). This version determines a maximum flow in at most nm/2 iterations and

has the total complexity O(m2n), see Korte and Vygen [5], Th. 8.14, Cor. 8.15,

page 173.

c© 2009 by M. Gerdts



Chapter 6

Dynamic Programming

Many combinatorial optimisation problems can be formulated as so-called dynamic opti-

misation problems, among them are

• inventory problems

• knapsack problem

• assignment problem

• reliability problem

• DNA sequence alignment

• machine scheduling problems

• . . .

6.1 What is a Dynamic Optimisation Problem?

The dynamical behavior of the state of many technical, economical, and biological prob-

lems can be described by (discrete) dynamic equations. For instance we might be inter-

ested in the development of the population size of a specific species during a certain time

period, or we want to describe the dynamical behavior of chemical processes or mechanical

systems or the development of the profit of a company during the next five years, say.

Usually, the dynamical behavior of a given system can be influenced by the choice of

certain control variables. For instance, the breeding of rabbits can be influenced by the

incorporation of deseases or natural predators. A car can be controlled by the steering

wheel, the accelerator pedal, and the brakes. A chemical process can be controlled, e.g.,

by increasing or decreasing the temperature. The profit of a company is influenced, e.g.,

by the prices of its products or the number of employees.

Very often, the state variables and/or the control variables cannot assume any value,

but are subject to certain restrictions. These restrictions may result from certain safety

regulations or physical limitations, e.g. the temperature in a nuclear reactor has to be

lower than a specific threshold or the altitude of an airplane should be larger than ground

level or the steering angle of a car is limited by a maximum steering angle.
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In addition, we are particularly interested in those state and control variables which fulfill

all restrictions and furthermore minimize or maximize a given objective function. For

example, the objective of a company is to maximize the profit or to minimize operational

costs.

Summarizing, we have the following ingredients for a discrete dynamic optimization prob-

lem, cf. Figures 6.1, 6.2:

• The state variables y(tj) describe the state of a process at certain time points tj.

• The control variables u(tj) allow to influence the dynamical behavior of the state

variables at time point tj.

• The discrete dynamic equation y(tj+1) = g(tj, y(tj), u(tj)) describes the transition

of the state from time point tj to the subsequent time point tj+1 dependent on the

current state y(tj), the control variable u(tj), and the time point tj.

• The objective function has to be minimized (or maximized).

• The restrictions on the state and/or control variables have to be fulfilled.

time t0 t1 tN−1 tN

state y0 y1 yN−1 yN

control u0 uN−1

cost/profit f(t0, y0, u0) f(tN−1, yN−1, uN−1)

Figure 6.1: Schematic representation of a discrete dynamic optimization problem.
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t0 t1 t2 · · · tN−1 tN

y0

y1

y2

yN−1

yN
y1

y2

yN−1 yN

y1

y2

yN−1

yN

Figure 6.2: Examples of discrete trajectories for different control functions.

6.2 Examples and Applications

We will discuss several areas of applications leading to discrete dynamic optimization

problems.

6.2.1 Inventory Management

delivery demand

warehouse/store

Figure 6.3: Inventory Management

A company has to determine a minimum cost inventory plan for a fixed number of time

periods t0 < t1 < . . . < tN . A product is stored during these time periods t0 < t1 < . . . <

tN in a store. Let uj ≥ 0 be a delivery at time point tj, rj ≥ 0 the demand in [tj, tj+1),

and yj the amount of stored products at time point tj (just before delivery). Then the

balance equations

yj+1 = yj + uj − rj, j = 0, 1, . . . , N − 1
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hold. In addition, we postulate that the demand can be satisfied always, that is yj+1 ≥ 0

for all j = 0, 1, . . . , N − 1. Without loss of generality, at the beginning and at the end of

the time period the stock level is zero, that is y0 = yN = 0. The delivery costs at time

point tj are modelled by

B(uj) =

{
K + cuj, if uj > 0,

0, if uj = 0,

where K denotes the fixed costs and c is the cost per unit. The inventory costs become

effective at the end of each time period and are given by hyj+1, j = 0, 1, . . . , N −1. Thus,

the total costs are
N−1∑
j=0

(Kδ(uj) + cuj + hyj+1),

where

δ(uj) =

{
1, if uj > 0,

0, if uj = 0,

It holds

N−1∑
j=0

uj =
N−1∑
j=0

(yj+1 − yj + rj) = (yN − y0) +
N−1∑
j=0

rj =
N−1∑
j=0

rj,

N−1∑
j=0

yj+1 =
N−1∑
j=0

(yj + uj − rj) =
N−1∑
j=0

yj +
N−1∑
j=0

uj −
N−1∑
j=0

rj =
N−1∑
j=0

yj.

Taking these relations into account, we can formulate the following inventory problem:

Minimize
N∑

j=1

Kδ(uj) + hyj

subject to yj+1 = yj + uj − rj, j = 0, . . . , N − 1,

y0 = yN = 0,

yj ≥ 0, j = 0, . . . , N,

uj ≥ 0, j = 0, . . . , N.

Example 6.2.1

There are three different methods at different costs available in a production line within

one time period. The costs are given by the following table:

Method I II III

stock 0 15 30

costs 0 500 800

The fixed costs for a positive production volume amounts to 300 dollar for each time

period, the inventory costs are 15 dollar for each item and time period. The demand for
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each time period is given by 25 items. The task is to determine an optimal production plan

for the next three time periods, if the initial inventory is 35 items and the final inventory

is restricted to 20 items. It is assumed that the inventory costs are valid at the beginning

of each time period.

6.2.2 Knapsack Problem

There is one knapsack together with N items. Item i has weight aj and value cj for

j = 1, . . . , N . The task is to create a knapsack with maximal value under the restriction

that the maximal weight is less or equal A. This leads to the optimization problem:

Maximize

N∑
j=1

cjuj

s. t.

N∑
j=1

ajuj ≤ A, uj ∈ {0, 1}, j = 1, . . . , N,

where

uj =

{
1, item j is put into the knapsack,

0, item j is not put into the knapsack.

This is a linear optimization problem with integer variables. It can be transformed into an

equivalent discrete dynamic optimization problem. Let yj denote the remaining weight

after items i = 1, . . . , j − 1 have been included (or not). Then, the discrete dynamic
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optimization problem arises:

Maximize
N∑

j=1

cjuj

subject to yj+1 = yj − ajuj, j = 1, . . . , N,

y1 = A,

0 ≤ yj, j = 1, . . . , N,

uj

{
∈ {0, 1}, if yj ≥ aj,

= 0, if yj < aj,
j = 1, . . . , N.

yN+1 is the remaining space in the knapsack.

Example 6.2.2

A manager has to choose co-workers for a project. There are four eligible co-workers to

choose from. Each of them has a number assigned that indicates the capability of the

respective co-worker. The respective numbers are 3, 5, 2, and 4. The costs for the co-

workers are 30, 50, 20, and 40 thousand dollar, respectively. The manager has a maximal

amount of 90 thousand dollars available for the personal expenditure. Which co-workers

should the manager choose for the project?

The problem is a knapsack problem. The co-workers 1-4 correspond to N = 4 items, which

can be put into the knapsack. The personal expenditure aj, j = 1, . . . , N corresponds to

the weight of the respective item, whereas the capability of the respective co-worker

corresponds to the value cj of item j. The maximal amount A is the maximal weight

of the knapsack. The task is to create a knapsack with maximum value subject to the

weight restriction.

6.2.3 Assignment Problems

A number A of resources has to be assigned to N projects. Assigning uj resources to

project j results in the profit fj(uj). The goal is to maximize the total profit
∑N

j=1 fj(uj).

This leads to the optimization problem:

Maximize
N∑

j=1

fj(uj)

s. t.
N∑

j=1

uj ≤ A, uj ≥ 0, j = 1, . . . , N.

This problem can be transformed into a discrete dynamic optimization problem. For

that purpose, we introduce the state yj, which denotes the remaining resources after
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assigning resources to the projects i = 1, . . . , j−1. Then the above optimization problem

is equivalent with

Maximize
N∑

j=1

fj(uj)

subject to yj+1 = yj − uj, j = 1, . . . , N,

uj ∈ Uj(yj) = {0, 1, . . . , yj}, j = 1, . . . , N,

y1 = A.

Example 6.2.3

A company has to assign four sales representatives to four sales regions A,B,C,D. The

achievable sales volume depends on the number of assigned representatives according to

the following table.

Region/Number 0 1 2 3 4

A 0 25 48 81 90

B 0 35 48 53 65

C 0 41 60 75 92

D 0 52 70 85 95

The company intends to maximize the total sales volume. How does the optimal assign-

ment look like?

6.2.4 Reliability Problems

Let us assume that a computer works if and only if three components A,B and C work

properly. In order to increase the reliability of the computer system it is possible to

add certain emergency systems to each component. It costs 100 dollars to add such an

emergency system to the first component, 300 dollars for the second component, and 200

dollars for the third component. Furthermore, it is assumed, that at most two emergency

systems for each component can be added. The probability, that a component works

properly, depends on the number of emergency systems added to the component according

to the following table.

Number/System A B C

0 0.85 0.60 0.70

1 0.90 0.85 0.90

2 0.95 0.95 0.98

We are looking for a configuration, that maximizes the reliability of the computer subject

to the additional restriction that at most 600 dollars can be spent for additional emer-

gency systems.
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Formulation as a dynamic optimization problem:

The components A,B,C are denoted by 1,2,3. Let yj be the amount remaining after

emergency systems have been added to the components 1, . . . , j − 1.

Let uj be the number of emergency systems for component j subject to the restriction

uj ∈ U = {0, 1, 2}.
Let pj(uj) be the probability that component j works properly, if uj emergency systems

have been added. cj are the costs to add an emergency system to component j, that is

c1 = 100, c2 = 300, c3 = 200.

Thus, we obtain

Maximize
3∏

j=1

pj(uj)

subject to

yj+1 = yj − cj · uj, j = 1, 2, 3 ,

y1 = 600 ,

uj ∈ Uj(yj) =


{0}, if yj < cj ,

{0, 1}, if cj ≤ yj < 2cj ,

{0, 1, 2}, if 2cj ≤ yj ,

yj+1 ∈ {0, 100, 200, 300, 400, 500, 600} .

Unfortunately, the objective function is a product and not a sum. But, we can simply

transform the above problem by applying the logarithm to the objective function:

Maximize
3∑

j=1

log pj(uj)

subject to

yj+1 = yj − cj · uj, j = 1, 2, 3 ,

y1 = 600 ,

uj ∈ Uj(yj) =


{0}, if yj < cj ,

{0, 1}, if cj ≤ yj < 2cj ,

{0, 1, 2}, if 2cj ≤ yj ,

yj+1 ∈ {0, 100, 200, 300, 400, 500, 600} .

6.3 Mathematical Formulation of Discrete Dynamic Optimiza-

tion Problems

Let

G := {tj | j = 0, 1, . . . , N}

denote a grid with N + 1 fixed (time) points

t0 < t1 < . . . < tN .
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The task is to determine a state grid function

y : G→ Rn, tj 7→ y(tj),

and a control grid function

u : G→ Rm, tj 7→ u(tj),

such that the objective function

N∑
j=0

f(tj, y(tj), u(tj)),

where

f : G× Rn × Rm → R

is minimized subject to the dynamic equations

y(tj+1) = g(tj, y(tj), u(tj)), j = 0, 1, . . . , N − 1,

where

g : G× Rn × Rm → Rn.

In addition, the state constraints

y(tj) ∈ Y (tj), j = 0, 1, . . . , N,

with nonempty sets Y (tj) ⊆ Rn, and the control constraints

u(tj) ∈ U(tj, y(tj)), j = 0, 1, . . . , N,

with nonempty sets U(tj, y) ⊆ Rm for y(tj) ∈ Y (tj) and j = 0, 1, . . . , N have to be

fulfilled.

Summarizing we consider the

Discrete Dynamic Optimization Problem (DOP)

Minimize
N∑

j=0

f(tj, y(tj), u(tj))

w.r.t. y ∈ {y | y : G→ Rn} , u ∈ {u | u : G→ Rm}

subject to y(tj+1) = g(tj, y(tj), u(tj)), j = 0, 1, . . . , N − 1,

y(tj) ∈ Y (tj), j = 0, 1, . . . , N,

u(tj) ∈ U(tj, y(tj)), j = 0, 1, . . . , N.

Remark 6.3.1

c© 2009 by M. Gerdts



74 CHAPTER 6. DYNAMIC PROGRAMMING

• Very often, the sets Y (tj) are expressed in terms of inequality and equality con-

straints, that is

Y (tj) = {y ∈ Rn | r(tj, y) ≤ 0, h(tj, y) = 0}.

Similarly, the sets U(tj, y) often are given by

U(tj, y) = {u ∈ Rm | r̃(tj, y, u) ≤ 0, h̃(tj, y, u) = 0}.

More specifically, the control may be restricted by box constraints only:

u(tj) ∈ {v = (v1, . . . , vm)> ∈ Rm | aj ≤ vj ≤ bj, j = 1, . . . ,m}.

6.4 Dynamic Programming Method and Bellman’s Principle

The upcoming dynamic programming method is based on the Bellman’s optimality prin-

ciple for (DOP). The dynamic programming method is one of the earliest methods to

solve discrete dynamic optimization problems.

For a more detailed discussion we refer to the monographs [1], [2], [4], [6]. Many applica-

tions and examples can be found in [8].

6.5 Bellman’s Optimality Principle

Let tk ∈ {t0, t1, . . . , tN} be a fixed time point, Gk := {tj | j = k, k + 1, . . . , N}, and

ŷ ∈ Y (tk) an admissible state. Consider the

Discrete dynamic optimization problem (P (tk, ŷ))

Minimize
N∑

j=k

f(tj, y(tj), u(tj))

w.r.t. y ∈ {y | y : Gk → Rn} , u ∈ {u | u : Gk → Rm}

subject to y(tj+1) = g(tj, y(tj), u(tj)), j = k, 1, . . . , N − 1,

y(tk) = ŷ,

y(tj) ∈ Y (tj), j = k, k + 1, . . . , N,

u(tj) ∈ U(tj, y(tj)), j = k, k + 1, . . . , N.

Definition 6.5.1 (Optimal Value Function)

Let tk ∈ G. For ŷ ∈ Y (tk) let V (tk, ŷ) denote the optimal value of the problem (P (tk, ŷ)).
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For ŷ 6∈ Y (tk) we set V (tk, ŷ) = ∞. The function V : G× Rn → R, (tk, ŷ) 7→ V (tk, ŷ) is

called optimal value function.

Theorem 6.5.2 (Bellman’s Optimality Principle)

Let ŷ(·) and û(·) be an optimal solution of (DOP). Then ŷ|Gk
and û|Gk

is an optimal

solution of (P (tk, ŷ(tk))).

Proof: Assume, that ŷ|Gk
and û|Gk

are not optimal for (P (tk, ŷ(tk))). Then there exist

feasible trajectories ỹ : Gk → Rn and ũ : Gk → Rm for (P (tk, ŷ(tk))) with

N∑
j=k

f(tj, ỹ(tj), ũ(tj)) <
N∑

j=k

f(tj, ŷ(tj), û(tj))

and ỹ(tk) = ŷ(tk). Hence, the trajectories y : G→ Rn and u : G→ Rm with

y(tj) :=

{
ŷ(tj), for j = 0, 1, . . . , k − 1,

ỹ(tj), for j = k, k + 1, . . . , N,

u(tj) :=

{
û(tj), for j = 0, 1, . . . , k − 1,

ũ(tj), for j = k, k + 1, . . . , N,

are feasible for (DOP) and satisfy

k−1∑
j=0

f(tj, ŷ(tj), û(tj)) +
N∑

j=k

f(tj, ỹ(tj), ũ(tj)) <
N∑

j=0

f(tj, ŷ(tj), û(tj)).

This contradicts the optimality of ŷ(·) and û(·). 2

The optimality principle states: The decisions in the periods k, k+1, . . . , N of the Problem

(DOP) for a given state yk are independent of the decisions in the periods t0, t1, . . . , tk−1,

compare Figure 6.4.

Remark 6.5.3

For the validity of the optimality principle it is essential that the discrete dynamic opti-

mization problem can be divided into stages, e.g. the state y at tj+1 only depends on the

values of y and u at the previous stage tj and not on the respective values at, e.g., t0 and

tN . Similarly, the objective function is separable and the constraints only restrict y and u

at tj. This allows to apply a stagewise optimization procedure.

6.6 Dynamic Programming Method

The optimality principle allows to derive a recursion for the optimal value function. In

the sequel, we use the convention f(tj, y, u) =∞, if y 6∈ Y (tj).
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t0 tk tN

ŷ(·)
ŷ(·)|[tk,tN ]

Figure 6.4: Bellman’s optimality principle: Rest trajectories of optimal trajectories remain

optimal.

tj tj+1 tN

û

ũ

ū
y

Figure 6.5: Bellman’s dynamic programming method: Recursion of the optimal value

function.

We exploit the fact, that the optimal value for (P (tN , y)) is given by

V (tN , y) = min
u∈U(tN ,y)

f(tN , y, u). (6.1)

Suppose now, that we already know the optimal value function V (tj+1, y) for any y ∈ Rn.

From the optimality principle we obtain

V (tj, y) = min
u∈U(tj ,y)

{f(tj, y, u) + V (tj+1, g(tj, y, u)} , j = 0, 1, . . . , N − 1. (6.2)

Equations (6.1) and (6.2) enable us to compute the optimal value function backward in

time starting at tN .

The optimal initial state ŷ(t0) of (DOP) is given by

ŷ(t0) = arg min
y∈Y (t0)

V (t0, y). (6.3)
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Equations (6.1)-(6.3) form the basis for

Algorithm 6.6.1 (Bellman’s Dynamic Programming Method I)

(i) Backward computation

1. Let V (tN , y) be given by (6.1).

2. For j = N − 1, . . . , 0: Calculate V (tj, y) as in (6.2).

(ii) Forward computation

1. Let ŷ(t0) be given by (6.3).

2. For j = 0, 1, . . . , N − 1: Determine

û(tj) = arg min
u∈U(tj ,ŷ(tj))

{f(tj, ŷ(tj), u) + V (tj+1, g(tj, ŷ(tj), u))}

and set ŷ(tj+1) = g(tj, ŷ(tj), û(tj)).

3. Determine û(tN) = arg minu∈U(tN ,ŷ(tN )) f(tN , ŷ(tN), u).

Algorithm 6.6.2 (Bellman’s Dynamic Programming Method II)

(i) Backward computation

1. Let V (tN , y) be given by (6.1) and u∗(tN , y) the corresponding optimal control.

2. For j = N − 1, . . . , 0: Calculate V (tj, y) as in (6.2).

Let u∗(tj, y) denote the optimal control at tj for y (feedback control).

(ii) Forward computation

1. Let ŷ(t0) be given by (6.3).

2. For j = 0, 1, . . . , N − 1: Determine û(tj) = u∗(tj, ŷ(tj)) and

ŷ(tj+1) = g(tj, ŷ(tj), û(tj)).

3. Determine û(tN) = u∗(tN , ŷ(tN)).

Remark 6.6.3

Both versions of Bellman’s dynamic programming method yield an optimal solution of the

discrete dynamic programming problem (DOP). Version II is preferable for hand calcula-

tions because it provides an optimal feedback control u∗ as a function of time and state.

Version I is more convenient for computer implementations, since it does not require to
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store the feedback control u∗ for each tj and y and thus saves memory space. It only

computes the optimal trajectories for y and u as functions of time.

Example 6.6.4

Solve the discrete dynamic optimization problem

Minimize −
N−1∑
j=0

c(1− uj)y(j)

s.t. y(j + 1) = y(j)(0.9 + 0.6u(j)), j = 0, 1, . . . , N − 1

y(0) = k > 0,

0 ≤ u(j) ≤ 1, j = 0, 1, . . . , N − 1

for k > 0, c > 0, b = 0.6 and N = 5 by the dynamic programming method. Since k > 0

and u(j) ≥ 0 it holds y(j) > 0 for all j. In the sequel we use the abbreviation yj := y(j).

The recursive equations (6.1) and (6.2) for N = 5 are given by V (5, y5) = 0 and

V (j, yj) = min
0≤uj≤1

{−cyj(1− uj) + V (j + 1, yj(0.9 + 0.6uj))}, 0 ≤ j ≤ N − 1.

Evaluation of the recursion and observation of c > 0, yj > 0 yields

V (4, y4) = min
0≤u4≤1

{−cy4(1− u4) + V (5, y4(0.9 + 0.6u4)︸ ︷︷ ︸
=0

} = −cy4, û4 = 0,

V (3, y3) = min
0≤u3≤1

{−cy3(1− u3) + V (4, (y3(0.9 + 0.6u3))}

= min
0≤u3≤1

{−cy3(1− u3)− cy3(0.9 + 0.6u3)}

= cy3 min
0≤u3≤1

{−1.9 + 0.4u3} = −1.9cy3, û3 = 0,

V (2, y2) = min
0≤u2≤1

{−cy2(1− u2) + V (3, y2(0.9 + 0.6u2)}

= min
0≤u2≤1

{−cy2(1− u2)− 1.9cy2(0.9 + 0.6u2)}

= cy2 min
0≤u2≤1

{−2.71− 0.14u2} = −2.85cy2, û2 = 1,

V (1, y1) = min
0≤u1≤1

{−cy1(1− u1) + V (2, y1(0.9 + 0.6u1)}

= min
0≤u1≤1

{−cy1(1− u1)− 2.85cy1(0.9 + 0.6u1)}

= cy1 min
0≤u1≤1

{−3.565− 0.71u1} = −4.275cy1, û1 = 1,

V (0, y0) = min
0≤u0≤1

{−cy0(1− u0) + V (1, y0(0.9 + 0.6u0)}

= min
0≤u0≤1

{−cy0(1− u0)− 4.275cy0(0.9 + 0.6u0)}

= cy0 min
0≤u0≤1

{−4.8475− 1.565u0} = −6.4125cy0, û0 = 1,

Hence, the optimal control is û0 = û1 = û2 = 1, û3 = û4 = 0. Forward evaluation leads
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to ŷ0 = k, ŷ1 = 1.5 · k, ŷ2 = 2.25 · k, ŷ3 = 3.375 · k, ŷ4 = 3.0375 · k, ŷ5 = 2.73375 · k. The

optimal objective value is −cŷ3 − cŷ4 = −c(ŷ3 + ŷ4) = −6.4125 · c · k.

6.7 Implementation

We discuss an implementable algorithm for the special discrete dynamic otimization prob-

lem

Minimize
N∑

j=0

f(tj, yj, uj)

s.t. yj+1 = g(tj, yj, uj), j = 0, . . . , N − 1,

y0 = ya,

yj ∈ [yl, yu], j = 1, . . . , N,

uj ∈ [ul(tj, yj), uu(tj, yj)], j = 0, . . . , N.

The interval [yl, yu] is divided into M equidistant sections of length h = (yu − yl)/M :

Y = {yl + i · h | i = 0, . . . ,M}.

Y denotes the feasible region for the state variables. Similarly, the control region [ul(tj, yj), uu(tj, yj)]

is divided into Mj equidistant sections of length hj = (uu(tj, yj)− ul(tj, yj))/Mj:

U(tj, yj) = {ul(tj, yj) + i · hj | i = 0, . . . ,Mj}, j = 0, . . . , N.

U(tj, yj) denotes the feasible region for the control variables in step j.

Algorithm 6.7.1 (Bellman’s Dynamic Programming Method)

(i) Backward computation

1. For all y ∈ Y let

V (tN , y) = min
u∈U(tN ,y)

f(tN , y, u).

2. For j = N − 1, . . . , 0: For all y ∈ Y determine

V (tj, y) = min
u∈U(tj ,y)g(tj ,y,u)∈[yl,yu]

{f(tj, y, u) + V (tj+1, g(tj, y, u))} . (6.4)

(ii) Forward computation

1. Let ŷ1 = ya.

2. For j = 0, 1, . . . , N − 1: Determine

ûj = arg min
u∈U(tj ,ŷj)g(tj ,ŷj ,u)∈[yl,yu]

{f(tj, ŷj, u) + V (tj+1, g(tj, ŷj, u))} (6.5)

and set ŷj+1 = g(tj, ŷj, ûj).
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3. Determine ûN = arg minu∈U(tN ,ŷN ) f(tN , ŷN , u).

Remark 6.7.2

The evaluation of (6.4) and (6.5), respectively, requires the values V (tj+1, yj+1) with

yj+1 = g(tj, y, u) ∈ [yl, yu]. It may happen, that yj+1 is not a grid point in Y such

that ȳ := yl + i ·h < yj+1 < yl +(i+1) ·h = ȳ +h holds for some index i. Then, the value

of the optimal value function at yj+1 is determined by linear interpolation of the values

V (tj+1, ȳ) and V (tj+1, ȳ + h):

V (tj+1, yj+1) ≈ V (tj+1, ȳ) +
yj+1 − ȳ

h
(V (tj+1, ȳ + h)− V (tj+1, ȳ)) .

Example 6.7.3 (Test example)

Knapsack problem (M = 1000, Mj = 1, j = 1, . . . , N)

No. Item weight value

1. knapsack 1400 g 1.00

2. tent 2600 g 0.88

3. camping mat 1200 g 0.92

4. sleeping bag 1500 g 0.94

5. stove 1600 g 0.79

6. 4 soups each 30 g 0.79

7. bottle of water 1150 g 0.98

8. clothes 800 g 0.71

9. washbag 300 g 0.74

10. towel 350 g 0.81

11. handy 550 g 0.5

12. wallet 500 g 0.99

13. pencils 300 g 0.52

14. map of trails 80 g 0.98

15. city guide 200 g 0.58

16. bar of chocolate 100 g 0.98

The maximum weight is A = 10 [kg].

Remark 6.7.4

The main drawback of Bellman’s dynamic programming method is the so called ‘curse of

dimension’. As it can be seen from formula (6.4) the method requires to compute and

to store the values V (tj, y) for each j = N, N − 1, . . . , 0 and each y ∈ Y . Depending

on the value N this can become a really huge number. In the worst case each discrete
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trajectorie emanating from ya has to be considered. Nevertheless, for certain applications,

e.g. assignment problems, knapsack problems, and inventory problems with integral data,

the dynamic programming method performs quite well.
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Software

Available software in the world wide web:

• Scilab: A Free Scientific Software Package; http://www.scilab.org

• GNU Octave: A high-level language, primarily intended for numerical computa-

tions; http://www.octave.org/octave.html

• GAMS: Guide to Available Mathematical Software; http://gams.nist.gov/

• Netlib: collection of mathematical software, papers, and databases; http://www.netlib.org/

• Decision Tree for Optimization Software; http://plato.la.asu.edu/guide.html

• NEOS Guide: www-fp.mcs.anl.gov/otc/Guide

• COPS: Large-Scale Optimization Problems; http://www-unix.mcs.anl.gov/∼more/cops/

• GAlib: set of C++ genetic algorithm objects; http://lancet.mit.edu/ga/

• test problems: http://www.princeton.edu/∼rvdb/ampl/nlmodels/

82



Bibliography

[1] R. E. Bellman. Dynamic Programming. University Press, Princeton, New Jersey, 1957.

[2] R. E. Bellman and S. E. Dreyfus. Applied Dynamic Programming. University Press,

Princeton, New Jersey, 1971.

[3] R. G. Bland. New finite pivoting rules for the simplex method. Mathematics of

Operations Research, 2(2):103–107, 1977.

[4] I. M. Bomze and W. Grossmann. Optimierung - Theorie und Algorithmen. BI-

Wissenschaftsverlag, Mannheim, 1993.

[5] B. Korte and J. Vygen. Combinatorial Optimization – Theory and Algorithms, vol-

ume 21 of Algorithms and Combinatorics. Springer Berlin Heidelberg, fourth edition

edition, 2008.

[6] K. Neumann and M. Morlock. Operations Research. Carl Hanser Verlag, München

Wien, 2002.

[7] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization–Algorithms and

Complexity. Dover Publications, 1998.

[8] W. L. Winston. Operations Research: Applications and Algorithms. Brooks/Cole–

Thomson Learning, Belmont, 4 edition, 2004.

83


