### Improving computing time of the Dempster-Shafer theory through a Bootstrap method for applications in vehicle safety

Jonas Jehle, Volker Lange, Prof. Dr. Matthias Gerdts

# der Bundeswehr

Universität ( München

## Why to consider uncertainties in the crash world?

#### **Global aims for departments of vehicle safety:**

- Preventing occupant injuries in the event of a crash.
- Assessing crashworthiness of the vehicles.
- Detecting car design concepts that might not achieve targets.

#### Ways to achieve these aims:

- Testing the vehicles by performing various crash tests in various construction phases.
- Evaluating the measured data.
- Finding methods to improve the crashworthiness.



#### **Uncertainties in crash tests**

Multiple hardware tests of the same vehicle in the same constellation lead to different measurement results. Reasons are

- Changes in the impact angle and velocity,
- Positioning of the sensors,
- Differences in the instruments, e.g. the dummies.
- $\Rightarrow$  Need to consider uncertainties to forecast possible results.

### **New Car Assessment Program (US NCAP)**

#### What is US NCAP?



### **Steps of the DST after intervals were formed:**

- Set up every subinterval combination called *interval cells*  $(n = 3^4 \cdot 4^2)$ .
- Compute the probability for every interval cell.
- Solve 2n = 2592 constrained optimization problems to determine the respective minimum and maximum of the system function (Output here: RR) for every interval cell.
- Sort the minima (plausibility values) and maxima (belief values), separately.
- Plot both with their corresponding cumulated probabilities.



#### **Emerging problems**

 $\left(\begin{array}{c} \pm \\ - \end{array}\right)$ 

 For a highly non-linear and/or discontinuous system function, optimization can be computationally costly - especially, for a large number of optimization problems. Increasing the input quantity as well as raising the numbers of subintervals leads to an even larger number of optimization problems.

- Published by the National Highway Traffic Safety Administration.
- Program to rate the safety of vehicles by stars from one (worst) to five (best).
- Rating based on the performance of the car in frontal, side and rollover tests.
- Separate ratings for the driver and passenger dummy in a frontal crash.

### Calculation of the rating for the Hybrid III 50% (driver dummy) in the Frontal-Impact against a Rigid Wall with 100% overlap



Remark: Ratings for other dummies or tests, e.g. side crashes, are determined similarly.

### **Dempster-Shafer theory (DST)**

### How to apply the DST and what to expect:

- Modeling of uncertainties in the crash test over intervals for the Injury Criteria.
- Propagating the uncertainties via DST to calculate possible outcomes of the rating with distributions represented by the *plausibilty* and *belief curve*.

### **Practical Procedure – shown by a fictive example**



# **Bootstrap method (BM) to reduce the number of optimizations**

### **BM-DST** approach

- 1. Build all interval cells  $C_l$ ,  $l \in \{1, ..., n\}$ , and compute their corresponding probabilities  $p_l$ .
- 2. Choose  $n_{\text{high}} + n_{\text{rand}} \in \mathbb{N}$  interval cells and approximate the others in the way below.

| <pre>pl &gt; pl </pre>                                                                                                                                                                                                               | $C_i$ with <b>highest</b> $p_i$<br><b>random</b> $C_j$ with $p_j$ | $n_{ m high} \; n_{ m rand}$ | Apply DS<br>⇒ Obtain<br>Apply DS<br>⇒ Obtain                                             | <b>F</b> optimization.<br>min/max values $L_i$ , $U_i$ and save probability $p_i$ .<br><b>F</b> optimization.<br>min/max values $L_j$ , $U_j$ and save probability $p_j$ .                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                      | <b>left</b> $C_k$ with $p_k$                                      | $n - n_{high} - n_{rand}$    | - reject                                                                                 | Apply <b>BM</b> to approximate $(L_k, U_k, p_k)$ .<br>set $m = 0$<br>while $\sum p_i + \sum p_j + \sum_{k=1}^m p_k < 1$<br>• take a $v \sim N\left(0, \frac{1}{n_{\text{rand}}}\right)$<br>• draw $(L_j, U_j, p_j)$ by random from the random cells $C_i$ |
| 3. Collect the data, obtain $(L_{\hat{i}}, U_{\hat{i}}, p_{\hat{i}})$ for $\hat{i} \in \{1,, \hat{n}\}$ with $\hat{n} = n_{\text{high}} + n_{\text{rand}} + \hat{m}$ and plot an approximated plausibility and belief curve with it. |                                                                   |                              | $J_{\hat{i}}$ , $p_{\hat{i}}$ ) for<br>- $n_{\mathrm{rand}} + \widehat{m}$<br>ausibility | • $L_k = L_j + v, U_k = U_j + v, p_k = p_j + v$<br>• $m = m + 1$<br>end<br>save $\widehat{m} = m$<br>(Often it holds $\widehat{m} \neq n - n_{\text{best}} - n_{\text{rand}}$ )                                                                           |

### Algorithm to find a sufficient sample size $n_{\text{sample}} = n_{\text{high}} + n_{\text{rand}}$

- Iterative approach (start with  $n_{\text{sample}} = n_{\text{sample}}^0 \in \mathbb{N}$ ).
- After every loop, errors (areas between plausibility and belief curves, respectively) are calculated between the BM-DST with the full sample size  $n_{\text{sample}}$  (dashed curves), the BM-DST with one half of the sample size and the BM-DST with the other half of the sample size (all plotted as dotted curves).
- If errors do not fulfil the stopping criterion, start new loop with increased  $n_{\text{sample}}$ .
- If errors fulfil the stopping criterion, take the BM-DST with the last calculated sample size  $n_{\text{sample}}$  as the approximation for the exact DST.

### **Resulting curves for exact and approximated DST optimization**





### Contact

Jonas Jehle **BMW Group Research and Innovation Center** Knorrstraße 147 DE-80788 München



Universität der Bundeswehr München Professur für Ingenieurmathematik

Email: jonas.jehle@bmw.de jonas.jehle@unibw.de

0.7 0.5 DST plausibilit BM-DST plausibility, ful 0.4 0.4 BM-DST plausibility, half BM-DST plausibility, hall 0.3 0.3 DST belief BM-DST belief, full BM-DST belief, half 1 0.6 0.8 0.6 0.8 0.4 0.6 0.8 1.2  $n_{\text{sample}} = 15$  $n_{\text{sample}} = 30$  $n_{\text{sample}} = 60 \Rightarrow 2n_{\text{sample}} = 120$ 

### **Conclusion and Outlook**

- DST forecasts all possible star ratings under uncertain Injury Criteria originating from uncertainties in the crash test.
- For this application, BM-DST approximates the usual DST very precise while significantly decreasing the number of optimization problems from 2592 to 120. However, optimizations are not computationally costly here.
- For other problems like crash simulations, this procedure saves an enormous amount of computing time.

### References

[1] Carhs. Safety Companion, 2018.

[2] https://www.humaneticsatd.com/crash-test-dummies/frontal-impact/hiii-50m

- [3] National Highway Traffic Safety Administration. NHTSA Vehicle Crash Test Database, Version: 08/2019.
- https://www-nrd.nhtsa.dot.gov/database/veh/veh.htm
- [4] Shafer, G. A Mathematical Theory of Evidence, Princeton University Press, 1976.

[5] Efron, B. Bootstrap methods: another look at the jackknife. Ann. Statist. 7, 1-26, 1979.