FORSCHERGRUPPE

"Generierung von optimalen Referenzflugbahnen für autonome Flugsysteme unter Berücksichtigung von Konfigurationsänderungen"

MUNICH AEROSPACE

AUTONOMES FLIEGEN

LEITHEMA

Team

<u>Head</u>

Prof. Dr. Matthias Gerdts. UniBW-M

Staff members

Dr. Jürgen Pannek, UniBW-M
Dipl.-Ing. Jakob Lenz, TUM
Dipl.-Ing. Matthias Bittner, TUM
Dipl.-Ing. Maximilian Richter, TUM

Munich Aerospace fellows:

Motivation

- Flight path optimization: How to control an autonomous flight system for a given task?
- Consideration of configuration changes (gear, flap positions, discrete decisions, choice of routes)
- Efficiency in view of a given objective (mathematical optimization)

Aims

- Investigation of optimal control problems with discrete controls
- Development of efficient methods taking into account switching costs and state dependent control constraints
- Realistic scenarios and validation in trajectory optimization

<u>Approach</u>

- Direct discretization methods (full discretization, shooting methods, gradient based optimization methods (SQP), variable time transformation)
- Methods for vanishing constraints
- Necessary optimality conditions and convergence
- Extensions: model-predictive control, robust optimal control, realtime/onboard optimization and sensitivity analysis

Discrete Control Dependent Constraints

Problem description

- Gradient based optimization requires translation of discrete controls (e.g. flaps) into continuous optimization problem
- Switching introduces immediate discrete changes in the flight envelope (e.g. speed envelope defined by flap position)
- → Aim of research project:
 Taking into account discrete control dependent constraints in an optimization problem solvable by gradient based optimizers

Additional requirements

- Implementation of switching logics (CRUISE→APPROACH→LANDING)
- Multiple independent discrete controls

Matthias Rieck / matthias.rieck@tum.de

Optimal Control with Switching Costs

Motivation

- Penalize frequent control changes
- Real models require smooth or constant behavior of the control

Difficulties

- Non existence of proper theory
- Lack of suitable formulation for cost penalization

<u>Tasks</u>

- Problem reformulation
 - Investigation of necessary conditions
- Direct discretization methods
- Convergence of the discretized problem

OCP with Riemann-Stieltjes cost functional

Minimize
$$\varphi(x(T)) + \int_0^T f_0(x(t), \mathbf{u}(t)) d\mathbf{u}(t)$$

s.t. $x'(t) - f(x(t), \mathbf{u}(t)) = 0_{\mathbb{R}^n}$ a.e. in $[0, T]$
 $g(x(t), \mathbf{u}(t)) \leq 0_{\mathbb{R}^k}$ a.e. in $[0, T]$
 $x(0) - \eta_0 = 0_{\mathbb{R}^n}$
 $\psi(x(0), x(T)) = 0_{\mathbb{R}^s}$

Application to aircraft landing model (w/o switching costs):

Hybrid propulsion for highly agile UAVs

Improved agility using hybrid engines

- Characterization and optimization of dynamic behavior of hybrid propulsion systems
- Examination of limits of flight stabilization and flight maneuvering by electric propulsion
- Impact of electric motors on instationary fan performance

More endurance with hybrid engines

- Idea: Endurance improvement by combined thermodynamic cycles (i.e. gas turbine and fuel cell)
- Idea: Endurance improvement by temporary energy buffer and down scaling of core engine
- Characterization depending on mission profile