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Research @ Engineering Mathematics

Research topics
I Optimization and optimal control of

dynamic systems
I Sensitivity analysis (influence of

parameters)
I Model-predictive control and real-time

optimization
I Modelling, simulation, and parameter

identification

Applications
I Automatic driving and virtual testdrives
I Path planning in robotics
I Flight path optimization
I Docking maneuver
I Collision avoidance
I Control of co-operative systems
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Schedule

Nonlinear Optimal Control Problems: Methods and Applications

Time (CEST) Monday Tuesday Wednesday Thursday Friday
June 21 June 22 June 23 June 24 June 25

9:00-10:00 MINOA
training till 13:00

MINOA
training till 13:00

10:00-11:30 Mathias Gerdts:
Numerical Methods

OCP-ODE

Christian Kirches:
Mixed Integer OCP

Industrial session:
Otmar Gehring
(Daimler)

11:30-14:00 Break Break Break

14:00-15:30 Opening
Ekaterina Kostina:
Introduction OCP

Mathias Gerdts:
Numerical Methods

OCP-ODE

Christian Kirches:
Mixed Integer OCP

Karl Worthmann:
Feedback control and

NMPC

15:30-16:00 Interaction Interaction Interaction Interaction

16:00-17:30 Industrial session
Armin Nurkanovic
(Siemens)

Sven Leyffer:
Mixed Integer OCP-

PDE

Sven Leyffer:
Mixed Integer OCP-

PDE



Numerical Methods for ODE Optimal Control Problems
Matthias Gerdts

Literature and Resources



Numerical Methods for ODE Optimal Control Problems
Matthias Gerdts

Contents

Introduction

Direct Discretization : First Discretize – Then Optimize
Overview
Full Discretization (Collocation, Direct Transcription)
Numerical Solution of Discretized Problem
Reduced Discretization (Shooting)
Adjoint Estimation
Convergence

Applications



Numerical Methods for ODE Optimal Control Problems
Matthias Gerdts

Contents

Introduction

Direct Discretization : First Discretize – Then Optimize
Overview
Full Discretization (Collocation, Direct Transcription)
Numerical Solution of Discretized Problem
Reduced Discretization (Shooting)
Adjoint Estimation
Convergence

Applications



Numerical Methods for ODE Optimal Control Problems
Matthias Gerdts

Optimal Control

Basic optimal control task:

Control a dynamic system through control inputs subject to constraints such that an
objective function is minimized or maximized!

What is a dynamic system?

I A dynamic system is a (technical, biological, economical, . . . ) system in motion.

I The state x(t) ∈ Rn of the system (e.g. position, velocity, . . . ) changes with time t .

I The system at time t can be influenced by a control input u(t) ∈ Rm.

Mathematical model:

x(0) = x0 (given initial state)

x′(t) = f (t, x(t), u(t)) (t ≥ 0)
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Open-loop Control vs Closed-loop Control

Open-loop control
Apply a time-dependent control u(t) (open-loop control) to the dynamic system:

x′(t) = f (t, x(t), u(t)), x(0) = x0.

 an open-loop control cannot react on perturbations in x !

Closed-loop control / feedback control
Application of a feedback control law of type u(t) = µ(t, x(t)) to the dynamic system
yields a closed-loop system:

x′(t) = f (t, x(t), µ(t, x(t))), x(0) = x0.

 a feedback control is able to react on perturbations in x !
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Open-loop Control

In this lecture:

Open-loop control
Apply a time-dependent control u(t) (open-loop control) to the dynamic system:

x′(t) = f (t, x(t), u(t)), x(0) = x0.

Extension to closed-loop control is possible using model-predictive control!
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Optimal Control and Path Planning Tasks

Path Tracking Task
Follow a given (optimal) reference
trajectory

(xref (t), uref (t)) (t ∈ [0, tf ]) !

vs

Path Planning Task
Compute a (locally) optimal
trajectory

(xref (t), uref (t)) (t ∈ [0, tf ]) !
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Optimal Control Problem of Tracking Type

OCP of Tracking Type
Minimize weighted tracking error

1
2

∫ tf

0
‖x(t)− xref (t)‖2

V + ‖u(t)− uref (t)‖2
W dt

subject to the constraints

x′(t) = f (t, x(t), u(t)) (t ∈ [0, tf ])

x(t) ∈ X (t ∈ [0, tf ])

u(t) ∈ U (t ∈ [0, tf ])

x(0) = x0

x0: initial state, tf : final time, (xref , uref ): reference trajectory, X : state set, U: control set,

‖z‖M :=
(

z>Mz
)1/2

: weighted norm
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General Optimal Control Problem

General OCP
Minimize

ϕ(x(tf )) +

∫ tf

0
f0(x(t), u(t)) dt

subject to the constraints

x′(t) = f (t, x(t), u(t)) (t ∈ [0, tf ])

x(t) ∈ X (t ∈ [0, tf ])

u(t) ∈ U (t ∈ [0, tf ])

x(0) = x0

x0: initial state, tf : final time, X : state set, U: control set, ϕ: terminal costs, f0: running
costs



Numerical Methods for ODE Optimal Control Problems
Matthias Gerdts

Application: Automatic Driving

I Modelling of an “optimal” driver
(time minimal, fuel efficient)

I Consideration of track bounds and
obstacles

I Online optimization
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Virtual Testdrive: Mathematical Model

Minimize

tf + α

∫ tf

0
u1(t)2dt

s.t.

x′(t) = v(t) cosψ(t),

y′(t) = v(t) sinψ(t),

ψ
′(t) =

v(t)
`

tan δ(t)

v′(t) = u2(t)

δ
′(t) = u1(t)

and

δ(t) ∈ [−30, 30] in [deg]

v(t) ∈ [0, 6] in [m/s]

u1(t) ∈ [−30, 30] in [deg/s]

u2(t) ∈ [−1, 1] in [m/s2]

+ initial conditions & road boundaries

(x,y)

δ

δ

l

ψ

Notation:

δ steering angle

v velocity

ψ yaw angle

` distance front to rear axle

(x, y) reference point
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Example: Parking

Trajectory (x, y) for optimal parking maneuver:
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Example: Drive along a Track (Course 3 UniBw M)
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Optimal Control Problem

Optimal Control Problem (OCP)
Minimize

ϕ(x(t0), x(tf ))

subject to the differential equation

x′(t) = f (t, x(t), u(t)) (t ∈ [t0, tf ])

the control and state constraints

c(t, x(t), u(t)) ≤ 0 (t ∈ [t0, tf ])

and the boundary conditions
ψ(x(t0), x(tf )) = 0.

Remark:
I w.l.o.g. t0 and tf are fixed,−∞ < t0 < tf <∞
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Various Ways to Approach the Problem

infinite problem
“first optimize – then discretize”

direct solution
(descent methods, SQP, IP, ...)

full problem
large scale & sparse

discretized problem
“first discretize – then optimize”

indirect solution
(necessary conditions,

semismooth Newton, BVP, ...)

reduced problem
small & dense

vs

vs

vs

... in addition: Dynamic Programming/Hamilton-Jacobi theory
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Direct Discretization (“First Discretize – Then Optimize”) – A Framework

OCP (infinite dimensional)

Min J(x, u)

s.t. G(x, u) ≤K 0

H(x, u) = 0

⇓

discretization

⇓

NLP (finite dimensional)

Min Jh(xh, uh)

s.t. Gh(xh, uh) ≤ 0

Hh(xh, uh) = 0

state discretization scheme for ODE

x′(t) = f (t, x(t), u(t))

control parameterization scheme

u(t) ≈ uh(t ; w)

NLP solver

Many options: collocation, pseu-
dospectral methods, direct shooting
methods, semi-smooth Newton, ....
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Full Discretization using Euler’s Method

I Grid Gh = {ti | ti = t0 + ih, i = 0, . . . ,N}, N ∈ N, h = (tf − t0)/N

I uh = (u0, . . . , uN−1)> : control parameterization on Gh; piecewise constant

I xh = (x0, . . . , xN )> : state approximation on Gh; explicit Euler method

t0 t1 tN−1 tN

u0

u1

uN−1

x0
x1 xN−1

xN
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Full Discretization using Euler’s Method

Full Discretization of OCP
Minimize

ϕ(x0, xN )

with respect to (xh, uh) subject to

xi+1 − xi

h
− f (ti , xi , ui ) = 0, i = 0, 1, . . . ,N − 1,

c(ti , xi , ui ) ≤ 0, i = 0, 1, . . . ,N,

ψ(x0, xN ) = 0.

Remarks:
I uN := uN−1

I constrained optimization problem, finite dimensional, large-scale, sparse
I uh can be interpreted as a piecewise constant function in Lnu

∞([t0, tf ])

I xh can be interpreted as a continuous, piecewise linear function in W nx
1,∞([t0, tf ])
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Example

Example
Minimize αx(1) + y(1) subject to

x′(t) = u(t), x(0) = 0,

y ′(t) =
1
2

u(t)2, y(0) = 0.

Fully discretized problem:

Minimize αxN + yN subject to

xi+1 − xi

h
− ui = 0, x0 = 0 (i = 0, . . . ,N − 1)

yi+1 − yi

h
−

1
2

u2
i = 0, y0 = 0 (i = 0, . . . ,N − 1)
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More General State Discretization

Grid: (equidistant for simplicity)

Gh := {ti := t0 + ih | i = 0, 1, . . . ,N}, h =
tf − t0

N
, N ∈ N

Example (Heun’s Method)

}
“stage derivatives”

xi+1 = xi +
h
2

(k1 + k2)

k1 = f (ti , xi , ?)

k2 = f (ti+1, xi + hk1, ?)

Then:

Φ is called increment function
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State Discretization

Example (Modified Euler Method)

xi+1 = xi + hk2

k1 = f (ti , xi , ?)

k2 = f (ti +
h
2
, xi +

h
2
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State Discretization

Example (Modified Euler Method)
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Then:
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State Discretization by Collocation

Collocation Idea
Approximate the solution x of the initial value problem

x′(t) = f (t, x(t), u(t)), x(ti ) = xi ,

in [ti , ti+1] by a polynomial p : [ti , ti+1]→ Rnx of degree s.

Construction:

I collocation points ti ≤ τ1 < τ2 < · · · τs ≤ ti+1

I collocation conditions:

p(ti ) = xi , p′(τk ) = f (τk , p(τk ), u(τk )), k = 1, . . . , s

I define xi+1 := p(ti+1)

In general: Every collocation method corresponds to an implicit Runge-Kutta method.
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State Discretization by Collocation

Example (Implicit Trapezoidal Rule)
For s = 2, τ1 = ti , τ2 = ti+1, the collocation idea yields

xi+1 = xi +
h
2

(f (ti , xi , ui ) + f (ti+1, xi+1, ui+1)) .

This is the implicit trapezoidal rule!
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Full Hermite-Simpson Discretization (Collocation)

Example (Hermite-Simpson, Collocation)
The Hermite-Simpson rule reads

xi+1 = xi +
h
6

(
fi + 4fi+ 1

2
+ fi+1

)
, i = 0, 1, . . . , N − 1,

where

fi := f (ti , xi , ui ), fi+1 := f (ti+1, xi+1, ui+1),

fi+ 1
2

:= f (ti +
h
2
, xi+ 1

2
, ui+ 1

2
),

xi+ 1
2

:=
1
2

(xi + xi+1) +
h
8

(fi − fi+1) .

Herein, we need to specify what ui+ 1
2

is supposed to be. Several choices are possible, e.g.

I if a continuous and piecewise linear control approximation is chosen, then
ui+ 1

2
= 1

2 (ui + ui+1);

I ui+ 1
2

can be introduced as an additional optimization variable without specifying any relations

to ui and ui+1.
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Full Discretization of OCP

Implementation of Constraints

I Version A: (condensed)
Stage equations kj = ... are not explicitly added as equality constraints in D-OCP.

Example: Heun

xi +
h
2

(f (ti , xi , ui ) + f (ti+1, xi + hf (ti , xi , ui ), ui ))− xi+1 = 0

I Version B: (stage formulation)
Stage equations kj = . . . are explicitly added as equality constraints in D-OCP.

Example: Heun

k1 − f (ti , xi , ui ) = 0

k2 − f (ti+1, xi + hk1, ui ) = 0

xi +
h
2

(k1 + k2)− xi+1 = 0

This version is typically implemented for implicit Runge-Kutta methods.
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A Unified Full Discretization Approach

Summary:

I control parameterization has an influence on the increment function Φ

I state discretization scheme can be formulated in different ways (condensed or
with stage equations)

I different nonlinear optimization problems arise (degree of sparsity differs)

Unification:

I control parameterization using B-splines

I one-step method with increment function Φ
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Control Parameterization

Grid: (equidistant for simplicity)

Gh := {t0 + ih | i = 0, 1, . . . ,N}, h =
tf − t0

N
, N ∈ N

Control parameterization via B-Splines
B-spline approximations of order k ∈ N:

uh(t ; w) :=

N+k−1∑
i=1

wi Bk
i (t)

Notation:
I control parameterization: w = (w1, . . . ,wM )> ∈ RMnu , M := N + k − 1
I basis functions Bk

i (elementary B-splines of order k )
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Control Parameterization

Example (Elementary B-splines Bk
i )

Elementary B-splines of order k = 1 are piecewise constant basis functions on Gh.

Elementary B-splines of orders k = 2, 3, 4: ([t0, tf ] = [0, 1], N = 5, equidistant grid)
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Properties:
I Bk

i has local support (depends on order k )
I smoothness of Bk

i can be adjusted with order k
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Alternative Parameterizations

Special cases:
I piecewise constant control approximation (k = 1):

w = (u0, u1, . . . , uN−1)>, ui = uh(ti ; w) (i = 0, . . . ,N − 1)

I continuous and piecewise linear control approximation (k = 2):

w = (u0, u1, . . . , uN )>, ui = uh(ti ; w) (i = 0, . . . ,N)

Alternatives to B-splines:
I interpolating cubic spline (non-local support, twice continuously differentiable)
I polynomials (non-local support, smooth) pseudospectral methods
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State Discretization by One-Step Method

Given: Control parameterization

uh(·; w) (w = control parameters; B-spline representation)

State discretization
For a given control parameterization uh(·; w) approximations xi ≈ x(ti ), ti ∈ Gh are
obtained by a one-step method

xi+1 = xi + hΦ(ti , xi ,w, h), i = 0, 1, . . . ,N − 1.

This yields a state approximation

xh = (x0, x1, . . . , xN )> ∈ R(N+1)nx
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Full Discretization of OCP

Discretization of the optimal control problem with Mayer-type objective function and
B-spline control parameterization of order k yields:

Fully discretized optimal control problem (D-OCP)
Find xh = (x0, . . . , xN )> ∈ R(N+1)nx and w = (w1, . . . ,wM )> ∈ RMnu such that

ϕ(x0, xN )

becomes minimal subject to the discretized dynamic constraints

xi + hΦ(ti , xi ,w, h)− xi+1 = 0, i = 0, 1, . . . ,N − 1,

the discretized control and state constraints

c(ti , xi , uh(ti ; w)) ≤ 0, i = 0, 1, . . . ,N,

and the boundary conditions
ψ(x0, xN ) = 0.
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Full Discretization of OCP

The fully discretized optimal control problem is a standard nonlinear optimization
problem, which is large-scale but exhibits a sparse structure:

Nonlinear Optimization Problem (NLP)
Minimize

Jh(z) := ϕ(x0, xN )

w.r.t. z = (xh, w)> subject to the constraints

Hh(z) = 0, Gh(z) ≤ 0,

where

Hh(z) :=


x0 + hΦ(t0, x0, w, h)− x1

...

xN−1 + hΦ(tN−1, xN−1, w, h)− xN

ψ(x0, xN )

 , Gh(z) :=


c(t0, x0, uh(t0; w))

...

c(tN , xN , uh(tN ; w))

 .
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Sparsity Structures in D-OCP

J′h(z) =
(
ϕ′x0

ϕ′xN
0
)
,

H′h(z) =


M0 −Id hΦ′w [t0]

. . .
. . .

...

MN−1 −Id hΦ′w [tN−1]

ψ′x0
ψ′xN

0

 , Mj := Id + hΦ′x [tj ]

G′h(z) =


c′x [t0] c′u [t0]u′h,w (t0; w)

. . .
...

c′x [tN ] c′u [tN ]u′h,w (tN ; w)

 ,

u′h,w (tj ; w) =
(

Bk
1 (tj ) · Id Bk

2 (tj ) · Id · · · Bk
M (tj ) · Id

)
Observation:
I Bk

i have local support =⇒ most entries in u′h,w (tj ; w) and in Φ′w [tj ] vanish

I H′h(z) and G′h(z) have a large-scale and sparse structure.
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Sparsity Structures in the Full Discretization Approach

Lagrange function:

Lh(z, λ, µ, σ) = ϕ(x0, xN ) + σ>ψ(x0, xN )

+

N−1∑
i=0

λ>i+1(xi + hΦ(ti , xi ,w, h)− xi+1) +
N∑

i=0

µ>i c(ti , xi , uh(ti ; w))

Hessian matrix:

∇2
zzLh(z, λ, µ, σ) =


L′′x0,x0

L′′x0,xN
L′′x0,w

. . .
...

L′′xN ,x0
L′′xN ,xN

L′′xN ,w

L′′w,x0
· · · L′′w,xN

L′′w,w


Note: The blocks L′′xj ,w = (L′′w,xj

)> and L′′w,w are sparse matrices if B-splines are used.
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Some Caution is Necessary

Caution!
See what happens if you apply the modified Euler method with additional optimization
variables uk+ 1

2
at the midpoints tk + h

2 to the following problem:

Minimize
1
2

∫ 1

0
u(t)2 + 2x(t)2dt

subject to the constraints

x′(t) =
1
2

x(t) + u(t), x(0) = 1.

The optimal solution is

x̂(t) =
2 exp(3t) + exp(3)

exp(3t/2)(2 + exp(3))
, û(t) =

2(exp(3t)− exp(3))

exp(3t/2)(2 + exp(3))
.
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Grid Refinement

Approaches:
I Refinement based on the local discretization error of the state dynamics and local

refinement at junction points of active/inactive state constraints, see [1, 2]
I Refinement taking into account the discretization error in the optimality system

including adjoint equations, see [3]

[1] Betts, J. T. and Huffman, W. P.

Mesh Refinement in Direct Transcription Methods for Optimal Control .

Optimal Control Applications and Methods, 19; 1–21, 1998.

[2] C. Büskens.

Optimierungsmethoden und Sensitivitätsanalyse für optimale Steuerprozesse mit Steuer- und Zustandsbeschränkungen.

PhD thesis, Fachbereich Mathematik, Westfälische Wilhems-Universität Münster, Münster, Germany, 1998.

[3] J. Laurent-Varin, F. Bonnans, N. Berend, C. Talbot, and M. Haddou.

On the refinement of discretization for optimal control problems.

IFAC Symposium on Automatic Control in Aerospace, St. Petersburg, 2004.
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Pseudospectral Methods

Approach:
I global approximation of control and state by Legendre or Chebyshev polynomials
I direct discretization
I sparse nonlinear programming solver

Advantages:
I exponential (or spectral) rate of convergence (faster than polynomial)
I good accuracy already with coarse grids

Disadvantages:
I oscillations for non-differentiable trajectories

[1] G. Elnagar, M. A. Kazemi, and M. Razzaghi.

The Pseudospectral Legendre Method for Discretizing Optimal Control Problems.

IEEE Transactions on Automatic Control, 40:1793–1796, 1995.

[2] J. Vlassenbroeck and R. Van Doreen.

A Chebyshev Technique for Solving Nonlinear Optimal Control Problems.

IEEE Transactions on Automatic Control, 33:333–340, 1988.

[3] F. Fahroo and I.M. Ross.

Direct Trajectory Optimization by a Chebyshev Pseudospectral Method.

Journal of Guidance Control and Dynamics, 25, 2002.
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Numerical Solution of D-OCP

It remains to solve D-OCP.

NLP

Minimize Jh(xh,w)

w.r.t. z = (xh,w)

subject to Gh(xh,w) ≤ 0

Hh(xh,w) = 0

Properties: (depend on discretization)
I high degree of nonlinearity
I large-scale and sparse Jacobians and Hessian
I particular block-sparse structure
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Solving Nonlinear Optimization Problems

Optimization frameworks: (many options!)
I nonlinear problems: sequential-quadratic

programming (SQP), interior-point methods (IP),
penalty or multiplier-penalty methods, semi-smooth
Newton methods, ...

I linear quadratic problems: active-set methods, IP,
semi-smooth Newton, ADMM, OSQP, ...

Globalization: (convergence from arbitrary points)
I line-search / trust-region methods / filter methods

Peripheral problems:
I sparsity / large scales / rank deficiencies /

regularization

Comprehensive textbook:

[1] J. Nocedal and S. J. Wright.
Numerical optimization.
2nd ed. New York, NY: Springer, 2006.
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semi-smooth Newton, ADMM, OSQP, ...

Globalization: (convergence from arbitrary points)
I line-search / trust-region methods / filter methods

Peripheral problems:
I sparsity / large scales / rank deficiencies /

regularization

Comprehensive textbook:

[1] J. Nocedal and S. J. Wright.
Numerical optimization.
2nd ed. New York, NY: Springer, 2006.
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Scheme for Linesearch SQP

success

no

update
solution

BFGS update

solve QP

of descent?
direction yes

initial guess
Start: 

linesearch

Main Loop Failsafe

yes

fail

no

success

Fail 1:
SLP step

Fail 2:
Aug Lagrangian step

Fail 3:
2nd order correction

Fail 4:
quit

success

fail
fail

achieved?
accuracy
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Linear Algebra

Interior-point methods and active set methods require to solve symmetric linear
equations with saddlepoint structure:

Q A> B>

A 0 0

B 0 −Λ−1S



Semismooth Newton methods yield unsymmetric systems:
Q A> B>

A 0 0

ΛB 0 −S


I Q = ∇2

zzLh(z, λ, µ, σ): Hessian of Lagrangian (or approximation)
I A = H′h(z): Jacobian of equality constraints Hh(z) = 0
I B = G′h(z): Jacobian of inequality constraints Gh(z) ≤ 0
I S, Λ: diagonal matrices, positiv (semi-)definite
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Direct Factorization of Sparse Matrices

sparse matrix dense LU re-ordering sparse LU
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External Sources

PARDISO (http://www.pardiso-project.org)

free for academic purposes; commercial licenses available; registration required

MA57, MA48 (http://www.hsl.rl.ac.uk)

free for academic purposes; commercial licenses available; registration required

SuperLU (http://crd.lbl.gov/∼xiaoye/SuperLU/)

copyright by Lawrence Berkeley National Laboratory; redistribution and use in
source and binary forms, with or without modification, are permitted
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Tailored Structure Exploitation for D-OCP

The following problem frequently occurs in linear model-predictive control:

Example (Linear-Quadratic D-OCP)
Minimize

1
2

N−1∑
k=0

(
x>k Vk xk + u>k Wk uk

)
subject to the constraints

xk+1 = Ak xk + Bk uk (k = 0, . . . ,N − 1)

x0 = x̄0 (x̄0 given)

Assumptions:

(A1) Wk symmetric and positive definite for all k

(A2) Vk symmetric and positive semi-definite for all k
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Tailored Structure Exploitation for D-OCP

Evaluation of the necessary Karush-Kuhn-Tucker (KKT) conditions yields a large-scale
and sparse linear equation:



Q0 E>0 M>0

Q1 E>1

. . .
. . .

QN−1

. . . M>N−1

E>N
E0
M0 E1

. . .
. . .

MN−1 EN





z0
z1

.

.

.
zN−1

zN

−σ

λ1

.

.

.
λN



=



0
0

.

.

.
0
0

−x̄0
0

.

.

.
0



where zk = (xk , uk ), k = 0, . . . , N − 1, zN = xN , SN = −I,

Qk =

 Vk
Wk

 , Mk =
(

Ak Bk

)
, Ek =

(
−I 0

)
(k = 0, . . . , N − 1)
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Tailored Structure Exploitation for D-OCP

Re-arranging the matrix by column and row permutations yields:

E0

E>0 Q0 M>0
M0 E1

E>1 Q1 M>1
M1 E2

. . .
. . .

. . .

. . .
. . . EN−1

E>N−1 QN−1 M>N−1

MN−1 EN

E>N





−σ
z0

λ1

z1

λ2

...
zN−1

λN

zN



=



−x̄0

0
0
0
0

...
0
0
0



 banded symmetric matrix, bandwidth depends only on number of states and controls
 computational effort for LU factorization depends linearly on the preview horizon N!
 LU factorization by, e.g., LAPACK or INTEL MKS routines DGBTRF, DGBTRS
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Tailored Structure Exploitation for D-OCP

I similar structures arise in Interior-Point methods, SQP methods, or semismooth
Newton methods when applied to D-OCP

I If coupled boundary conditions, coupled Mayer terms or parameters are included,
linear systems of the following type arise:[

Γ V>

V Λ

] [
x

y

]
=

[
α

β

]
(Γ large scale, banded, Λ low dimensional)

Solution procedure:

(1) Compute LU decompostion of block diagonal matrix Γ by LAPACK with OPENBLAS (or
INTEL MKL).

(2) Solve low dimensional (dense) system(
Λ− V Γ−1V>

)
y = β − V Γ−1

α

(3) Solve large dimensional (banded) system Γx = α− V>y .

[A. Huber, M. Gerdts, E. Bertolazzi: Structure Exploitation in an Interior-Point Method for Fully
Discretized, State Constrained Optimal Control Problems, Vietnam Journal of Mathematics,
Vol. 46(4), pp. 1089–1113, 2018.]
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Path Generation, Test 1

Solution with Interior Point method on a horizon of 500 [m] and 80 gridpoints needs
0.022 [s] to optimize (solver: https://www.ocpbasic.com/)

https://www.ocpbasic.com/
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Path Generation, Test 1, parallel Γ−1V>

Grid points
LAPACK KKT HSL/MA57

Tges Tlin Tges Tlin

10 0.002600 s 0.001125 s 0.003664 s 0.002169 s

100 0.022445 s 0.008535 s 0.035134 s 0.020237 s

1000 0.152356 s 0.080296 s 0.555060 s 0.479449 s

10000 1.592431 s 0.754386 s 10.160251 s 9.498326 s

100000 10.875577 s 6.980800 s 427.733114 s 423.264320 s

150000 17.158301 s 10.833331 s 931.503742 s 924.729321 s

Tabelle: Test of linear solvers in an Interior Point method (solver: https://www.ocpbasic.com/)

export OMP PROC BIND=TRUE
export OMP WAIT POLICY=PASSIVE

https://www.ocpbasic.com/
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Path Generation Full Lap

Optimal control problem with free final time and boundary conditions.

Solution for a lap with 600 gridpoints needs 0.26 s to optimize.



Numerical Methods for ODE Optimal Control Problems
Matthias Gerdts

Contents

Introduction

Direct Discretization : First Discretize – Then Optimize
Overview
Full Discretization (Collocation, Direct Transcription)
Numerical Solution of Discretized Problem
Reduced Discretization (Shooting)
Adjoint Estimation
Convergence

Applications



Numerical Methods for ODE Optimal Control Problems
Matthias Gerdts

Example

Example
Minimize αx(1) + y(1) subject to

x′(t) = u(t), x(0) = 0,

y ′(t) =
1
2

u(t)2, y(0) = 0.

Fully discretized problem:

Minimize αxN + yN w.r.t. (x0, y0, u0, . . . , xN−1, yN−1, uN−1, xN , yN )> subject to

xi+1 − xi

h
− ui = 0, x0 = 0 (i = 0, . . . ,N − 1)

yi+1 − yi

h
−

1
2

u2
i = 0, y0 = 0 (i = 0, . . . ,N − 1)



Numerical Methods for ODE Optimal Control Problems
Matthias Gerdts

Example

Example
Minimize αx(1) + y(1) subject to

x′(t) = u(t), x(0) = 0,

y ′(t) =
1
2

u(t)2, y(0) = 0.

Fully discretized problem:

Minimize αxN + yN w.r.t. (x0, y0, u0, . . . , xN−1, yN−1, uN−1, xN , yN )> subject to

xi+1 − xi

h
− ui = 0, x0 = 0 (i = 0, . . . ,N − 1)

yi+1 − yi

h
−

1
2

u2
i = 0, y0 = 0 (i = 0, . . . ,N − 1)



Numerical Methods for ODE Optimal Control Problems
Matthias Gerdts

Example

Example
Minimize αxN + yN subject to

xi+1 − xi

h
− ui = 0, x0 = 0 (i = 0, . . . ,N − 1)

yi+1 − yi

h
−

1
2

u2
i = 0, y0 = 0 (i = 0, . . . ,N − 1)

Solving constraints yields:

xi = h
i−1∑
j=0

uj , yi =
h
2

i−1∑
j=0

u2
j (i = 1, . . . ,N)

Reduced discretization:

Minimize h
N−1∑
j=0

(
αuj +

1
2

u2
j

)
w.r.t. uh = (u0, . . . , uN−1)>
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Reduced Discretization (Direct Single Shooting)

Fully discretized optimal control problem
Minimize

ϕ(x0, xN )

s.t.

xi + hΦ(ti , xi ,w, h)− xi+1 = 0, i = 0, 1, . . . ,N − 1,

c(ti , xi , uh(ti ; w)) ≤ 0, i = 0, 1, . . . ,N,

ψ(x0, xN ) = 0.

Notation:
I xh = (x0, . . . , xN )> : state discretization
I w = (w1, . . . ,wM )> : control parameterization
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Reduced Discretization (Direct Single Shooting)

Reduction of size by solving the discretized differential equations:

x1 = x0 + hΦ(t0, x0,w, h)

=: X1(x0,w),

x2 = x1 + hΦ(t1, x1,w, h)

= X1(x0,w) + hΦ(t1, X1(x0,w),w, h) =: X2(x0,w),

...

xN = xN−1 + hΦ(tN−1, xN−1,w, h)

= XN−1(x0,w) + hΦ(tN−1, XN−1(x0,w),w, hN−1) =: XN (x0,w).

Remarks:
I The state trajectory is fully determined by the initial value x0 and the control

parameterization w (direct shooting idea).
I The above procedure is nothing else than solving the initial value problem

x′(t) = f (t, x(t), uh(t ; w)), x(t0) = x0

with the one-step method with increment function Φ.
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Reduced Discretization (Direct Single Shooting)

Reduced Discretization (RD-OCP)
Minimize

ϕ(x0, XN (x0,w))

with respect to x0 ∈ Rnx and w ∈ RMnu subject to the constraints

ψ(x0, XN (x0,w)) = 0,

c(tj , Xj (x0,w), uh(tj ; w)) ≤ 0, j = 0, 1, . . . ,N.

Remarks:
I much smaller than D-OCP (fewer optimization variables and fewer constraints)
I but: more nonlinear than D-OCP
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Reduced Discretization (Direct Single Shooting)

The reduced discretization is again a finite dimensional nonlinear optimization problem,
but of reduced size:

Reduced Nonlinear Optimization Problem (R-NLP)
Minimize

Jh(z) := ϕ(x0, XN (x0, w))

w.r.t. z = (x0, w)> ∈ Rnx +Mnu subject to the constraints

Hh(z) = 0, Gh(z) ≤ 0,

where

Hh(z) := ψ(x0, XN (x0, w)), Gh(z) :=


c(t0, x0, uh(t0; w))

c(t1, X1(x0, w), uh(t1; w))

...

c(tN , XN (x0, w), uh(tN ; w))

 .
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Reduced Discretization (Direct Single Shooting)

Derivatives: (required in NLP solver)

J′h(z) =
(
ϕ′x0

+ ϕ′xf
· X ′N,x0

∣∣∣ ϕ′xf
· X ′N,w

)

G′h(z) =



c′x [t0] c′x [t0] + c′u [t0] · u′h,w (t0; w)

c′x [t1] · X ′1,x0
c′x [t1] · X ′1,w + c′u [t1] · u′h,w (t1; w)

...
...

c′x [tN ] · X ′N,x0
c′x [tN ] · X ′N,w + c′u [tN ] · u′h,w (tN ; w)


H′h(z) =

(
ψ′x0

+ ψ′xf
· X ′N,x0

∣∣∣ ψ′xf
· X ′N,w

)
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Computation of Derivatives

How to compute derivatives J′h, G′h, H′h and/or sensitivity matrices

X ′i,x0
(x0,w), X ′i,w (x0,w), i = 1, . . . ,N ?

Different approaches exist:

(a) The sensitivity differential equation approach or Internal Numerical Differentiation
(IND) approach [Bock] is advantageous if the number of constraints is (much)
larger than the number of variables in the discretized problem.

(b) The adjoint equation approach is preferable if the number of constraints is less
than the number of variables in the discretized problem.

(c) A powerful tool for the evaluation of derivatives is algorithmic differentiation, see
www.autodiff.org.

(d) The approximation by finite differences is straightforward, but has the drawback of
being computationally expensive and often suffers from low accuracy.
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Gradient Computation by Adjoint Equation

Given:
I One-step discretization scheme (z = (x0,w)>):

X0(z) = x0,

Xi+1(z) = Xi (z) + hΦ(ti , Xi (z),w, h), i = 0, 1, . . . ,N − 1,

I A function Γ of type
Γ(z) := γ(x0, XN (z),w).

 objective function, boundary condition, state constraint (with N replaced by i)

Goals:

I Compute gradient of Γ with respect to z.
I Avoid the costly computation of the sensitivity matrices Si , i = 0, . . . ,N, with IND.
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Gradient Computation by Adjoint Equation

Define the auxiliary functional Γa using multipliers λi , i = 1, . . . ,N:

Γa(z) := Γ(z) +

N−1∑
i=0

λ>i+1 (Xi+1(z)− Xi (z)− hΦ(ti , Xi (z),w, h))

Differentiating Γa with respect to z leads to the expression

Γ′a(z) =
(
γ′x0
− λ>1 − hλ>1 Φ′x [t0]

)
· S0 +

(
γ′xN

+ λ>N

)
· SN + γ′w

+

N−1∑
i=1

(
λ>i − λ

>
i+1 − hλ>i+1Φ′x [ti ]

)
· Si −

N−1∑
i=0

hλ>i+1Φ′w [ti ] ·
∂w
∂z
.

Si = X ′i (z) : sensitivities (costly to compute; avoid!)

Idea: Choose λi such that terms involving Si vanish.
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Gradient Computation by Adjoint Equation

Discrete adjoint equation: (to be solved backwards in time)

λ>i − λ
>
i+1 − hλ>i+1Φ′x [ti ] = 0, i = 0, . . . ,N − 1

Transversality condition: (terminal condition at t = tN )

λ>N = −γ′xN
(x0, XN (z),w)

Then:

Γ′a(z) =
(
γ′x0
− λ>0

)
· S0 + γ′w −

N−1∑
i=0

hλ>i+1Φ′w [ti ] ·
∂w
∂z
,

where S0 =
(

I 0
)

.

What is the relation between Γ′a and Γ′ ?
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λ>i − λ
>
i+1 − hλ>i+1Φ′x [ti ] = 0, i = 0, . . . ,N − 1

Transversality condition: (terminal condition at t = tN )

λ>N = −γ′xN
(x0, XN (z),w)

Then:

Γ′a(z) =
(
γ′x0
− λ>0

)
· S0 + γ′w −

N−1∑
i=0

hλ>i+1Φ′w [ti ] ·
∂w
∂z
,
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I 0
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Gradient Computation by Adjoint Equation

Theorem
It holds

Γ′(z) = Γ′a(z) =
(
γ′x0
− λ>0

)
· S0 + γ′w −

N−1∑
i=0

hλ>i+1Φ′w [ti ] ·
∂w
∂z
.

Notes:

I With Γ′(z) = Γ′a(z) we found a formula for the gradient of Γ.
I size of the adjoint equation independent of dimension of w
I number of required adjoint equations depends on number of constraints
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Gradient Computation by Adjoint Equation

Example
We compare the CPU times for the emergency landing maneuver without dynamic
pressure constraint for the sensitivity equation approach and the adjoint equation
approach for different values of N:
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Optimal Control Problem and its Euler Discretization

Goal:
I Derive adjoint estimates from the optimal solution of D-OCP

Approach:

I Compare necessary conditions for OCP and its discretization D-OCP

I Here we restrict the discussion to problems with mixed control-state constraints
only.

I Pure state constraints are discussed, e.g., in
[M. Gerdts: Optimal Control of ODEs and DAEs, De Gruyter, 2011]
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Optimal Control Problem and its Discretization

OCP
Find an absolutely continuous state vector x
and an essentially bounded control vector u
such that

ϕ(x(t0), x(tf ))

becomes minimal subject to the differential
equation

x′(t) = f (t, x(t), u(t)) a.e. in [t0, tf ],

the control-state constraints

c(t, x(t), u(t)) ≤ 0 a.e. in [t0, tf ],

and the boundary conditions

ψ(x(t0), x(tf )) = 0.

D-OCP
Find xh = (x0, . . . , xN )> and
uh = (u0, . . . , uN−1)> such that

ϕ(x0, xN )

becomes minimal subject to the discretized
dynamic constraints

xi +hi f (ti , xi , ui )−xi+1 = 0, i = 0, 1, . . . , N−1,

the discretized control-state constraints

c(ti , xi , ui ) ≤ 0, i = 0, 1, . . . , N − 1,

and the boundary conditions

ψ(x0, xN ) = 0.
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Necessary Conditions of Optimal Control Problem

Augmented Hamilton function: Ĥ(t, x, u, λ, η) := λ
>f (t, x, u) + η>c(t, x, u)

Local Minimum Principle
(x̂, û) local minimum of OCP. Then:
I `0 ≥ 0, (`0, σ, λ, η) 6= 0
I Adjoint differential equation:

λ
′(t) = −∇xĤ(t, x̂(t), û(t), λ(t), η(t))

I Transversality conditions:

λ(t0) = −∇x0

(
`0ϕ + σ>ψ

)
, λ(tf ) = ∇xf

(
`0ϕ + σ>ψ

)
I Stationarity of augmented Hamilton function: Almost everywhere we have

∇uĤ(t, x̂(t), û(t), λ(t), η(t)) = 0

I Complementarity conditions:

0 ≤ η(t), η(t)>c(t, x̂(t), û(t)) = 0
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Necessary Conditions of Discretized Optimal Control Problem

Theorem (Discrete Minimum Principle)
(x̂h, ûh) local minimum of D-OCP. Then:
I `0 ≥ 0, (`0, κ, λ, ζ) 6= 0
I Discrete adjoint equations: For i = 0, . . . , N − 1 we have

λi+1 − λi

hi
= −∇xĤ

(
ti , x̂i , ûi , λi+1,

ζi

hi

)
I Discrete transversality conditions:

λ0 = −∇x0

(
`0ϕ + κ>ψ

)
, λN = ∇xf

(
`0ϕ + κ>ψ

)
I Discrete stationarity conditions: For i = 0, . . . , N − 1 we have

∇uĤ
(

ti , x̂i , ûi , λi+1,
ζi

hi

)
= 0

I Discrete complementarity conditions:

0 ≤ ζi , ζ
>
i c(ti , x̂i , ûi ) = 0, i = 0, . . . , N − 1

Proof: evaluation of Fritz John conditions from nonlinear programming
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Approximation of Adjoints – Comparison with Minimum Principle

Adjoints:
I Discrete:

λi+1 − λi

hi
= −∇xĤ

(
ti , x̂i , ûi , λi+1,

ζi

hi

)
,

λN = ∇xf

(
`0ϕ + κ>ψ

)

I Continuous:

λ′(t) = −∇xĤ(t, x̂(t), û(t), λ(t), η(t))

λ(tf ) = ∇xf

(
`0ϕ + σ>ψ

)

Interpretation: (κ, λi , ζi : multipliers of D-OCP)

κ ≈ σ, λi ≈ λ(ti ),
ζi

hi
≈ η(ti )
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Optimal Control Problem with Mixed Control-State Constraints

OCP
Minimize

ϕ(x(0), x(1))

with respect to
(x, u) ∈ W nx

1,∞([0, 1])× Lnu
∞([0, 1])

subject to

ODE

x′(t) = f (x(t), u(t))

control-state constraints

c(x(t), u(t)) ≤ 0

boundary conditions
ψ(x(0), x(1)) = 0
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Discretized Optimal Control Problem

Grid sequence:
I {GN}N∈N, GN := {0 = t0 < t1 < . . . < tN = 1}, h := max

i
hi , hi = ti − ti−1

DOCP on GN

Minimize
ϕ(xh(t0), xh(tN ))

with respect to
(xh, uh) ∈ W nx

1,∞,h([0, 1])× Lnu
∞,h([0, 1])

subject to

f (xh(ti ), uh(ti ))− xh
′(ti ) = 0 (i = 1, . . . ,N)

c(xh(ti ), uh(ti )) ≤ 0 (i = 1, . . . ,N)

ψ(xh(t0), x(tN )) = 0

xh
′(ti ) :=

xh(ti )− xh(ti−1)

hi
(backward difference, implicit Euler)
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Convergence Results – Overview (not complete)

ODEs, Index-1 DAEs, continuous solutions:
[A. L. Dontchev, W. W. Hager, and K. Malanowski, Error bounds for Euler approximation of a state and control constrained optimal
control problem, Numerical Functional Analysis and Optimization, 21 (2000), 653–682]

[K. Malanowski, Ch. Büskens, and H. Maurer, Convergence of approximations to nonlinear optimal control problems, in “Mathe-
matical Programming with Data Perturbations” (ed. A. Fiacco), volume 195, “Lecture Notes in Pure and Appl. Math.,” Dekker, New
York, (1997), 253–284.]

[B. Martens, M. Gerdts: Convergence Analysis of the Implicit Euler-discretization and Sufficient Conditions for Optimal Control
Problems Subject to Index-one Differential-algebraic Equations, Set-Valued and Variational Analysis, 2018, DOI 10.1007/s11228-
018-0471-x]

ODEs, higher order convergence:
[A. L. Dontchev, W. W. Hager, and V. M. Veliov, Second-Order Runge-Kutta Approximations in Control Constrained Optimal Control,
SIAM Journal on Numerical Analysis, 38 (2000), pp. 202–226.]

[W. W. Hager, Runge-Kutta methods in optimal control and the transformed adjoint system, Numerische Mathematik, 87 (2000),
pp. 247–282.]

ODE case, discontinuous controls
[W. Alt, R. Baier, M. Gerdts, and F. Lempio, Approximation of linear control problems with bang-bang solutions, Optimization: A
Journal of Mathematical Programming and Operations Research, (2011), DOI 10.1080/02331934.2011.568619.]

[W. Alt, R. Baier, M. Gerdts, and F. Lempio, Error bounds for Euler approximation of linear-quadratic control problems with bang-
bang solutions, Numerical Algebra, Control and Optimization, 2 (2012), 547–570.]

[M. Gerdts, M. Kunkel: Convergence Analysis of Euler Discretization of Control-State Constrained Optimal Control Problems with
Controls of Bounded Variation, Journal of Industrial and Management Optimization, Vol. 10(1), pp. 311-336, 2014.]

Hamiltonian systems:
S. Ober-Blöbaum, O. Junge, J. E. Marsden: Discrete mechanics and optimal control: an analysis, ESAIM: Control, Optimisation
and Calculus of Variations, ESAIM: COCV 17 (2011) 322–352 DOI: 10.1051/cocv/2010012
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Discretization and Convergence – A Framework

OCP (infinite dimensional)

optimal solution: (x̂, û)

⇓

discretization

⇓

NLP (finite dimensional)

Min Jh(xh, uh)

s.t. Gh(xh, uh) ≤ 0

Hh(xh, uh) = 0

optimal solution: (x̂h, ûh)

generalized equation

0 ∈ F (ẑ) + NK (ẑ)

generalized equation

0 ∈ Fh(ẑh) + NKh (ẑh)

=⇒
necessary

ẑ = (x̂, û, λ̂, η̂, σ̂)

=⇒
necessary

ẑh = (x̂h, ûh, λ̂h, η̂h, σ̂h)

⇑

⇑

Convergence ?

lim
h↓0
‖ẑ − ẑh‖Z = 0
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‖ẑ − ẑh‖Z = 0



Numerical Methods for ODE Optimal Control Problems
Matthias Gerdts

Convergence

General concept

consistency + stability =⇒ convergence
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Spaces and Restriction Operator

Restriction operator: ∆h : Z −→ Zh with, e.g.,

(∆hx)(t) = x(ti−1) + x′h(ti )(t − ti−1) for t ∈ (ti−1, ti ]

(∆hu)(t) = u(ti ) for t ∈ (ti−1, ti ]
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Recall: Zh ⊂ Z , same norms
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Convergence

(I) Smoothness: There exists CF > 0 independent of h such that∥∥∥F ′h
(

z1
h

)
− F ′h

(
z2

h

)∥∥∥
L(Zh,Ωh)

≤ CF

∥∥∥z1
h − z2

h

∥∥∥
Z

∀z1
h , z

2
h ∈ Zh

(II) Consistency: For all h > 0 there exist ω̂h ∈ Ωh with

0 ∈ Fh (∆hẑ) + ω̂h + NKh (∆hẑ)

and for h→ 0 we have

‖∆hẑ − ẑ‖Z → 0, ‖ω̂h‖Ω → 0
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Convergence

(III) Uniform strong regularity (Stability): For h > 0 and δ sufficiently small there exists
a unique solution zh(δ) of

δ ∈ Fh (∆hẑ) + ω̂h + F ′h (∆hẑ) (zh − ∆hẑ) + NKh (zh) ,

and for all perturbations δ1, δ2 sufficiently small the inequality

‖zh (δ1)− zh (δ2) ‖Z ≤ ` ‖δ1 − δ2‖Ω

is satisfied for some ` > 0 independent of h.
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Convergence

Then:

Convergence Theorem
With (I)-(III) there exists a solution ẑh of 0 ∈ Fh(zh) + NKh (zh) and

‖ẑh − ẑ‖Z ≤ C

 ‖ω̂h‖Z∗︸ ︷︷ ︸
consistency error

+ ‖∆hẑ − ẑ‖Z︸ ︷︷ ︸
interpolation error



[K. Malanowski, Ch. Büskens, and H. Maurer, Convergence of approximations to nonlinear
optimal control problems, in “Mathematical Programming with Data Perturbations” (ed. A.
Fiacco), volume 195, “Lecture Notes in Pure and Appl. Math.,” Dekker, New York, (1997),
253–284.]

[S. M. Robinson: Strongly regular generalized equations, Math. Oper. Research, 5, pp. 43-62,
1980]
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Standing Assumptions

Throughout we assume:

Assumption (A1)
(x̂, û) ∈ W nx

2,∞([0, 1])×W nu
1,∞([0, 1]) is a local (weak) minimizer.

Note the smoothness: û is assumed to be Lipschitz.

Assumption (A2)
sufficient smoothness of functions ϕ, f , c
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Assumptions

Assumption (A3): regularity condition

∃α, β > 0 ∀d, t ∈ [0, 1] :
∥∥∥Cα(t)>d

∥∥∥ ≥ β‖d‖
with

Cα(t) :=
(

c′j,u [t]
)

j∈Jα(t)

and

Jα(t) :=
{

j | cj [t] ≥ −α
}
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Assumptions

Assumption (A4): controllability
For all e there exists (x, u) such that

x′(t) = A(t)x(t) + B(t)u(t)

0 = Dα(t)x(t) + Cα(t)u(t)

e = ψ′x0
x(0) + ψ′x1

x(1)

with

A(t) := f ′x [t], B(t) := f ′u [t], Dα(t) :=
(

c′j,x [t]
)

j∈Jα(t)
, Cα(t) :=

(
c′j,u [t]

)
j∈Jα(t)
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Assumptions

Assumptions (A5): Coercivity
There exist ν, γ > 0 such that(

x(0)

x(1)

)>
∇2
(
ϕ(x(0), x(1)) + σ>ψ(x(0), x(1))

) ( x(0)

x(1)

)

+

1∫
0

(
x(t)

u(t)

)>
∇2

(x,u)H[t]

(
x(t)

u(t)

)
dt ≥ γ ‖ (x, u) ‖2

X2×U2

for all (x, u) ∈ X2 × U2 with

0 = x′(t)− A(t) x(t)− B(t) u(t)

0 = ψ
′
x0

x(0) + ψ′x1
x(1)

0 = Ďν (t) x(t) + Čν (t) u(t)

and (
Ďν (t), Čν (t)

)
:=
(

c′j,x [t], c′j,u [t]
)

j∈Jν+ (t)
, Jν+ (t) := {j ∈ J0(t) | ηj (t) > ν}
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Implications

Assumptions (A1)– (A4) imply the following:
I existence of Lagrange multipliers such that KKT conditions hold with augmented

Hamiltonian
H(x, u, λ, η) = λ>f (x, u) + η>c(x, u)

I smoothness: λ ∈ W nx
2,∞([0, 1]), η ∈ W nc

1,∞([0, 1])

Assumptions (A1)– (A5) imply the following:
I the discrete problem satisfies an analog coercivity condition
I the Legendre-Clebsch condition holds (continuous & discrete)
I the discrete problem has a locally unique solution
I discrete Legendre-Clebsch condition yields uniform strong regularity in the

L∞-norm (exploiting a parametric sensitivity analysis)
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Final Result

Finally:

Convergence Theorem
If assumptions (A1) - (A5) are satisfied then for h > 0 sufficiently small there exists a
locally unique KKT point ẑh of (DOCP) and

‖ẑh − ∆hẑ‖Z ≤ ` h,

where ` is independent of h.

Details:

[1] Björn Martens:
Necessary Conditions, Sufficient Conditions, and Convergence Analysis for
Optimal Control Problems with Differential-Algebraic Equations,
PhD thesis, Institute of Applied Mathematics and Scientific Computing, Universität
der Bundeswehr, 2019.
https://athene-forschung.unibw.de/130232

https://athene-forschung.unibw.de/130232
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Research @ Engineering Mathematics

Application: Automatic Driving
I Modelling of an “optimal” driver

(time minimal, fuel efficient)
I Consideration of track bounds and

obstacles
I Online optimization
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Nonlinear Kinematic Model

Motion in (s,r)-system along a
reference curve
Given:
I reference curve γr = (xr , yr )>

I curvature κr

Motion in moving reference system
aligned with γr :

s′ =
v cos(ψ − ψr )

1− r · κr (s)

r ′ = v sin(ψ − ψr )

ψ′ = v · κ
κ′ = u

ψ′r = κr (s) · s′

(x, y)

r

γ′r (s)

γr (s)

ψr (s)

ψ

ψ − ψr

xI

yI

xC

yC
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Decoupling

Decoupling ...

Path Planning (yields parametrized curve w.r.t. arclength)
Minimize

−α1s(L) + α2

∫ L

0
κ(`)2d` + α3

∫ L

0
u(`)2d`

s.t. dynamics with v(t) ≡ 1, initial conditions, and control/state constraints

(r , u, κ) ∈ [−rmax , rmax ]× [−umax , umax ]× [−κmax , κmax ]

and

Velocity Profile Generation
Find velocity profile v(`) for ` ∈ [0, L] on computed path.

... increases robustness and flexibility.



Numerical Methods for ODE Optimal Control Problems
Matthias Gerdts

Decoupling

Decoupling ...

Path Planning (yields parametrized curve w.r.t. arclength)
Minimize

−α1s(L) + α2

∫ L

0
κ(`)2d` + α3

∫ L

0
u(`)2d`

s.t. dynamics with v(t) ≡ 1, initial conditions, and control/state constraints

(r , u, κ) ∈ [−rmax , rmax ]× [−umax , umax ]× [−κmax , κmax ]

and

Velocity Profile Generation
Find velocity profile v(`) for ` ∈ [0, L] on computed path.

... increases robustness and flexibility.



Numerical Methods for ODE Optimal Control Problems
Matthias Gerdts

Decoupling

Decoupling ...

Path Planning (yields parametrized curve w.r.t. arclength)
Minimize

−α1s(L) + α2

∫ L

0
κ(`)2d` + α3

∫ L

0
u(`)2d`

s.t. dynamics with v(t) ≡ 1, initial conditions, and control/state constraints

(r , u, κ) ∈ [−rmax , rmax ]× [−umax , umax ]× [−κmax , κmax ]

and

Velocity Profile Generation
Find velocity profile v(`) for ` ∈ [0, L] on computed path.

... increases robustness and flexibility.



Numerical Methods for ODE Optimal Control Problems
Matthias Gerdts

Decoupling

Decoupling ...

Path Planning (yields parametrized curve w.r.t. arclength)
Minimize

−α1s(L) + α2

∫ L

0
κ(`)2d` + α3

∫ L

0
u(`)2d`

s.t. dynamics with v(t) ≡ 1, initial conditions, and control/state constraints

(r , u, κ) ∈ [−rmax , rmax ]× [−umax , umax ]× [−κmax , κmax ]

and

Velocity Profile Generation
Find velocity profile v(`) for ` ∈ [0, L] on computed path.

... increases robustness and flexibility.



Numerical Methods for ODE Optimal Control Problems
Matthias Gerdts

Realization on Cars
CPU times: (N = 18)

Control architecture:
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Path Planning of a UAV

Motion in a flight corridor
I reference ground curve

γr (s) =

(
xr (s)

yr (s)

)
,

curvature κr , curve parameter s
I altitude bounds

zmin(s) ≤ z(s) ≤ zmax (s)

I width bounds

rmin(s) ≤ r(s) ≤ rmax (s)

[M. Burger, M. Gerdts: DAE Aspects in Vehicle Dynamics and Mobile Robotics, in Applications of Differential-Algebraic Equations:

Examples and Benchmarks, Differential-Algebraic Equations Forum DAE-F, Eds. S. Campbell, A. Ilchmann, V. Mehrmann, T. Reis, Springer,

pp. 37–80, 2019.]



Numerical Methods for ODE Optimal Control Problems
Matthias Gerdts

Path Planning of a UAV

Motion in a flight corridor

s′ =
vxy · cos(ψ − ψr )

1− r · κr (s)

r ′ = vxy · sin(ψ − ψr )

z′ = vz

m · v′x = u1 · cosφ · sinκ− Dx

m · v′y = −u1 · sinφ− Dy

m · v′z = u1 · cos(φ) · cos(κ)− m · g − Dz

φ
′ =

u2 − φ
δ

κ
′ =

u3 − κ
δ

Notation:
I (s, r , z)=position in curvilinear

coordinates
I u1 = thrust
I u2 = commanded roll angle
I u3 = commanded pitch angle

I vxy =
√

v2
x + v2

y ,

ψ = arctan(vy/vx )

I δ = delay factor
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Path Planning of a UAV

Objective: (to be minimized)∫ L

0

1
v(`)

d`︸ ︷︷ ︸
flight time

+

∫ L

0
u1(`)2 + u2(`)2 + u3(`)2 d`︸ ︷︷ ︸

control effort

State and control constraints:

zmin(s(`)) ≤ z(`) ≤ zmax (s(`)) (altitude)

rmin(s(`)) ≤ r(`) ≤ rmax (s(`)) (offset)

vmin ≤ v ≤ vmax (velocity)

|φ| ≤ φmax , |κ| ≤ κmax (angles)

ui ∈ [ui,min, ui,max ], i = 1, 2, 3 (controls)
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NMPC Results Quadrocopter

States: (offset r , altitude, velocity)
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Velocity vs arclength

States: (xy-path, roll and pitch angle)
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NMPC Results Quadrocopter

Controls: (thrust level, commanded roll and pitch)
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m = 3 [kg], δ = 0.1, vmax = 15 [m/s], φmax = κmax = 45◦, L = 20 [m], N = 30, Tmax = 50 [N]

I total flight time: 284.59 [s]
I CPU time: 460.015 [s] for 5001 OCPs
I CPU time per OCP: 0.09 [s]
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NMPC Results Quadrocopter
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Example: Docking Maneuver

I Aim: Compute fuel efficient docking
maneuvers w/o robotic manipulators to
tumbling targets

I Multiple phases: Synchronization, docking,
stabilization, transfer

I Space debris removal, landing on moving
platforms

landing – docking, phase 1 – docking, phase 2
[M. Kreher: Optimal Docking Maneuvers for Space Debris Removal, Master thesis, UniBwM, 2017]
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Automated Interconnected Vehicle-in-the-Loop (AN-VIL) @ Engineering
Mathematics

I platform combining
virtual reality & real driving & automated driving

I two experimental Audi A6 equipped with VTD,
IMU, D-GPS

I versatile and safe tool in automated driving,
cooperative driving, and human-machine
interaction
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Concept

GNSS

in
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N
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P
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Virtual Test−Drive

control

path 

position
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Testing Area @ UniBw M
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Research

Automated Driving Cooperative Driving
Human-Machine-

Interaction

I path planning and
tracking

I MPC / online
optimization

I obstacle avoidance

I distributed control
I hierarchies vs Nash

equilibria
I obstacle avoidance

I many user studies
performed by Prof.
Färber and Prof.
Nitsch, LRT-11

I identification of
comfort criteria
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Vision

I driving in the same virtual scenario ...
 virtually dangerous scenarios possible

I ... but physically separated
 physically safe at all times

I interactions
human – human
human – automated (real/virtual)
automated – automated (real/virtual)



Numerical Methods for ODE Optimal Control Problems
Matthias Gerdts

Extensions

Not discussed ...

I mixed-integer optimal control
 lectures by Christian Kirches, Sven Leyffer

I model-predictive control
 lectures by Karl Worthmann

I optimal control subject to differential-algebraic equations (DAEs)

I ... and many other topics in optimal control
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Some Resources
Optimal control software:

I CasADI, ACADO: M. Diehl et al.; http://casadi.org; http://sourceforge.net/p/acado/
I NUDOCCCS: C. Büskens, University of Bremen
I SOCS: J. Betts, The Boeing Company, Seattle; http://www.boeing.com/boeing/phantom/socs/
I DIRCOL: O. von Stryk, TU Darmstadt; http://www.sim.informatik.tu-darmstadt.de/res/sw/dircol
I MUSCOD-II: H.G. Bock et al., IWR Heidelberg; http://www.iwr.uni-heidelberg.de/∼agbock/RESEARCH/muscod.php
I MISER: K.L. Teo et al., Curtin University, Perth; http://school.maths.uwa.edu.au/ les/miser/
I PSOPT: http://www.psopt.org/
I FALCON.m: https://www.fsd.lrg.tum.de/software/falcon-m/
I GPOPS-II: http://www.gpops2.com/
I ...

Optimization software:
I WORHP (sparse large-scale problems): C. Büskens/M. Gerdts, https://www.worhp.de
I NPSOL (dense problems), SNOPT (sparse large-scale problems): Stanford Business Software; http://www.sbsi-sol-optimize.com
I KNITRO (sparse large-scale problems): Ziena Optimization; http://www.ziena.com/knitro.htm
I IPOPT (sparse large-scale problems): A. Wächter: https://projects.coin-or.org/Ipopt
I filterSQP: R. Fletcher, S. Leyffer; http://www.mcs.anl.gov/ leyffer/solvers.html
I ooQP: M. Gertz, S. Wright; http://pages.cs.wisc.edu/ swright/ooqp/
I qpOASES: H.J. Ferreau, A. Potschka, C. Kirches; http://homes.esat.kuleuven.be/ optec/software/qpOASES/
I OSQP: B. Stellato, G. Banjac, P. Goulart, A. Bemporad, S. Boyd; https://osqp.org/
I ...

Links:
I Decision Tree for Optimization Software; http://plato.la.asu.edu/guide.html
I CUTEr: large collection of optimization test problems; http://www.cuter.rl.ac.uk/
I COPS: large-scale optimization test problems; http://www.mcs.anl.gov/∼more/cops/
I MINTOC: testcases for mixed-integer optimal control; http://mintoc.de/
I ...



Numerical Methods for ODE Optimal Control Problems
Matthias Gerdts

Acknowledgement

The research was partly funded by:

(SeRANIS, MORE, EMERGENCY-VRD, MissionLab)
https://dtecbw.de

https://dtecbw.de


Numerical Methods for ODE Optimal Control Problems
Matthias Gerdts

Thanks for your Attention!

Questions?

Further information:

matthias.gerdts@unibw.de
www.unibw.de/ingmathe
www.optimal-control.de

Fotos: http://de.wikipedia.org/wiki/München
Magnus Manske (Panorama), Luidger (Theatinerkirche), Kurmis (Chin. Turm), Arad Mojtahedi (Olympiapark), Max-k (Deutsches Museum), Oliver Raupach (Friedensengel), Andreas Praefcke (Nationaltheater)


	Introduction
	Direct Discretization : First Discretize – Then Optimize
	Overview
	Full Discretization (Collocation, Direct Transcription)
	Numerical Solution of Discretized Problem
	Reduced Discretization (Shooting)
	Adjoint Estimation
	Convergence

	Applications

