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Optimal Control of an Elastic Tyre-Damper System with Road Contact
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We study an elastic tyre with a wheel rim that is suspended at the chassis of a car by means of a spring-damper element. This
quarter car model may be controlled by varying the damping constant of the electrorheological damper. Our mathematical
model yields a coupled ODE-PDE problem with a free boundary at the tyre-road contact. In this study we approximate the
tyre by the Hertz contact stress formula. The resulting optimal control problem with control constraints is solved numerically.
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1 Modelling of a quarter car and differential equations

In modern cars a dynamic control of the vehicle suspension is employed for better safety
and comfort. The road profile is monitored, e.g. by a stereo camera, and the suspension
is actively controlled. We focus on a proactive control of an electrorheological damper
where the damping constant D ∈ J = [Dmin, Dmax] may be varied. In our model
we do not use additional actuator forces for the control. We consider an elastic tyre-
damper system where the wheel rim is connected to the car chassis by a spring-damper
element. The tyre has a contact boundary with the road where it is deformed, the free
boundary and the deformation depending on the weight of the car and the elastic forces.
For simplicity, we consider a 2d cross-section of the quarter car model. The geometry
of the model is depicted in Fig. 1, the time-interval is (0, T ).
The system is modelled by an ordinary differential equation (ODE) for the spring-
damper-system, the stationary elasticity equation for the tyre deformation, and a com-
plementarity condition for the free boundary with the road. Newton’s law of motion
yields for the (relative) displacement z of the spring from its rest position (e.g. [1, (4.1)])

mz̈ = −D(ż − ẏ)− k(z − y) in (0, T ), z(t = 0) = ż(t = 0) = 0 (1)

where y is the (relative) displacement of the rim, m the quarter mass of a car chassis,
and k the spring constant. As an approximation the elastic tyre is modelled in linear
elasticity yielding the partial differential equation (PDE) for the displacement u(x, t) in
Lagrangian coordinates (undeformed configuration) with boundary conditions (b. c.):

Fig. 1: Geometry of the quarter car
model with free road contact. The elas-
tic tyre is described in the undeformed
configuration (solid grey).

− divσ(u) = −ρge2 in {r < (x21 + x22)1/2 < R} × [0, T ], (2)

u = y(t) e2 or − σ(u).n = −F (t)/(πrb)e2 on {(x21 + x22)1/2 = r} × [0, T ], (3)

0 ≤ −n · σ(u).n ⊥ ((s(x1, t)−R+ x2) e2 − u) · n ≥ 0 on {(x21 + x22)1/2 = R} × [0, T ], (4)

τ · σ(u).n = 0 on {(x21 + x22)1/2 = R} × [0, T ]. (5)

This is a Signorini problem. Here σ denotes the Cauchy stress tensor, linear in ∇u, depending on the Young modulus E and
the Poisson ratio ν. ρ prescribes the mass density within the tyre and g the gravitational acceleration. Eq. (3)1 models that
the displacement u is continuous at the wheel rim where the (stiff) wheel rim is shifted by the unknown y, while the second
b.c. models the balance with the force F , exerted by the rim, per area (b the width of the tyre). In general both b.c. in (3)
have to be satisfied, one b.c. enters the PDE problem for u, the other determines y. Eq. (4) & (5) encodes that there is either a
negligible outer pressure and a positive gap between the deformed tyre and a given road profile s, or there is a positive contact
pressure and contact between deformed tyre and road. n denotes the outer normal of the tyre, τ the tangential.

The symmetric free boundary is determined approximately by the Hertz formula (plain strain) [4] yielding a =
√
Rd with

the maximal penetration depth d = − 4
π

1−ν2

Eb F under the static force F = −(m + mT )g + k(z − y) where mT the mass of
tyre and rim. On the contact boundary Γc := ∂BR(0) ∩ {|x1| < a(t), x2 < −r}, according to Hertz for the normal pressure
−e2 ·σ(u).e2 = ( E

1−ν2
F
bR ((x1/a)2−1))1/2 ≥ 0, since typically F � 0. The Hertz approximation is justified numerically by
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solving the complementarity conditions iteratively [3]. The approximation motivates to replace (4) & (5) by the explicit b.c.

−σ(u).n = 0 on (∂BR(0) \ Γc)×(0, T ), u =
(
s(x1, t)−R+ (R2 − x21)1/2

)
e2 on Γc×(0, T ). (6)

If we model the tyre as a second spring [1, (4.2)], then we havemT ÿ = −(m+mT )g+k(z−y)+D(ż− ẏ)−kT (y−s(0, ·)),
where we introduce kT as a “spring” constant for the tyre. As a first approach, the vertical acceleration and the damping term
are neglected, motivated by mT � m and D � k. In (3)1, we approximate u2|∂Br(0) − s(0, ·) ≈ −d which is reasonable for
small strains. We identify kT = π

4
Eb

1−ν2 and we end up with the explicit formula y = 1
kT+k (−(m+mT )g + kz + kT s(0, ·)).

2 Optimal control problem and numerical results

The goal is to minimize the objective I(D) = 1
2

∫ T
0
α1|z̈(D)|2+α2|z(D)−y(D)|2+α3|y(D)−s(0, ·)|2 where the parameters

αk, k = 1, 2, 3, are positive. Here we consider the states u, z, and y as functions of the control D. Minimizing the first term in
the reduced objective function corresponds to an increase in the comfort, the second term accounts for the spring robustness
(a spring cannot be contracted/extended without limits), and the last “safety” term models the change of distance between rim
and road (neither the grip i.e. the contact area should go to zero nor the chassis should touch the road) [1, 4.3.1.].
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Fig. 2: Computed optimal control D (brown dashed line) for a com-
promise between comfort and safety, T = 3π. Relative displacement
z of the chassis (shifted by 2R, green upper dotted line) and y of the
rim (shifted byR, orange lower dotted line) together with cosinusoidal
road profile s(0, t) modelling a speed bump (black continuous line).

As a first approach we solve the optimal control prob-
lem to minimize I(D) subject to (1), (2), (3)1, (6), and
D ∈ J by a projected gradient method with Armijo line
search. The gradient is computed by a sensitivity based
approach. Within our approximation u does not enter into
the reduced cost functional and there is no need to solve
a sensitivity PDE for u,D. Besides y,D = γz,D where
γ = k/(kT + k). For the sensitivity z,D we have the ODE
mz̈,D = −(1 − γ)ż − D(1 − γ)ż,D − k(1 − γ)z,D. The
ODE for z and z,D are discretized by Heun’s method and
the PDE for u may be solved by FEM. This is implemented
in the open software FEniCS. As a stopping condition we
work with (I(D)(i) − I(D)(i+1))/(1 + |I(D)(i+1)|) < err
where the index (i) indicates the optimization iteration. For
numerical results, in case of an initial control D(0) = 1500,
weights α1 = 1/4, α2 = 102, α3 = 104, err = 10−13,
and 2 · 104 time steps, see Fig. 2. The given road profile is
s(x1, t) = 0.25(1 + cos(2(x1 + t)))χ[π/2,3π/2](x1 + t), χ
a characteristic function. Realistic data for a midsized car has been used. We observe an antagonistic behaviour between
optimal comfort and safety as in [5]. Comfort yields high oscillations of D, while safety requires high accelerations z̈.

The approach to optimize the vehicle dynamics by means of optimal control and not only by feedback control seems to
be new within this field [5]. In many other models the elastic tyre is replaced at once by a spring [1, 2, 5] or several springs
(e.g. software CDTire by ITWM Kaiserslautern). These models might, as well as our model, allow for a real-time control
which is out of sight for a fully ODE-PDE model. However, in these analogous models the “tyre spring” parameters have to
be fitted, that are given directly in our model. Compared to [3], where another approximation F ≈ −(m + mT )g is used,
we obtain slight corrections. Well-posedness of this problem will be discussed in an upcoming study. A future goal is to
work without the Hertz approximation and to consider the full coupling between u and y. This situation raises also interesting
analytical questions. Finally, it might be interesting to incorporate friction and non-linear elasticity into our model.
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