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Abstract

Based on a thermodynamically consistent model for precipitation in gallium arsenide crystals
including surface tension and bulk stresses by Dreyer and Duderstadt [DD08], we propose two
different mathematical models to describe the size evolution of liquid droplets in a crystalline
solid. The first model treats the diffusion-controlled regime of interface motion, while the second
model is concerned with the interface-controlled regime of interface motion. Our models take
care of conservation of mass and substance. These models generalise the well-known Mullins-
Sekerka model [MS63] for Ostwald ripening. We concentrate on arsenic-rich liquid spherical
droplets in a gallium arsenide crystal. Droplets can shrink or grow with time but the centres of
droplets remain fixed. The liquid is assumed to be homogeneous in space.
Due to different scales for typical distances between droplets and typical radii of liquid droplets
we can derive formally so-called mean field models. For a model in the diffusion-controlled
regime we prove this limit by homogenisation techniques under plausible assumptions. These
mean field models generalise the Lifshitz-Slyozov-Wagner model, see [LS61], [Wag61], which
can be derived from the Mullins-Sekerka model rigorously, see [Nie99], [NO01], and is well-
understood.
Mean field models capture the main properties of our system and are well adapted for numerics
and further analysis. We determine possible equilibria and discuss their stability. Numerical
evidence suggests in which case which one of the two regimes might be appropriate to the
experimental situation.
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Zusammenfassung

Ausgehend von einem thermodynamisch konsistenten Modell von Dreyer und Duderstadt [DD08]
für Tropfenbildung in Galliumarsenid-Kristallen, das Oberflächenspannung und Spannungen
im Kristall berücksichtigt, stellen wir zwei mathematische Modelle zur Evolution der Größe
flüssiger Tropfen in Kristallen auf. Das erste Modell behandelt das Regime diffusionskontrol-
lierter Interface-Bewegung, während das zweite Modell das Regime Interface-kontrollierter Be-
wegung des Interface behandelt. Unsere Modellierung berücksichtigt die Erhaltung von Masse
und Substanz. Diese Modelle verallgemeinern das wohlbekannte Mullins-Sekerka-Modell [MS63]
für die Ostwald-Reifung. Wir konzentrieren uns auf arsenreiche kugelförmige Tropfen in einem
Galliumarsenid-Kristall. Tropfen können mit der Zeit schrumpfen bzw. wachsen, die Tropfen-
mittelpunkte sind jedoch fixiert. Die Flüssigkeit wird als homogen im Raum angenommen.
Aufgrund verschiedener Skalen für typische Distanzen zwischen Tropfen und typischen Radien
der flüssigen Tropfen können wir formal so genannte Mean-Field-Modelle herleiten. Für ein Mo-
dell im diffusionskontrollierten Regime beweisen wir den Grenzübergang mit Homogenisierungs-
techniken unter plausiblen Annahmen. Diese Mean-Field-Modelle verallgemeinern das Lifshitz-
Slyozov-Wagner-Modell, siehe [LS61], [Wag61], welches rigoros aus dem Mullins-Sekerka-Modell
hergeleitet werden kann, siehe [Nie99], [NO01], und gut verstanden ist.
Mean-Field-Modelle beschreiben die wichtigsten Eigenschaften unseres Systems und sind gut für
Numerik und für weitere Analysis geeignet. Wir bestimmen mögliche Gleichgewichte und dis-
kutieren deren Stabilität. Numerische Resultate legen nahe, wann welches der beiden Regimes
gut zur experimentellen Situation passen könnte.
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Chapter 1.

Introduction

1.1. A real world problem in the production of semi-insulators

Semi-insulating gallium arsenide has a broad range of applications in micro- and opto-electronic
devices e.g. for mobile phones working on wave bands used for UMTS. The industrial production
process of semi-insulating gallium arsenide (GaAs) as done by Freiberger Compound Materials
requires at the end some additional final heat treatment at high temperatures (∼ 1000 K – 1200
K) in order to improve the quality of the semi-insulator. During this treatment undesirable liquid
droplets precipitate in the solid phase due to misfits and due to supersaturation. The precipitation
process is accompanied by surface tension and mechanical bulk stresses. Droplets negatively influ-
ence mechanical and semi-insulating properties of the crystal. Their elimination, if possible, is a
crucial point for the production of semi-insulators.
One of the challenges is the necessity to guarantee a mean mole fraction of As in the wafer of
X0 = 0.500082, which is specified to an accuracy of O(10−6), in order to have the desired semi-
insulating behaviour. Since experiments have to be carried out at high temperatures and high
pressure, mathematical modelling is important in this situation in order to understand well the
evolution of a large number of precipitates. The goal of a mathematical model that describes the
nucleation and evolution of the precipitates is to look for regimes, where for large times either only
a few relatively big droplets survive or where a homogeneous spatial distribution of relatively small
droplets results.

1.2. Classical models for phase transitions

For the modelling of phase transitions various types of models are suggested. Sharp-interface models
and phase-field models capture the spatial structure of a phase transition, while Lifshitz-Slyozov-
Wagner models and Becker-Döring models do not. The first three of these models are diffusion
models. We describe the different models in the following briefly.

1.2.1. Phase-field models

In a phase-field model the interface between two phases is modelled by a differential equation for
the evolution of an auxiliary field c, the phase field, or also called order parameter. Two distinct
values of the phase field, e.g. cS or cL, correspond to the two phases. Between the two phases
is a so-called “mushy” region with a smooth change between the two values cS and cL. The set
of points, where c = 1

2 |cS − cL|, are interpreted as position of the interface. Let the width of the

1



Chapter 1. Introduction

mushy region be represented by a small dimensionless parameter δ. Phase-field models are usually
constructed in such a way that in the limit δ → 0 the interfacial dynamics of a sharp-interface
model is recovered. The advantage of phase-field models is, that one has to solve one differential
equation for the whole domain and one has not to deal with many free boundaries.
The nonlinear Cahn-Hilliard equation [Cah61] is one of the most important phase-field models for
the process of spinodal decomposition of a miscible chemical mixture. We assume here Ω to be a
given open domain, which is not depending on time. Let c(x, t) now be the concentration of one
species of the mixture and let u(x, t) denote the chemical potential, both defined for all x ∈ Ω. A
free energy functional is then assumed to be of the form

ACH(c) =
∫

Ω
F (c(x)) + δ2

2 |∇c(x)|2dx

with a given non-convex bulk free energy density F . The chemical potential is assumed to be
related to c by u = δACH

δc = F ′(c)− δ2∆c. The Cahn-Hilliard equation

∂tc = ∆(F ′(c)− δ2∆c) (1.1)

is then derived from the diffusion equation ∂tc = ∆u neglecting concentration dependence of the
mobility and assuming e.g. homogeneous Neumann boundary conditions on the chemical potential,
∇u · ν = 0 on ∂Ω. It follows, that

∫
Ω c dx is conserved.

We remark, that the Allen-Cahn equation,

∂tc = δ2∆c− F ′(c),

which is also often used in material science, differs from the Cahn-Hilliard equation in particular
in the point, that the order parameter c is not conserved.
Different thermodynamically consistent generalisations of the Cahn-Hilliard equation have been
proposed e.g. by Gurtin and Fried [FE96] or by Alt and Pawłow [AP96]. A generalisation derived
from a microforce balance, relying on the second law of thermodynamics in the form of the entropy
principle according to Müller and Liu, is given by Pawłow [Paw06]. In the van der Waals-Cahn-
Hilliard equation, which is a thermodynamically consistent phase-field model, the density ρ plays
the role of the order parameter c and the free energy functional is of the form

AWCH(ρ,Ω) =
∫

Ω
ρ(x)ψ(ρ(x)) + δ2

2 |∇ρ(x)|2dx+ p0|Ω|, (1.2)

with the constraint
∫

Ω ρ dx = const. The term p0|Ω| enters, if one considers the case of fixed
external pressure, while in case of fixed volume this term does not appear.
A similar ansatz including elasticity is the Cahn-Larché equation [CL82], which deals in case of a
time-dependent domain with a free energy functional

ACL(ρ, U) =
∫

Ω
ρ(x)ψ(ρ(x)) + δ2

2 |∇ρ(x)|2 +Wel(ρ(x), e(U(x))) dx+ p0|Ω|, (1.3)

where the elastic energy density is Wel = 1
2e(U) : K(ρ)e(U), K here the elasticity tensor. Alterna-

tively, it would be interesting to consider a ρψ(ρ, U) in the van der Waals-Cahn-Hilliard phase-field
model, where ψ = ψchem(ρ) + ψmech(U).
A good overview over further phase-field models, its derivation from thermodynamics and the
analysis thereof, can be found in the book of Brokate and Sprekels [BS96], ch. 4, 6 & 7.
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1.2. Classical models for phase transitions

1.2.2. Sharp interface models

In a sharp-interface model we have differential equations in each of the phases and boundary
conditions on the free boundaries between the phases, the interfaces. A well-known sharp-interface
model for phase transition is the Mullins-Sekerka model, which has been introduced by Mullins
and Sekerka in 1963 from a physical point of view [MS63]. Pego [Peg89] rigorously derived the
Mullins-Sekerka model from the nonlinear Cahn-Hilliard equation (1.1) in the limit δ → 0.
Let again σ denote the surface tension. Then close to phase-equilibrium the system can be described
by

∆u = 0 in Ω \ ∪i∈NIi, (1.4)
u = κσ on Ii ∀i ∈ N, (1.5)

∇u · ν = 0 on ∂Ω, (1.6)
ṙi = [[∇u · ν]] ∀i ∈ N, (1.7)

for all times. We refer to the mathematical description of the Mullins-Sekerka model (1.4) – (1.7)
as model (MS). The model (MS) conserves the volume of droplets. This can be seen for spherical
droplets by combining (1.7) and (1.4) to ∂t

∑
i r

3
i =

∑
i r

2
i ṙi = −

∫
Ω ∆u = 0.

The classical Mullins-Sekerka model [MS63] does not include mechanical deformations. Dreyer
and Kraus [DK05] derive sharp interface limits of the van der Waals-Cahn-Hilliard equation for
time-dependent domains. They show that, if W (ρ) := ρψ(ρ) is given and has two minima, ρS and
ρL, then close to the limit δ → 0 of (1.2) the available free energy is of the form

AlimWCH(ρ,Ω) =
∫

ΩS
ρSψ(ρS) dx+

∫
ΩL
ρLψ(ρL) dx+ δ

∑
i∈N

∫
Ii

σWCH dx+ p0|Ω|+ o(δ), (1.8)

where σWCH is a constant determined by W and the geometry of ΩL. σWCH can be interpreted
as surface tension.
For the Cahn-Larché equation we expect to find close to the limit δ → 0 of (1.3)

AlimCL(ρ,Ω) =
∫

ΩS
ρSψ(ρS) +Wel(ρS , e(U(x))) dx+

∫
ΩL
ρLψ(ρL) +Wel(ρL, e(U(x))) dx

+ δ
∑
i∈N

∫
Ii

σWCH dx+ p0|Ω|+ o(δ).
(1.9)

1.2.3. Models of Becker-Döring type

In Becker-Döring processes [BD35] the liquid droplets are considered as clusters of identical par-
ticles, which can coagulate or fragmentate by gaining or loosing an atom. The mathematical
Becker-Döring model, see [Fre45], [BCP86], is an infinite system of ODEs for the total number zl(t)
of clusters, consisting of l ≥ 1 particles, at time t. The number of free atoms is denoted by z1(t).
The condensation rate ΓCl (t) and the evaporation rate ΓEl+1(t) give the probability, that an l cluster
gains or looses an atom. The Becker-Döring system reads

∂tzl = jl−1 − jl ∀l ≥ 2, (1.10)
∂tz1 = −

∑
k≥1

jk − j1, (1.11)

with the fluxes jl = ΓCl zl − ΓVl+1zl+1. The system is closed by constitutive assumptions on the
transition rates ΓCl and ΓEl+1. We refer to (1.10) – (1.11) as model (BD).
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Chapter 1. Introduction

Note, that in the literature the quantities zl are often considered as the volume densities of l-
clusters, and not as numbers, which clearly yields to contradictions if the total volume is not
conserved. A thermodynamically consistent Becker-Döring system for precipitation in crystalline
gallium arsenide is derived by Dreyer and Duderstadt [DD06]. They derive a thermodynamically
consistent choice of the rates ΓCl and ΓVl . For rigorous mathematical results in this case we refer
to Herrmann et al. [HNN06].

1.2.4. Models of Lifshitz-Slyozov-Wagner type

By formal arguments for spherical droplets and small volume fraction, Lifshitz, Slyozov [LS61] and
Wagner [Wag61] reduced the evolution law (1.7) of the (MS) model to an evolution of the radii
distribution ν. The surface tension, which is assumed to be a constant, is usually put into the time
scale. The classical Lifshitz-Slyozov-Wagner model states that

u = u in Ω \ ∪i∈NΣi, (1.12)
∆u = 0 in Σi ∀i ∈ N, (1.13)

u = 1
ri

on Ii ∀i ∈ N, (1.14)

ṙi =
u− 1

ri

ri
∀i ∈ N, (1.15)

where (1.12) reflects, that far away from droplets the chemical potential is governed by an only
time-dependent mean field u(t), while (1.13) means that close to a droplet the chemical potential is
the harmonic solution for this droplet and its neighbourhood Σi alone. The evolution equation for
the radii (1.15) follows then from (1.7). The mean field is determined by conservation of volume of
droplets by u = (

∑
i 1)/(

∑
i ri). We refer to the model (1.12) – (1.15) as (LSW).

Niethammer proved the limit (MS) → (LSW) and the corresponding limit for a non-stationary
version of (MS). The limit (BD) → (LSW) has been derived rigorously in case of small excess
density by Niethammer [Nie03], [Nie04b]. A modification of the classical equations of (LSW),
which conserves the total volume of all droplets s.t. the total mass is conserved, has been also
analysed, see [NP01].

1.3. Outline of the thesis

We consider a sharp-interface model since for phase-field models the right scaling is not clear a
priori and has to be determined by fitting the phase-field model to a sharp-interface model. The
availability A, which we use as starting point in our model, is deduced from first principles, see
[DD08]. In particular our model takes care, that liquid droplets which become too small, do not
behave as liquid phase anymore, and thus a droplet vanishes in our model at a positive radius
rmin > 0. This thermodynamically consistent sharp interface model leads to a mathematical
problem of a nonlinear diffusion equation with a convective term, coupled to a linear mechanical
problem and to ODEs for the free boundaries.
A similar problem for a model, which is not derived from thermodynamics and without a convective
term, is solved by Blesgen and Weikard [BW05]. They use as techniques a time-discretisation of
the model and the minimisation of the free energy functional for fixed time. Furthermore in their
study the influence of small scales is not considered.
This work is built up in the following way. In the next chapter we present the thermodynamical
modelling for liquid inclusions in crystalline solids, focussing on GaAs. There we introduce the
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1.3. Outline of the thesis

central quantities and show, how we can reduce them to a set of independent variables. These
variables can be determined from coupled PDE and ODE systems, which we derive. Throughout
the work we consider simultaneously two regimes of interface motion, a diffusion-controlled and an
interface-controlled regime.
In Section 3.1 we introduce typical scales of the problem and identify a small scaling parameter ε.
ε is related to the small volume fraction of the liquid droplets. There are two interesting scaling
regimes, which we discuss in Subsection 3.1.3: the critical regime, where the droplets contribute
directly to the limit equation for the chemical potential and the dilute regime, where we find in
the limit a only time-dependent mean field of the chemical potential. In Sections 3.3 and 3.4
we formally derive a homogenisation limit in case of the dilute scaling as ε → 0 for the regimes
(DC) and (IC). From an ansatz with a so-called “mean field” we get by formal homogenisation a
macroscopic “mean field problem”, which will turn out to capture the effective behaviour of the
system.
In Chapters 4 and 5 we concentrate on regime (DC) in the critical scaling regime.
In Chapter 4 we examine existence and uniqueness of a class of coupled differential equations,
which are systems of elliptic and parabolic equations together with ODEs for the free boundaries,
for which no standard results exist as far as known by the author. This general problem includes
our critically scaled problem of Section 3.1, if the latter is slightly simplified. In our analysis we
proceed similarly to Niethammer [Nie99], who considered quasi-stationary and instationary linear
diffusion equations on time-dependent domains. After transformation of the problem on a fixed
domain we derive a priori estimates, where we use results on nonlinear parabolic PDEs and results
from linear elasticity. By combining these estimates we prove local existence and uniqueness by
means of Banach’s fixed point theorem. Then we derive bounds on the geometric evolution by
constructing suitable subsolutions and supersolutions, which allows to prove global existence and
uniqueness. This main result is stated in Th. 4.8.
In Chapter 5 we derive estimates, which are uniformly in the scaling parameter, by combining
estimates of Chapter 4 and explicitly calculating the dependence on the scaling parameter of some
constants of the estimates. These uniform estimates allow us to rigorously derive effective equations,
see Th. 5.7, for our problem under suitable assumptions, see Assumption 5.1. For special initial
data this leads to “mean field problems” as already derived by formal homogenisation in Section
3.3 for the dilute regime.
The analysis of equilibria and its stability for the mean field problems as well as numerical results
for the model in the dilute regime are shown in Chapter 6. In this Chapter we consider the dilute
scaling regime for both regimes (DC) and (IC).
A discussion of our results and open questions follows in Chapter 7. The extension from gallium
arsenide to precipitation in other crystalline solids fulfilling certain analogous assumptions as in
the case of GaAs is discussed in Subsection 7.3.1.
We check some assumptions of our model for typical experimental situations in case of GaAs in
Appendices A.2 – A.6. Explicit solutions for the special case of a spherical symmetric single droplet
problem are given in Appendix C. Finally we list some material data in Appendix D.
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Chapter 2.

Thermodynamically consistent model for
gallium arsenide

We consider the precipitation process under the assumption that the external pressure p0, temper-
ature T and the number of atoms Na of each substance a ∈ {Ga,As} are constant in space and
time.
Gallium arsenide crystals have a fcc-lattice with zinc-blend structure, for details of the lattice
structure see [Got07]. There are three sublattices

SL := {α, β, γ}

with the same number of lattice sites. In a perfect GaAs crystal a sublattice α would be completely
occupied by Ga, a second sublattice β would be occupied by As while the interstitial sublattice γ
is empty. In order to obtain semi-insulating GaAs the crystal is doped with trace elements (e.g.
oxygen, silicon, boron) and a small amount of further As atoms. We work with a reduction of the
so-called Freiberg model1, where we consider only Ga, As and V, which denotes here vacancies, as
species and assume that Ga occurs only on the α sublattice, β is mainly occupied by As and by
some V, while γ is predominantly empty i.e. filled up mostly with vacancies and a few As atoms.

Figure 2.1.: “Sheep picture”, liquid droplets (light)
in solid GaAs matrix (dark); droplets accumulate
close to misfits of the crystal (From [Ste01], Abb.
3.7 i, for details see there).

Figure 2.2.: Fcc-lattice, the crystal
structure of the reduced Freiberg
model, Ga (blue), As (red), vacan-
cies (white) (From [DDHN04]).

We do not have to take quantum effects into account. Furthermore we neglect misfits of the crystal
due to dislocations in the crystal structure and the resulting mechanical eigenstresses in this study.

1For details of the full Freiberg model and its reduction see [DD08], [FJK+99].
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Chapter 2. Thermodynamically consistent model for gallium arsenide

Now we give a short overview of the thermodynamically consistent model proposed by Dreyer
and Duderstadt [DD08], which will be the starting point for our modelling and our analysis. They
consider mainly the case of a single droplet. First we introduce some notation, which closely follows
the notation of their paper.

2.1. Geometry

In our model droplets can vanish with time, but nucleation is not included in the model i.e. droplets
are not created. We abbreviate the index set of all N (t) droplets existing at time t by N(t). Initially
we have given N (0) = N 0 ∈ N0 droplets and N(0) = {i ∈ N|1 ≤ i ≤ N 0}.
We consider a body, represented by an open bounded domain

Ω(t) = ΩS(t) ∪ ΩL(t) ∪ I(t) ⊂ R3,

where the simply connected open domain ΩS(t) represents the solid phase, while

ΩL(t) = ∪i∈N(t)Ωi
L(t)

is the union of disjoint Ωi
L(t), which represent N (t) = |N(t)| liquid droplets. The union of all

interfaces Ii(t) := ∂Ωi
L(t), i ∈ N(t) between the two phases is denoted by

I(t) = ∪i∈N(t)Ii(t).

The droplets are assumed to be completely included in the solid i.e. ∂Ω(t) ∩ I(t) = ∅. The outer
boundary ∂Ω and the interfaces Ii may move with velocity w(x, t) in direction of the corresponding
outer normal ν.
We consider our model for times t ∈ (0, T ) =: Jt ⊂ R+. At first we choose T ∈ (0,∞) sufficiently
small s.t. no intersections between droplets with each other or with the outer boundary occur i.e.

T < inf
t
{∃i, j ∈ N(t) : Ii(t) ∩ Ij(t) 6= ∅ or ∃i ∈ N(t) : Ii(t) ∩ ∂Ω(t) 6= ∅}. (2.1)

The space variable is x ∈ Ω(t). The 3-dimensional measure of Ω will be denoted by |Ω| and
analogously the 2-dimensional Hausdorff measure of I by |I|. Note that all geometric variables
depend on time, that is due to the free boundaries Ii(t) and to the fact that the external pressure
is constant, so we cannot prescribe the total volume Ω(t). We define the parabolic cylinder

ΩT = {(x, t) ∈ R3 × (0, T )|x ∈ Ω(t)}. (2.2)

Furthermore we may assume later that the droplets form spherical balls Ωi
L = Bri(Xi) for all i ∈ N

and that Ω = BRbd(0). The motivation for these assumptions is given in Subsection 2.5.4. Thus
the interface Ii can be parametrised by the radius ri(t) and the whole domain by Rbd(t). The
centres of the droplets Xi ∈ Ω(0), i ∈ N(0) are assumed to be fixed i.e. independent of time. In
the case of GaAs it is quite reasonable to consider radial symmetry of droplets since the isotropic
approximation of the cubic anisotropy of the crystal is good, see [DDEJ06]. Let us mention that
this does not hold in general for semi-insulating crystals.
Droplets with too less atoms, i.e. smaller than a given minimal radius rmin > 0, do not behave
like a liquid anymore and we have to take care of this, if we model the disappearance of a droplet.
We come back to this point later in 2.6.7 in detail. We denote the times where the i-th droplet
vanishes by

τi := inf
t
{|Ωi

L(t)| = 4π
3 r3

min} i ∈ N(0). (2.3)
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2.2. Some thermodynamics of mixtures

In case of a spherical droplet we have τi = inft{ri(t) = rmin}, i ∈ N(0).
If we consider only a single droplet i.e. N (0) = 1 we use analogous to [DD08] the following
notations I = I1, rI := r1 and w.l.o.g. we set X1 = 0. The geometry for a single droplet problem
with spherical Ω(t) = BRbd(t)(0) is illustrated in Fig. 2.3. We refer to this as spherically symmetric
single droplet problem (SDP).

Figure 2.3.: Geometry of spherically symmetric single droplet problem.

For a many droplet problem with N (t) = 7 the geometry is shown in Fig. 2.4. We refer to a many
droplet problem with spherical Ω as (MDP).
Typically in the production process of GaAs the distances between droplets are of order D0 := 1µm,
while typical radii are of order R0 := 1nm. This motivates later in Section 3.3.1 a monopole
approximation, where we assume that the “influence” of a single droplet can be limited in good
approximation to a spherical shell Σi := BRiext

(Xi)\Bri(Xi) with outer radius Riext, ri < Riext � D0,
while the mean field region (or far field region) F := Ω\∪Ni=1BRiext(Xi) then represents the coupling
between the N droplets and the mean field of the chemical potential u, which turns out to depend
only on time. Then the exact geometric relations between the Xi are neglected.

2.2. Some thermodynamics of mixtures

2.2.1. Basic variables for the solid and liquid phases of GaAs

We abbreviate the species of atoms on the various sublattices in the solid or liquid by the sets

aS := {Gaα,Asα,Asβ,Asγ ,Vα,Vβ,Vγ}, aL := {GaL,AsL}.

The basic variables are the mole densities na for a ∈ aS∪aL and the mechanical displacement field
U : Jt × Ω(t)→ R3 as well as the free boundaries ∂Ω(t) and Ii(t).
The restriction on ΩS of a function f , defined on the whole Ω, is denoted by fS or again by f , if
mentioned so. fL is the restriction on ΩL. The restriction on Ωi

L of a function g defined in the
liquid is giL = gL|ΩiL . Due to these conventions we write e.g. U iL := U |ΩiL and nia for a ∈ aL, where
i ∈ N . All variables in the whole study will be functions Jt × ΩS(t) → R+

0 if they are defined in
the solid part or Jt × ΩL(t)→ R+

0 for the liquid part, unless otherwise stated.
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Chapter 2. Thermodynamically consistent model for gallium arsenide

Figure 2.4.: Many droplet problem with arbitrary convex shape. Dashed radii
Riext model “influence” of a droplet in the monopole approximation, see Section
3.3.1.

2.2.2. Chemical constitution of GaAs in the solid and liquid phases

We define the mole density of atoms in the solid and in the liquid phase by

n :=
{
nS := nGaα +

∑
b∈SL nAsb ; x ∈ ΩS(t),

niL := niGaL + niAsL ; x ∈ Ωi
L(t), ∀i ∈ N.

The common mole density of sublattice sites is

nG := 1
3
∑
a∈aS

na.

The factor 3 is chosen because we have three sublattices. In the Freiberg model we have equal
number of lattice sites on each sublattice, i.e.

nG = nGaα + nAsα + nVα = nAsβ + nVβ = nAsγ + nVγ . (2.4)

Note, that we have the following relation between the number density of atoms in the solid and the
number density of sublattice sites:

nS = nG(3− YV ). (2.5)

Further we define lattice occupancies by

Ya := na
nG
∈ [0, 1], a ∈ aS.

For keeping notation short we write

nGa := nGaα , nAs :=
∑
b∈SL

nAsb , nV :=
∑
b∈SL

nVb ,
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2.2. Some thermodynamics of mixtures

and
YGa := YGaα , YAs :=

∑
b∈SL

YAsb , YV :=
∑
b∈SL

YVb ,

where we sum over the set of all sublattices SL.
The total mass density is

ρ :=
{
ρS :=

∑
a∈aS

Mana ; x ∈ ΩS(t),
ρiL :=

∑
a∈aL

Man
i
a; x ∈ Ωi

L(t), ∀i ∈ N (2.6)

whereMa denotes the molecular weight of the constituents a ∈ {aS∪aL}. Note thatMGaα = MGa,
MAsb = MAs and MVb = 0 for all b ∈ SL. We abbreviate, since in many formulas only the relation
between the relative atomic mass of arsenic and gallium enters,

µ̃ = MGa

MAs
≈ 69.723 g mol−1

74.922 g mol−1 ≈ 0.93061

where the data is taken from [SLBT01]. We only need, that 1
3 < µ̃ < 1 in this study.

The arsenic mole fraction is

X :=

 XS := nAs
nS

= YAs
YGa+YAs ; x ∈ ΩS(t),

Xi
L :=

niAsL
niL

; x ∈ Ωi
L(t), ∀i ∈ N

(2.7)

and the mean molecular weight is

M(X) := MGa(1−X) +MAsX = ρ

n
=

 M(XS) = ρS
nS

; x ∈ ΩS(t),
M(Xi

L) = ρiL
niL

; x ∈ Ωi
L(t), ∀i ∈ N. (2.8)

We introduce as abbreviation for the concentration of mass of As with respect to the total mass

P (X) := MAsnAs
ρ

= MAsX

M(X) . (2.9)

2.2.3. Motion and strain in the solid and liquid phases

We consider the GaAs as a material body, which is a continuum of material points, that are at
time t at some point x. These coordinates are called Eulerian (or spatial) coordinates. The whole
set of all points is the instantaneous configuration (“Momentankonfiguration”) Ω. The state of
deformation is described w.r.t. a reference configuration ΩR. The material points of the reference
configuration are given by Langragian (or material) coordinates X. Every point X is related to a
point x by the function χ(t, x) : (0, T )× ΩR → Ω, which is called motion. We assume the motion

x = χ(t,X)

to be bijective. The displacement field in material coordinates Ũ : Jt × ΩR → R3 or in spatial
coordinates U : Jt × Ω→ R3 is given by

Ũ(t,X) := χ(t,X)−X, U(t, x) := Ũ(t, χ−1(t, x)) = x− χ−1(t, x). (2.10)

All indices, like i, j, of the following mechanical quantities have values in the set {1, 2, 3} unless
otherwise stated. In general we write vectors without indices for coordinates, but write matrices
in a notation with indices.
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Chapter 2. Thermodynamically consistent model for gallium arsenide

We describe the local state of deformation in a neighbourhood of a material point of the actual
configuration w.r.t. its reference configuration by means of the displacement gradient H or the
deformation gradient F , which are defined as

H ij(t,X) = ∂Ũ i(t,X)
∂Xj

, F ij(t,X) = ∂χi(t,X)
∂Xj

= δij + ∂Ũ i(t,X)
∂Xj

= δij +H ij(t,X),

where δij denotes the Kronecker delta. The change of the volume element is given by

J := detF. (2.11)

The motion can be inverted iff J > 0. If this holds we can equivalently work in Eulerian coordinates
and define analogously

hij(t, x) = ∂jU
i(t, x), (F−1)ij(t, x) = ∂j(χ−1)i(t, x) = δij − ∂jU i(t, x) = δij − hij(t, x),

where ∂j := ∂xj := ∂
∂xj

denotes the partial derivative w.r.t. xj . Analogously we write ∂t := ∂
∂t .

By means of the motion we can define the barycentric velocity of the mixture in Lagrangian
description ṽ : Jt × ΩR → R3 or in Eulerian description v : Jt × Ω→ R3,

ṽ(t,X) := ∂tχ(t,X) = ∂tŨ(t,X),
v(t, x) := ṽ(t, χ−1(t, x)) = DtU(t, x) = ∂tU(t, x) +∇U(t, x)v(t, x),

where Dt := ∂t + v · ∇ denotes the material derivative. We refer to v in the following often just as
“velocity”. In Eulerian description we find the following formula for the velocity, see [Seg07],

v = (I3 −∇U)−1∂tU = (I3 +∇U)∂tU +O(‖∇U‖2), (2.12)

where I3 denotes the identity matrix in three dimensions.
We make the general assumption:

Assumption 2.1 (Small displacement gradients). We work in approximation of small displace-
ment gradients ‖∇U‖ i.e. ‖∇U‖ = O(h̃), where h̃ is a dimensionless quantity given by data and
h̃ � 1, which is a special case of linear elasticity. In this approximation, also called “geometric
linearisation”, Eulerian h and Lagrangian H do not differ.
Throughout this study, whenever it makes a difference at all, we use spatial i.e. Eulerian and not
material i.e. Lagrangian coordinates.

For typical material data, as given in Appendix D, we find indeed h̃ ≈ 10−3.
As long as we are in the regime of small displacement gradients we have J ≈ 1 + tr(∇U) > 0. This
justifies J > 0 for all these times. Furthermore Assumption 2.1 allows us to work with

v = ∂tU. (2.13)

We emphasise that we have defined so far U (or Ũ), h (or H) and v (or ṽ) also on the liquid, which
we underline by an additional subindex L e.g. UL (or ŨL), when we refer to the restriction of these
variables in the liquid. In the liquid we get the explicit formulas UL = (aL|x−Xi|+ bL)er, where
aL and bL are independent of x, or

hL = aLI3, (2.14)

where er = x−Xi
|x−Xi| is the unit vector in normal direction. Since we assume Xi to remain fixed, then

UL|x=Xi = 0 and bL = 0,
UL = aL|x−Xi|er. (2.15)
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This implies
vL = ∂taL|x−Xi|er.

Stresses are measured by the Cauchy stress tensor σS ∈ R3×3 in the solid and the pressure piL :
Jt×Ωi

L → R, i ∈ N in the liquid. As further mechanical variables we introduce the pressure in the
solid pS : Jt × ΩS → R and the stress deviator tensor σ<·,·>S : Jt × ΩS → R3×3, which are related
to σS , by

pS := −1
3tr(σS), σ<ij>S := σijS + pSδ

ij . (2.16)

where we introduce by tr(A) :=
∑
iA

ii the trace of a tensor Aij . σ<·,·>S represents the stresses due
to change of shape.

2.3. Side conditions

Besides the side condition (2.4) we have conditions on local conservation of particles and on mass
and material mole fluxes across the free boundaries.

2.3.1. Balance of particle numbers

Let va be the velocity corresponding to constituent a ∈ aS ∪ aL. The only chemical reactions in
the Freiberg model are the transfer of constituents between the three sublattices SL. Hence as a
natural assumption we have local conservation of substance (i.e. of As and Ga)

∂tnAsS +
∑
a∈SL

∇ · (vAsanAsa) = 0 ∀x ∈ ΩS(t) ∀t ∈ (0, T ), (2.17)

∂tnGaα +∇ · (vGaαnGaα) = 0 ∀x ∈ ΩS(t) ∀t ∈ (0, T ), (2.18)

and in the liquid we have

∂tnaL +∇ · (vaLnaL) = 0 ∀x ∈ Ωi
L(t) ∀i ∈ N(t) ∀t ∈ (0, T ) ∀a ∈ aL. (2.19)

Local conservation of the material species implies local conservation of mass

∂tρ+∇ · (vρ) = 0 ∀x ∈ ΩS(t) ∪ ΩL(t) ∀t ∈ (0, T ), (2.20)

which is called the continuity equation.
We could try to link va to Ua, which are the displacements for species of type a ∈ aS ∪ aL, but
instead we eliminate the unknown va by the diffusion fluxes ja. We introduce atomic diffusion
fluxes for all constituents a ∈ aS ∪ aL defined by

ja := na(va − v). (2.21)

We introduce the total diffusion flux of As,

j(As) :=
{
jAsS :=

∑
a∈SL jAsa =

∑
a∈SL nAsa(vAsa − v) ; x ∈ ΩS(t) ∀t ∈ (0, T )

jiAsL := niAsL(viAsL − v
i
L) ; x ∈ Ωi

L(t) ∀i ∈ N ∀t ∈ (0, T ). (2.22)

Analogously we define the total diffusion flux of Ga

jGa :=
{
jGaS := jGaα = nGaα(vGaα − v) ; x ∈ ΩS(t) ∀t ∈ (0, T )
jiGaL := niGaL(viGaL − v

i
L) ; x ∈ Ωi

L(t) ∀i ∈ N ∀t ∈ (0, T ). (2.23)
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Chapter 2. Thermodynamically consistent model for gallium arsenide

Notice, that the conservation law for Ga i.e. nGa is not independent of the conservation law for As:
∑

a∈{Asα,Asβ ,Asγ ,Gaα}
Maja = 0 ⇐⇒ jGaS = − 1

µ̃
jAsS , (2.24)

∑
a∈aL

Maja = 0 ⇐⇒ jGaL = − 1
µ̃
jAsL . (2.25)

For the sake of completeness we give the conservation law for vacancies

∂tnV +
∑
a∈SL

∇ · (vVαnVα) = 0 ∀x ∈ ΩS(t) ∀t ∈ (0, T ).

It is suitable to consider for vacancies the flux jV := jVγ + jAsγ . Analogously to (2.4) we require

jGaα + jAsα + jVα = jAsβ + jVβ = jAsγ + jVγ . (2.26)

Together with (2.24) this leaves four independent fluxes in the solid, jAsa , a ∈ SL and jV , and by
(2.25) only one independent flux in the liquid, jAsL .

2.3.2. Side conditions on the free boundaries

We did not define variables on an interface so far. For some x0 ∈ I we use the notation

[[f ]](x0, t) := f+(x0, t)− f−(x0, t) = lim
x→x0+

f(x, t)− lim
x→x0−

f(x, t) (2.27)

where the subindex “+” stands for taking limits for sequences {xn}n∈N with xn ∈ ΩS(t) for all
n ∈ N i.e. limits from the solid side and the subindex “−” stands for taking limits for sequences
{xn}n∈N with xn ∈ Ωi

L(t) for all n ∈ N. This is important, since not all variables will turn out to
be continuous on I.
We abbreviate the component of v in normal direction by vν := v · ν. Analogously we define wν ,
jνAs, jνGa and jνV . We introduce the one-sided mole fluxes across the interface

Ṅa := na(vνa − wν) ∀a ∈ aS ∪ aL. (2.28)

We assume local conservation of the material mole flux across each interface i.e. ṄGa = ṄGaL and∑
a∈SL ṄAsa = ṄAsL or

[[jνAs]] + [[nAsvν ]] = [[nAs]]wν ∀x ∈ Ii(t) ∀i ∈ N(t) ∀t ∈ (0, T ), (2.29)
[[jνGa]] + [[nGavν ]] = [[nGa]]wν ∀x ∈ Ii(t) ∀i ∈ N(t) ∀t ∈ (0, T ), (2.30)

which implies the conservation of the mass flux through the interface

[[ρvν ]] = [[ρ]]wν ∀x ∈ Ii(t) ∀i ∈ N(t) ∀t ∈ (0, T ). (2.31)

Analogously we assume no net material mole fluxes at the outer boundary,
∑
a∈SL ṄAsa = 0 and

ṄGa = 0, which agrees to our experimental situation of a solid embedded in an inert gas. Hence
the net mass flux over the outer boundary is also zero and we have

jνAs + nAsv
ν = nAsw

ν ∀x ∈ ∂Ω(t) ∀t ∈ (0, T ), (2.32)
jνGa + nGav

ν = nGaw
ν ∀x ∈ ∂Ω(t) ∀t ∈ (0, T ), (2.33)

ρSv
ν = ρSw

ν ∀x ∈ ∂Ω(t) ∀t ∈ (0, T ). (2.34)
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2.4. Available free energy of the system and approach of a thermodyn. system to equilib.

The conditions (2.32) – (2.34) can be stated as

jνAs = 0 ∀x ∈ ∂Ω(t) ∀t ∈ (0, T ), (2.35)
jνGa = 0 ∀x ∈ ∂Ω(t) ∀t ∈ (0, T ), (2.36)
wν = vν ∀x ∈ ∂Ω(t) ∀t ∈ (0, T ). (2.37)

Later in 2.6.5 we will exploit that we can determine vL · ν and jAsL · ν explicitly in a homogeneous
liquid and j is linked to the gradient of the chemical potential ∇u by a constitutive law.
The equations (2.29) – (2.34) make sense since they imply global conservation laws for Ga, As and
total mass.

2.3.3. Global conservation laws of mass and substance

We recall that we consider a system with given number of atoms N0 and fixed As content X0 = NAs
N0

.
We exploit the global conservation laws for As and Ga∫

Ω(t)
nAs = NAs = N0X0, (2.38)∫

Ω(t)
nGa = NGa = N0(1−X0), (2.39)

which imply together the conservation of total mass∫
Ω(t))

ρ = N0M(X0) =: M0. (2.40)

We remark that there is no global conservation law for the density of sublattice sites nG, since if
crystal gets lost, the vacancies and their sublattice sites vanish.
There holds the following lemma, which we prove in Appendix A.1.

Lemma 2.1 (Global conservation laws and side conditions). The side conditions (2.29) – (2.31),
(2.35) – (2.37) and the local conservation laws (2.17) – (2.20) imply the global conservation laws
(2.38) – (2.40).

2.4. Available free energy of the system and the approach of a thermodynamical system
to equilibrium

Dreyer and Duderstadt start from first principles i.e. the first and second fundamental law of
thermodynamics

d

dt
E + p0

d

dt
|Ω| = Q̇,

d

dt
S ≥ 1

T0
Q̇, (2.41)

which are the global balance laws for total energy E and entropy S for constant outer pressure p0,
constant outer temperature T0 and conservation of mass and substance, where we assume that the
temperature within Ω is constant i.e. T = T0. Q̇ denotes the heat power2, which might enter or
leave the system to ensure a constant temperature T0. E is equivalent to the internal energy of
the system, since we may neglect the contribution of the kinetic energy, because its contribution
is very small compared to the internal energy, if we are close to equilibria. The availability A (or
available free energy or also just “energy”) is defined as (see the textbook of Müller [Mül01], p.149

2Note that Q̇ is the established notion in the literature, but does not mean the time derivative d
dt
Q, since such a Q

does not exist in general.
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Chapter 2. Thermodynamically consistent model for gallium arsenide

– 151)
A := E − TS + p0|Ω|,

From (2.41) we have that the availability is decreasing in time

d

dt
A ≤ 0. (2.42)

Next we introduce the Helmholtz free energy Ψ = E − TS, which we decompose into a solid part,
liquid and interfacial parts, which yields

A := Ψ + p0|Ω| = ΨS +
∑
i

Ψi
L +

∑
i

Ψi
I + p0|Ω|.

Corresponding to Ψ we introduce the density ψ w.r.t. the mass density i.e. Ψb = ρbψb, b ∈ {S,L}
and on the interface we introduce ΨI =

∫
I σ, σ the surface tension. We find

A :=
∫

ΩS
(ρSψS + p0) +

∑
i

∫
ΩiL

(ρiLψiL + p0) +
∑
i

∫
Ii

σ. (2.43)

We assume here σ to be a constant depending only on temperature. Thereby for the evaluation of
the Helmholtz energy density, ρSψS(T, {na}a∈aS , J

−2/3F TF ) in the solid and ρLψL(T, nAsL , nGaL)
in the liquid, the Gibbs-Duhem equation

ψbρb =
∑
a∈ab

µana − pb ∀b ∈ {S,L} (2.44)

is needed, where µa, a ∈ aS ∪ aL are the chemical potentials, which will be determined later by
constitutive laws. For a derivation of (2.44) we refer to [Mül01]. With (2.44) we obtain

A :=
∫

ΩS
(
∑
a∈aS

µana + p0 − p) +
∑
i∈N

∫
ΩiL

(
∑
a∈aL

µana + p0 − p) +
∑
i∈N

∫
Ii

σ. (2.45)

Stoth [Sto97] has proven that the standard two-phase Stefan problem, as usually treated in liter-
ature, can be reduced to a one-phase Stefan problem. Contrary in our situation quantities in the
liquid, like the chemical potentials in the liquid, are only constant in space and not in time.

Assumption 2.2 (Homogeneous liquid droplets). We assume the liquid to be homogeneous in
space, i.e. na and µa, a ∈ aL are independent of x and hence can depend only on the free boundary
Ii(t) or on boundary values of the basic variables on Ii(t).

In [DD08] differential equations and boundary conditions are derived explicitly under our assump-
tions from (2.42) in case of a single droplet. This can be easily extended to the case of many
droplets. For the result in [DD08] the transport theorem is used, what can be applied since we
assume to have Lipschitz boundaries. The side conditions (2.29) – (2.31) and (2.35) – (2.37),
which correspond to balance fluxes of substance/mass at free boundaries, are used as well for the
derivation of the differential equations from (2.42). We give a short summary of their result.
We decompose the availability into a mechanical, chemical, interfacial and diffusive contribution

A =: Achem +Amech +AI +Adiff .

Since interfaces are disjoint we can decompose further

AI =:
∑
i∈N
Ai. (2.46)
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2.4. Available free energy of the system and approach of a thermodyn. system to equilib.

For the derivation of an explicit expression for d
dtA and explicit expressions for Achem, Amech,

AI , Adiff and their time derivative respectively we refer to [DD08]. It is physically reasonable to
assume that mechanical and chemical equilibria are achieved within short relaxation times, so we
can assume

(A1) d

dt
Achem = 0, (A2) d

dt
Amech = 0

as necessary conditions for possible equilibria. Both processes are assumed to be in quasi-stationary
equilibrium at all times.
It is not clear for us by now if we can assume that interfacial equilibrium is achieved faster or within
same relaxation time as diffusive equilibrium. We consider two cases. In the regime of diffusion
controlled interface motion, which we abbreviate by (DC), we have

(A3∗) d

dt
AIi = 0 ∀i ∈ N and (A4) d

dt
Adiff ≤ 0.

In the regime of interface controlled interface motion, which we refer to as (IC), we work with

(A3) d

dt
AIi ≤ 0 ∀i ∈ N and (A4∗) d

dt
Adiff = 0.

We have strict equality in (A3) and (A4) if and only if an equilibrium of the total system, i.e.
a minimum or maximum of the availability, is achieved. We emphasise that we do not want to
consider the case (DC & IC), where both equilibria are achieved within almost equal relaxation
times i.e. (A3) and (A4) hold.
Furthermore we have to guarantee that the availability is non-increasing if a droplet vanishes i.e.

A(τi+)−A(τi−) ≤ 0. (2.47)

We give the necessary conditions for an equilibrium explicitly: the necessary conditions for chemical
equilibrium following from (A1) are

µVα + µVβ + µVγ = 0 in ΩS(t), (2.48)
µAsγ + µVβ = µVγ + µAsβ in ΩS(t), (2.49)
µAsα + µVβ = µVα + µAsβ in ΩS(t). (2.50)

From (A2) it follows that the mechanical BVP is

(div σS)i :=
3∑
j=1

∂jσ
i,j
S = 0 in ΩS(t) ∀i ∈ {1, 2, 3}, (2.51)

∇piL = 0 in Ωi
L(t) ∀i ∈ N, (2.52)

ν · σSν = −p0 on ∂Ω(t), (2.53)
τl · σSν = 0 on ∂Ω(t) ∪ Ii(t) ∀l ∈ {1, 2} ∀i ∈ N(t), (2.54)

ν · σSν + pL = −2σkM on Ii(t) ∀i ∈ N(t), (2.55)

where τl are normalised tangential vectors to the outer normal ν. kM := −div ν is the mean
curvature. kM is defined following the usual sign convention and we have kM |Ii = − 1

ri
≤ 0 for our

spherical droplets. We remark that we denote scalar products by f · g =
∑3
j=1 fjg

j and products
of a matrix A and a vector g by (Ag)j =

∑3
k=1A

jkgk.
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Chapter 2. Thermodynamically consistent model for gallium arsenide

The following conditions at the interface follow from (A3)

jνGa + nGa(vν − wν) = −B
i
Ga

RT
(µGaα − µVα − µGaL −

MGa

ρS
ν · σ<·,·>S ν) on Ii(t) ∀i ∈ N(t), (2.56)

jνAs + nAs(vν − wν) = −B
i
As

RT
(µAsγ − µVγ − µAsL −

MAs

ρS
ν · σ<·,·>S ν) on Ii(t) ∀i ∈ N(t), (2.57)

jνV + nG(vν − wν) = −B
i
V

RT
(µVα + µVβ + µVγ ) on Ii(t) ∀i ∈ N(t), (2.58)

where we use for the last line (2.4). (A4) yields the diffusion fluxes in the bulk

jAs = −B
D

RT
∇(µAsγ − µVγ −

1
µ̃

(µGaα − µVα)) on ΩS(t), (2.59)

jV = −BV
RT
∇(µVα + µVβ + µVγ ) on ΩS(t), (2.60)

where t ∈ (0, T ). The factors Bi
Ga, Bi

As, Bi
V , BD and BV are non-negative and are called mobilities.

More precisely, we have two types of mobilities, the interface mobilities Bi
As, B

i
Ga and Bi

V , where
i ∈ N 0, and the bulk mobilities BD and BV . B(D) is the diffusion mobility3 of interstitial As, and
BV the diffusion mobility of vacancies.
We want to assume that vacancies have always by far the highest mobility, hence Bi

V , BV → ∞.
Under these limits the equations (2.58) and (2.59) yield that (2.48) holds also on interfaces and we
only have to consider (2.56) and (2.57) on interfaces and a single diffusion law (2.59).
The interface mobilities Bi

As and Bi
Ga are given as functions depending on Xi

L and ri e.g. following
the ansatz in [DD08], eqns. (4.39), by

Bi
As

assumpt.= niAsL

√
RT

2πM(Xi
L)
, Bi

Ga
assumpt.= nGaiL

√
RT

2πM(Xi
L)
. (2.61)

We emphasise that the ansatz (2.61) is used as a guess for Bi
As and Bi

Ga and reliable experimental
data for these quantities is not available. In particular we note that due to Xi

L ∈ (0, 1) these two
mobilities are for arbitrary Xi

L finite. We introduce for ease of presentation a common interface
mobility, which does not depend on the specific droplet,

BI :=
√

RT

2πM(XL)
nRL = Bi

As

nRL
niAsL

√
M(Xi

L)
M(XL)

= Bi
Ga

nRL
niGaL

√
M(Xi

L)
M(XL)

. (2.62)

The bulk mobility B of interstitial arsenic is assumed to be either a constant

B = B(T ), (2.63)

determined by experiments, or to be a function linked to the diffusion constant D(T ) of interstitial
As, which may be determined by experiments, via

B

RT

∂

∂nAs
(µAsγ − µVγ −

1
µ̃

(µGaα − µVα)) = D. (2.64)

We consider the two limiting cases. In the regime (DC) we assume

maxi∈N(t){Bi
As, B

i
Ga}

B
→∞, (2.65)

3For ease of presentation we often write B instead of BD in the following.
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2.5. Constitutive model for GaAs and further assumptions

while for (IC) we consider the limit

maxi∈N(t){Bi
As, B

i
Ga}

B
→ 0. (2.66)

This yields for (A3∗) from (2.56) and (2.57)

µGaα − µVα − µGaL −
MGa

ρS
ν · σ<·,·>S ν = 0 on Ii(t) ∀i ∈ N(t), (2.67)

µAsγ − µVγ − µAsL −
MAs

ρS
ν · σ<·,·>S ν = 0 on Ii(t) ∀i ∈ N(t), (2.68)

and for (A4∗) from (2.58)

µAsγ − µVγ −
1
µ̃

(µGaα − µVα) = const(t) ∀x ∈ ΩS(t), (2.69)

where t ∈ (0, T ).
Unless otherwise mentioned we treat both regimes simultaneously, considering (DC) and then, if it
makes a difference, the (IC) regime.
In Subsection 2.6 we will exploit the consequences of (A1), (A2), (A3∗), (A4), (A3) and (A4∗)
in this order together with further constitutive laws and assumptions, which we state in the next
subsection.
Instead of (2.56) we consider BI

BiAs
(2.57) − 1

µ̃
BI

BiGa
(2.56), which we combine with (2.62), (2.22), (2.29)

and (2.30), i.e.

nRL

√
M(Xi

L)
M(XL)

(vνAsL −
1
µ̃
vνGaL + (1− 1

µ̃
)(vνL − wν))

= − B
I

RT
(µAsγ − µVγ − µAsL −

1
µ̃

(µGaα − µVα − µGaL)) on Ii(t) ∀i ∈ N(t) (2.70)

and hence we replace (2.67) by

µAsγ − µVγ − µAsL −
1
µ̃

(µGaα − µVα − µGaL) = 0 on Ii(t) ∀i ∈ N(t). (2.71)

2.5. Constitutive model for GaAs and further assumptions

We relate our system to a reference system. Then we close our system by constitutive laws for
nL, nG, σS , pL and µa, a ∈ aS ∪ aL. For the general constitutive model and further details on the
derivations of the constitutive laws we refer the reader to [DD08], Ch. 3(e), Ch. 5 and Ch. 6.

2.5.1. Reference system and reference configuration

If one neglects surface tension and bulk stresses the system is well understood, that can be ex-
perimentally realised by a solid cube of GaAs crystal in a liquid GaAs bath where the external
pressure acts by means of an inert gas of Ga and As on the system (see [DD08], Fig.2, p.21) such
that the crystal is under hydrostatic pressure in 3-phase equilibrium. Therefore we relate some of
our variables to known experimental values of this so-called reference standard system and consider
the actual values as small deviations from the values of 3-phase equilibrium. These experimental
values are constants and will be usually denominated by an overline on the corresponding variable
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Chapter 2. Thermodynamically consistent model for gallium arsenide

of our system: p(T ), nG(T ), nL(T ), Y a(T ), XL(T ), µa(T ) = µchema (T ). They are determined as the
unique global minimisers of the available free energy of the reference standard system. We will
drop the temperature dependence in our notation from now on.
Accordingly we define relative lattice occupancies

ya := Ya

Y a
, a ∈ aS.

We define stress/strain relations w.r.t. a reference configuration. As a reference configuration we
choose the reference standard system, where the liquid/solid body of GaAs is free of surface tension
and strain i.e. we have nG = nRG = nG in the solid and nL = nRL = nL in the liquid, which is the
case if the body is under uniform pressure p and in chemical composition Y a, a ∈ aS in the solid
and XL in the liquid. We express ρ, nG and nL in terms of ρ, nG, nL and U in the following.
We rewrite the definition of the mass density (2.6) by (2.8)

ρ =
{
ρS = (3− YV )M(XS)nG; x ∈ ΩS(t),
ρiL = M(Xi

L)niL ; x ∈ Ωi
L(t), ∀i ∈ N. (2.72)

Next we introduce two states of the density, which we need to describe deformations: The mass
density of the reference configuration

ρ :=
{
ρS := M(XS)(3− Y V )nRG = M(XS(y = 1))nRG; x ∈ ΩS(t),
ρL := M(XL)nRL ; x ∈ Ωi

L(t), ∀i ∈ N

and the mass density of a solid, whose lattice coincides with the lattice of the reference configuration,
but with a different distribution of atoms as in the reference configuration,

ρ∗ :=
{
ρ∗S := M(XS)(3− YV )nRG; x ∈ ΩS(t),
ρ∗L := M(XL)nRL ; x ∈ Ωi

L(t), ∀i ∈ N.

Deformations itself are expressed via F which decompose into inelastic deformations F ∗ due to
redistribution of atoms over lattice sites, which are assumed to be given uniquely as constitutive
law, and elastic deformations, which are reversible,

Fel := FF ∗−1.

For a detailed discussion on this subtle point we refer to [BDDM07], [DDK08].
We check that we have for the Jacobian according to its definition (2.11)

J = ρ

ρ
=
{
J(S) = ρS

ρS
= det((I3 − h)−1); x ∈ ΩS(t),

JL = ρL
ρL

= (1− hL)−3 ; x ∈ Ωi
L(t), ∀i ∈ N

(2.73)

which is used in the following as definition of ρ instead of (2.72).
We introduce the quantity

h∗ :=


h∗(S) := 1− 3

√
3−YV
3−Y V

M(XS)
M(XS) ; x ∈ ΩS(t),

h∗L := 1− 3

√
M(XL)
M(XL) ; x ∈ Ωi

L(t), ∀i ∈ N
(2.74)

20



2.5. Constitutive model for GaAs and further assumptions

as the inelastic counterpart to h. We define

J∗ := detF ∗ =

 J∗(S) := (3−Y V )M(XS)
(3−YV )M(XS) = (1− h∗(XS))−3; x ∈ ΩS(t),

J∗L := M(XL)
M(XL) = (1− h∗L(XL))−3 ; x ∈ Ωi

L(t), ∀i ∈ N,

and the multiplication rule for determinants yields

Jel := detFel = JJ∗−1 =


nRG
nG

= det(I3 − h)−1(1− h∗(XS))3; x ∈ ΩS(t),
nRL
niL

= (1− hL)−3(1− h∗L(XL))3 ; x ∈ Ωi
L(t), ∀i ∈ N.

For the rest of this work we want to deal with small deviations h∗ i.e. deformations due to change
of the chemical composition of the reference standard system are only of O(h̃). We remark that
inelastic deformations due to thermal expansion are already included in the temperature dependent
constants p and further in the constants kS , GS and kL, which we will meet later in the constitutive
laws (2.77), (2.78) and (2.79) for the Cauchy stress and the pressure in the liquid.
Hence we have the following constitutive laws for nG and nL,

nG = nRG
Jel

= nRG
J∗

J
, nL = nRL

Jel,L
= nRL

J∗L
JL
. (2.75)

Remark 2.1 (Alternative ansatz for the deformations). Another ansatz, which might be suggested
to include deformations due to rearrangement of atoms, is to work with a nRL , which is not the
constant nL and which depends on the chemical composition i.e. on XL:

nRL(XL) :=
(

1−XL

nPGaL
+ XL

nPAsL

)−1

for given reference values nPGaL and nPAsL. In our formulas we then have to replace h∗ and h∗L by
zero. But this ansatz for nRL leads to inconsistencies with the conservation of mass.

2.5.2. Constitutive laws for GaAs: Cauchy stress and pressure

We close our system by linking the Cauchy stress σS to U and h∗ and the pressure in the liquid
pL to UL and h∗L by constitutive laws. We abbreviate the strain i.e. the symmetrised displacement
gradient by

eij(∇U) := 1
2(hij + hji) = 1

2(∂jU i + ∂iU
j). (2.76)

As derived in [DD08] the constitutive law, which links the Cauchy stress σS to the displacement
gradient ∇U and to h∗ in the solid, is in geometric linearisation

σijS = −pδij +
3∑

k,l=1
Kijkl(ekl(∇U)− h∗δkl), (2.77)

where the stiffness tensor K = K(T ) ∈ R4×4 of crystalline GaAs in isotropic approximation is

Kijkl ≡ Kijkl(T ) = kS(T )δijδkl +GS(T )(δikδjl + δilδjk − 2
3δ

ijδkl). (2.78)

Here kS ≡ kS(T ) and GS ≡ GS(T ) denote temperature dependent material constants i.e. the bulk
modulus and the shear modulus of crystalline GaAs.
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Chapter 2. Thermodynamically consistent model for gallium arsenide

For the pressure in the liquid we assume that we deal with a compressible liquid, which is linear in
J−1
el,L, i.e.

pL := p− kL(1− nL
nL

) = p− 3kL(aL − h∗L) +O(‖h‖2), (2.79)

where kL ≡ kL(T ) is the bulk modulus of GaAs in the liquid.

Remark 2.2 (Formal extension of the Cauchy stress into the liquid). For the liquid we could make
an ansatz, which is similar to (2.77) and (2.78), for σL as Cauchy stress in the liquid and with KL

as stiffness tensor in liquid GaAs. Due to the properties of a liquid the shear modulus in the liquid
is GL = 0. This yields

σijL = −pδij +
3∑

k,l=1
Kijkl
L (ekl(∇UL)− h∗Lδkl) = (−p+ kL(tr(e(∇UL))− 3h∗L))δij . (2.80)

But since we have only identical diagonal components in (2.80) the pressure in the liquid prescribes
completely the strains and stresses in the liquid,

pL = −1
3 tr(σL). (2.81)

We use later in Section 5.2 the equation (2.80) to extend the stress tensor σS , formally on the whole
domain Ω, which is for technical reasons needed for the homogenisation.

2.5.3. Constitutive laws for GaAs: Chemical potentials

The chemical potentials in the solid and in the liquid decompose into a chemical and a mechanical
part

µa = µchema + µmecha , a ∈ aS ∪ aL.

We have in the solid

µchema = µa +RT ln( Ya
Y a

), a ∈ aS, (2.82)

µmecha :=
{

(pS − p)Ma
ρS

+O(h̃2); a ∈ {Gaα,Asα,Asβ,Asγ},
0 ; a ∈ {Vα,Vβ,Vγ}

(2.83)

and in the liquid

µchemGaL
= µGaL +RT ln( 1−XL

1−XL
) + (L0 + L1(3− 4XL))XL

2

− (L0 + L1(3− 4XL))XL
2
, (2.84)

µchemAsL
= µAsL +RT ln(XL

XL
) + (L0 + L1(1− 4XL))(1−XL)2

− (L0 + L1(1− 4XL))(1−XL)2, (2.85)

µmecha = kL
nRL

ln(nL
nL

) = kL
nRL

3(h∗L − hL) +O(h̃2), a ∈ aL. (2.86)

R is here the gas constant and L0 ≡ L0(T ), L1 ≡ L1(T ) are the given Redlich-Kister coefficients.
The explicit formulas (2.82), (2.84) and (2.85) for chemical parts of chemical potentials in GaAs
µa, a ∈ aS ∪ aL go back to Mika, Oates, Wenzl et al. [WMH90], [WOM93], [OEW95], while the
mechanical parts (2.83) and (2.86) of chemical potentials are derived for GaAs in [DD08].
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2.5. Constitutive model for GaAs and further assumptions

Note that (2.56) – (2.60) have to hold for the reference configuration, which is under pure hydrostatic
pressure i.e. σ<·,·>S = 0, too, and we get immediately

µGaα − µVα − µGaL = 0, µAsγ − µVγ − µAsL = 0,
∑
a∈SL

µVa = 0. (2.87)

Notice, that due to (2.87) the reference values µa, a ∈ aS ∪ aL drop out completely in (2.56) –
(2.60). W.l.o.g. we set

µa := 0, a ∈ aS ∪ aL (2.88)

in the following calculations.
As abbreviation we introduce by using twice (2.82) and (2.83)

µchemGa := µchemGaα − µVα = RT ln(yGaα
yVα

), (2.89)

µchemAs := µchemAsγ − µVγ = RT ln( y

yVγ
), (2.90)

and now we can introduce some suitable chemical potentials, µGa for the gallium and µAs for the
arsenic part in the solid:

µa = µchema + µmechaα ∀a ∈ {As,Ga}.

The terms µAs and µGa appear in the necessary conditions (2.56) and (2.57) on interfacial equi-
librium. Since in (2.59), the necessary condition for diffusional equilibrium, the following linear
combination of chemical potentials appears, we introduce the total chemical potential in the solid

u = uchem := µAs −
1
µ̃
µGa = µchemAsγ − µVγ −

1
µ̃

(µchemGaα − µVα), (2.91)

where mechanical parts of the chemical potential drop out. We define

S :=
yAsγ
yVγ

( yVα
yGaα

)
1
µ̃ . (2.92)

This yields with (2.88)
u = RT ln(S). (2.93)

For the liquid side we define the total chemical potential uL similar as (2.91). With (2.84), (2.85),
(2.88) and (2.14) we have

uL := µAsL −
1
µ̃
µGaL

= RT (ln(XL

XL
(1−XL

1−XL
)

1
µ̃ ))− 2(L0 + 3L1)(XL −XL)

+ (L0 + 9L1 −
1
µ̃

(L0 + 3L1))(X2
L −X

2
L)− 4L1(1− 1

µ̃
)(X3

L −X
3
L)

+ 3kL
nL

( 1
µ̃
− 1)(aL − h∗L). (2.94)

2.5.4. Sphericity of the system and the droplets

Assumption 2.3 (Sphericity of the free boundaries). As we have already mentioned at the be-
ginning we want to consider only the case of liquid droplets, which are spheres and the case of a
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Chapter 2. Thermodynamically consistent model for gallium arsenide

spherical Ω. In order to preserve Ω and Ωi
L, i ∈ N to be spheres for all times, we have to adjust

suitably the growth conditions of the free boundaries since wν depends on x, too. Hence we consider

ṙi(t) := −
∫
Ii(t)

w(x, t) · ν(x)dA(x), Ṙbd := −
∫
∂Ω
w(x, t) · ν(x)dA(x).

If the deviation
∫
I∗i
||x − Xi| − ri|dA(x) of an arbitrary shaped closed surface I∗i from a sphere

is of order ε, it was derived rigorously in [AF99] and in [Vel00] that taking the average over Ii
about w yields only an error of higher order in ε to the classical LSW dynamics. Furthermore a
restriction to spheres makes sense since a closed convex surface tries to minimise its geometrical
surface energy under volume-preserving mean curvature flow and converges exponentially fast to a
sphere, see [Hui87].
Since we will see that our Stefan condition is up to a factor the Stefan condition of the classical
LSW model this justifies the restriction to spherical droplets in our model.
The error, we make by taking Ṙbd, the average over v on the free boundary, can be estimated and
turns out for sufficiently small ε to be of higher order in ε than v, which we show in Lemma 3.1.
Consequently we approximate from now on the boundary conditions on the interfaces, (2.55) for
U and (2.70) and (2.57) for u and XL by its expressions, which we get for a spherical droplet,
respectively.
From now on we exploit the radial symmetry of droplets and Ω = BRbd(0).

2.6. Exploitation of the availability inequality and the constitutive laws

2.6.1. Reduction of variables by chemical equilibrium

In order to guarantee that the relative lattice occupancies ya, a ∈ aS are well-defined we have to
assume that the domain of the ya’s isD0 = (0, 1/Y ), 1/Y ≤ 1. This yields that (2.82) is well-defined,
too.
From now on we use the abbreviations Y := YAsγ and y := yAsγ . We will reduce explicitly the
number of variables of our system by relating {ya}a∈aS uniquely to y. This is due to the following
six relations. Three of them are due to the same mole density nG of each sublattice, (2.4),

YVγ = 1− Y, YVβ = 1− YAsβ , YVα = 1− YAsα − YGaα (2.95)

and three relations follow from the chemical “reactions” between sublattices under the necessary
conditions (2.48) – (2.50), that the following reactions are instantly in chemical equilibrium

Vα + Vβ + Vγ 
 0 : µVα + µVβ + µVγ = 0 ⇐⇒ YVαYVβYVγ = C1, (2.96)

Asγ + Vβ 
 Vγ + Asβ : µAsγ + µVβ = µVγ + µAsβ ⇐⇒
Y YVβ
YVγYAsβ

= C2, (2.97)

Asα + Vβ 
 Vα + Asβ : µAsα + µVβ = µVα + µAsβ ⇐⇒
YAsαYVβ
YVαYAsβ

= C3, (2.98)

with constants C1 ≡ C1(T ), C2 ≡ C2(T ) and C3 ≡ C3(T ). Note that (2.95) – (2.98) hold for the
reference standard system, too. In the reference standard system the constants Ci, 1 ≤ i ≤ 3 can
be expressed in terms of Y a. It is sufficient to give either explicitly Y and Ci, 1 ≤ i ≤ 3 or four of
the lattice occupancies w.l.o.g. Y , Y Vβ , Y Asα and Y Vα to be given, which can be read of from the
diagrams in [DD08], p.22 (EMS).
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2.6. Exploitation of the availability inequality and the constitutive laws

We have the following lemma which we prove in Appendix A.2.

Lemma 2.2. For y ∈ Jy := (0, ζ), where ζ := min{(y ∈ (0, 1
Y

)|(1 − C1)C2
2 − (C1(1 + C3 −

2C2) + 3C2)C2Y y − (C1(1 − C2)(C3 − C2) − 3C2
2 )(Y y)2 − C2

2 (Y y)3), 1
Y
} we can uniquely express

ya, a ∈ aS \{Asγ} as rational functions in y which are well defined i.e. ya ∈ (0, 1
Y a

), a ∈ aS \{Asγ}.

For typical experimental data we have the estimate ζ ≤ 1
3Y .

For u which is a function in y only, we find Ju := (u(0), u(ζ)) = (−∞,+∞). As we calculate in the
appendix in (A.9) u is strictly monotone and continuous in y.
We assume nL as a function of XL and U , which we show in (2.112). Due to nGaL = (1−XL)nL
and nAsL = XLnL there results only XL ∈ (0, 1) as independent concentration in the liquid.
We estimate roughly the deviation of our chemical variables from the reference values.

Remark 2.3 (Deviation of XL and y from reference values). The smallness of h∗L implies the
smallness of

XL −XL = −3(h∗L +O(h̃2))(XL + µ̃

1− µ̃) = 3
1− µ̃O(h̃) (2.99)

since there holds exactly

M(XL) = M(XL) +MAs(1− µ̃)(XL −XL).

Hence for typical data we have XL−XL = O(10−1) ≈ O(h̃1/2). But we can only hope if h∗ = O(h̃)
and y ∈ Jy that

y − 1 ≈ −3h∗ (1− µ̃)Y As + µ̃(3− Y V )
(1− µ̃)Y ′As(1)− µ̃Y ′V (1) ≈ (Y Asα

Y
+
Y Asβ

Y
+ 1 + µ̃

Y Gaα

Y
)O(h̃)

typ. data
≈ O(10).

The approximations for y − 1 are made rigorously later by a maximum/minimum principle in
Lemma 4.2.

We now examine further variables which can be considered now as functions depending on y or on
XL.
According to the definition of the arsenic mole fraction of the solid XS in (2.7),

XS : Jy → (0, 1), y 7→
YAsα(y) + YAsβ (y) + YAsγ (y)

YAsα(y) + YAsβ (y) + YAsγ (y) + YGaα(y) .

We look for XS varying slightly from X0 = 0.500082, where we recall that X0 is the mean value
of X over Ω i.e. over solid and liquid, which guarantees semi-insulating behaviour of GaAs. Note,
that in genereal XS(1) 6= X0.
We verify by some calculations, which can be found in Appendix A.3, that

0 < X ′S(y) <∞ ∀y ∈ Jy

i.e. XS is strictly monotone in y and bounded. Since XS is continuous, we could invert XS w.r.t.
y on Jy and work with XS instead of y as variable.

P : (0, 1) 7→ (0, 1), X 7→ MAsX

M(X) = 1
1 + µ̃( 1

X − 1)
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Chapter 2. Thermodynamically consistent model for gallium arsenide

is strictly monotone in X i.e. for its derivative we have

P ′(X) = µ̃

(X + µ̃(1−X))2 .

As long as mechanical deformations are of order O(h̃) the densities nL and nG, which are considered
as functions in ∇U or aL are well-defined i.e. positive and finite, nL ∈ (nL(1−O(h̃)), nL(1+O(h̃)))
and nG ∈ (nG(1 − O(h̃)), nG(1 + O(h̃))). Furthermore since 1 ≤ 3 − YV ≤ 3 this holds for nS
analogously.
Next we consider the densities ρS and ρL, which are determined by the variables ∇U or aL. We see
that ρS has values in ρS(1±O(h̃)) i.e. the densities are indeed positive. By derivation of ρ∗ w.r.t. X
we see in the solid together with X ′S(y) > 0 that ρ∗S is strictly monotone in y and in the liquid that
ρ∗L is strictly monotone in XL. Thus ρ∗S : (0, 1) 3 y 7→ ρ∗S(y) ∈ (MGa(1−C1)C2

2nG,MAsYAs(ζ)nG))
and ρ∗L : (0, 1) 3 XL 7→ ρ∗L(XL) ∈ (MGanL,MAsnL). Consequently ρ∗S(y) and ρ∗L(XL) are strictly
monotone and well-defined.
Due to the definition of J there follows from the continuity equation (2.20)

∂tJ
−1 +∇ · (vJ−1) = 0 (2.100)

since ρ is constant. We introduce the only on y or on XL depending functions,

n̂As(y,XL) :=

 n̂As(S)(y) := XS(3− YV )nRGJ∗ = M(XS)
M(XS)XS(3− Y V )nRG; x ∈ ΩS(t),

n̂AsL(XL) := XLn
R
LJ
∗
L = M(XL)

M(XL)XLn
R
L ; x ∈ Ωi

L(t), ∀i ∈ N

and

n̂Ga(y,XL) :=
{
n̂Ga(S)(y) := (1−XS)(3− YV )nRGJ∗ = YGan

R
GJ
∗; x ∈ ΩS(t),

n̂GaL(XL) := (1−XL)nRLJ∗L ; x ∈ Ωi
L(t), ∀i ∈ N

s.t. nb = n̂bJ
−1, for all b ∈ {As,Ga}. Note that in general not nAs = n̂As etc. We check that due

to (2.100) conservation laws hold for this functions in our approximation,

∂tn̂a +∇ · (n̂av) = −∇ · ja ∀x ∈ ΩS(t) ∀t ∈ (0, T ) ∀a ∈ {As,Ga}, (2.101)
∂tn̂aL +∇ · (n̂aLvL) = −∇ · jaL ∀x ∈ Ωi

L(t) ∀i ∈ N(t) ∀t ∈ (0, T ) ∀a ∈ {As,Ga}. (2.102)

Since the product of two strictly monotone positive functions is again strictly monotone (and also
positive), we find that due to (2.9) that nAs and n̂As are strictly monotone (increasing) in y. An
analogous result holds for nAsL and n̂AsL w.r.t. XL: ∂XLnAsL = nL > 0, respectively. We also
found

0 < X0(u, U) :=
{ 1

MAs
ρS(U)P ′(XS(u))X ′S(u) ; x ∈ ΩS(t),

1
MAs

ρL(UL)P ′(XL(uL))X ′L(uL); x ∈ Ωi
L(t), ∀i ∈ N. (2.103)

Following the monotonicities we can understand the functions YAs, YGa, YV , XS , y, h
∗ and n̂As as

given functions of u, which can be inverted. Analogously we express the unknowns h∗L, n̂AsL as
invertible functions of XL.
We summarise dependencies of other quantities on the variables. In the solid ρS is a function of U
and nG, nS , na, a ∈ {As,Ga} are functions of u and U . In the liquid ρL is a function of UL, while
nL, nAsL , nGaL and jAsL are functions of UL and XL.
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2.6. Exploitation of the availability inequality and the constitutive laws

2.6.2. Mechanical boundary value problem

We recall that we treat the mechanics in approximation of small displacement gradients, as stated
in Assumption 2.1, which is a stronger assumption than linear elasticity, since linear elasticity
would not imply that ‖∇U‖ is small.
Due to (A2) we have the equations (2.51) – (2.55) for given surface tension σ and outer pressure
p0. The displacement vector U is related to σS and pL by the constitutive laws (2.77) and (2.79).
Thus we can reformulate (2.51) – (2.55). The mechanical mechanical boundary value problem is
to find the displacement vector U , such that for fixed time t ∈ Jt = (0, T ) the equations

div (λStr(∇U) + 2µSe(∇U)) = 3kSh∗′(u)∇u in ΩS(t), (2.104)
piL = p− 3kL(aiL − h∗L(Xi

L)) in Ωi
L(t) ∀i ∈ N(t), (2.105)

ν · (λStr(∇U) + 2µSe(∇U))ν = p− p0 + 3kSh∗(u) on ∂Ω(t), (2.106)
τl · (λStr(∇U) + 2µSe(∇U))ν = 0 on ∂Ω(t) ∪ Ii(t)

∀l ∈ {1, 2} ∀i ∈ N(t), (2.107)
ν · (λStr(∇U) + 2µSe(∇U))ν + piL = p− 2σkM + 3kSh∗(u) on Ii(t) ∀i ∈ N(t) (2.108)

are solved.
Note that the relation between Lamé constants λS , µS and K is

λS(T ) = kS(T )− 2
3GS(T ), µS(T ) = GS(T ).

In particular GS > 0 and kS > 0 ensures µS > 0 and λS > −2
3µS , that is needed for the existence

and uniqueness proof for the mechanical BVP in Th. 4.1. Analogously we could define formally
for the liquid Lamé constants λL and µL. Since there are no shear stresses in a liquid µL = 0 and
λL = kL − 2

3µL = kL.
We have to specify how to determine hL = aLI3 or aL. This is done by an argument similar
to the so-called Eshelby argument, i.e. taking the liquid spherical droplet out of the solid, then
considering a phase transition and then fitting the solid droplet into the solid back (cf. [DD08], p.
5/6, [DDK08]). We assume that we have a misfit situation i.e.

nL ≤ nS , (2.109)

which is the case for GaAs. Let Y I
V the given reference value of the lattice occupancy of vacancies

near interface. As in [DD08] we assume Y I
V = Y V . We introduce the misfit parameter

δR := 1− 3

√
nL

(3− Y I
V )nG

(2.110)

which is positive due to (2.109). We remark, that if nL > nS there would come a gaseous phase
into play, since the liquid cannot exert traction on the solid.
Note, that we work with a “reference configuration free of strains/stresses” i.e. with discontinuous U
on Ii i.e [[U ]] 6= 0 in general. Equivalently we could work with [[U ]] = 0 and a “initial configuration”
with initial strains/stresses, which yields the same formula for pL. For this subtle point see [DDK08].
This yields in case of a strain/stress-free reference configuration

aiL(−
∫
Ii

U · ν) =
−
∫
Ii
U · ν
ri

− δR, (2.111)
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Chapter 2. Thermodynamically consistent model for gallium arsenide

which is equivalent to a discontinuity condition on the displacement U on Ii, [[U ]] = δRri. Hence

niL = (3− Y V )nRG

1−−
∫
Ii
U(|x−Xi|=ri)·ν

ri

1− h∗L(XL(ri))

3

. (2.112)

Since we want to ensure having no contradiction to our assumption of spherically symmetric liquid
droplets, we had to modify (2.111) by taking the mean value over all directions.
The trace of a tensor, spherically symmetric on Ii, has always this symmetry, too. Therefore the
resulting modification of (2.117) enforces not only the spherical symmetry of σS on Ii but also of
pS due to its definition (2.16) and hence of σ<·,·>S . The spherical symmetry of σ<·,·>S implies the
spherical symmetry on Ii of e(∇U) and hence of J .
We want to reformulate problem (2.104) – (2.108) in order to get a formulation similar as in Ciarlet
[Cia98]. We can decompose locally every vector z on a smooth manifold w.r.t. the orthonormal
base ν, τ1, τ2 i.e.

z = (z, ν)ν + (z, τ1)τ1 + (z, τ2)τ2 (2.113)

where (·, ·) denotes the standard scalar product in R3. This allows us to equivalently express
(2.106) and (2.107), which are three equations on ∂Ω in terms of one equation (2.116) for three
components each. Analogously we proceed with (2.108) and (2.107), the three equations on Ii,
which are expressed by (2.117). This yields equivalent to (2.104) – (2.108)

div (λStr(∇U) + 2µSe(∇U)) = 3kSh∗′(u)∇u in ΩS(t), (2.114)

piL(−
∫
Ii

U · ν) = p− 3kL(
−
∫
Ii
U · ν
ri

− δR − h∗L(Xi
L)) in Ωi

L(t) ∀i ∈ N(t), (2.115)

(λStr(∇U) + 2µSe(∇U))ν = (p− p0 + 3kSh∗(u))ν on ∂Ω(t), (2.116)
(λStr(∇U) + 2µSe(∇U)

−3kL
−
∫
Ii
U · ν
ri

)ν = (2σ
ri
− 3kL(δR + h∗L(Xi

L))

+ 3kSh∗(u))ν on Ii(t) ∀i ∈ N(t). (2.117)

In order to decompose the Cauchy stress into parts which depend on ∇U and which do depend on
the chemical composition we introduce a “elastic part of the Cauchy stress”

σ̌ijS := (kS −
2
3GS)tr(∇U)δij + 2GSe(∇U)ij (2.118)

s.t.
σijS = −(p+ 3kSh∗S)δij + σ̌ijS .

This implies
σ̌S = λStr(∇U)I3 + 2µSe(∇U). (2.119)

Furthermore we have now pS = p− (λS + 2
3µS)(tr(∇U)− 3h∗(u)) and pL = p− 3λL(aiL(−

∫
Ii
U · ν)−

h∗L(Xi
L)). We rewrite (2.114) – (2.117) for σ̌S = σ̌S(∇U),

div σ̌S(∇U) = 3kSh∗′(u)∇y in ΩS(t), (2.120)

piL(−
∫
Ii

U · ν) = p− 3kL(
−
∫
Ii
U · ν
ri

− δR − h∗L(Xi
L)) in Ωi

L(t) ∀i ∈ N(t), (2.121)

σ̌S(∇U)ν = (p− p0 + 3kSh∗(u)ν on ∂Ω(t), (2.122)

(σ̌S(∇U)− 3kL
−
∫
Ii
U · ν
ri

)ν = (2σ
ri
− 3kL(δR + h∗L(Xi

L)) + 3kSh∗(u)ν on Ii(t) ∀i ∈ N(t). (2.123)
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We can expect uniqueness in the mechanical BVP only in the sense that we consider solutions in
H1/RD with class of equivalence RD.

Definition 2.1 (Infinitesimal rigid displacements). We define RD as the set of all infinitesimal
rigid deformations {Ωε

S(t) → Ωε
S(t), x → φ(x) := a + b × x|a, b ∈ R3, where a, b can depend on

time. Equivalently φ(x) can be represented by a + Wx, where W is a skew symmetric tensor
corresponding to rotation around axis b. The uniqueness w.r.t. RD represents uniqueness up to
the Galilei invariance of our model.

Remark 2.4 (Modelling dislocations in the crystal). As a possibility for modelling influences by
mechanical misfits due to dislocations in the crystal it would be possible to additionally introduce a
so-called source term f̃ on the r.h.s. of (2.120), but we omit this in the following. We remark that,
our theorems could be adapted to include an additional term f̃ ∈ L6/5(Ω).

Without the term −3kL
−
∫
Ii
U ·ν
ri

ν on the l.h.s. of the boundary condition on Ii the mechanical BVP
is the standard problem of linear elasticity, which is treated in [Cia98], p. 296, Th. 6.3-6. We prove
later Theorem 4.2 for the displacement U and Theorem 4.3 for the velocity ∂tU . In both theorems
we see that, if the data is of order h̃, which holds if

Xi
L ∈ JXL := (XL(1− h̃), 1), (2.124)
y ∈ Jy := (1− h̃, 10) or u ∈ Ju := (u(1− h̃), u(10)), (2.125)

where we redefine Jy and Ju, and if

ri > rmin >
2σ

max{kS , kL, GS}
, (2.126)

then ∇U and ∇v ∈ O(h̃). This confirms that our approximation from Assumption 2.1, in particular
to work with (2.13), is consistent. We have from the data, that

h̃ = max{p0 − p
3kS

, δR, h∗(u(ζ)), h∗L(1)}. (2.127)

For an explicit solution of the mechanical BVP for a spherically symmetric single droplet problem
see Appendix C.1.1. We remark that our solution formulas in case of the radial symmetric single
droplet problem depend smoothly on the time-dependent data rI and Rbd. That this holds also for
non spherically symmetric mechanical problems will be proved later, when we will have stated the
diffusion problem, which yields the evolution of the radii.

2.6.3. Boundary conditions on the interface

We now exploit (A3). We modify (2.70) and (2.57) for our model to guarantee spherical droplets
at all times and have with the definitions (2.74), (2.91), (2.94) and (2.29)

nRL(1− h∗L(Xi
L))3/2(vνAsL −

1
µ̃
vνGaL + (1− 1

µ̃
)(vνL − ṙi)) (2.128)

= − B
I

RT
(u− uchemL (Xi

L) + 1− µ̃
µ̃

3kL
nRL

(h∗L(Xi
L)−

−
∫
Ii
U · ν
ri

+ δR)) ∀x, |x| = ri(t) ∀i ∈ N(t),

nRL(1− h∗L(Xi
L))3/2(vνAsL − ṙi) (2.129)

= − B
I

RT
((µAs(u)− µAsL(Xi

L,−
∫
Ii

U · ν)− MAs

ρS(−
∫
Ii
tr(∇U))ν · σ

<·,·>
S ν)) ∀x, |x| = ri(t) ∀i ∈ N(t),
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where t ∈ (0, T ) is fixed. We look in regime (DC) for solutions (u|Ii , Xi
L) = (uint, XL) ∈ R× (0, 1)

of the equations (2.128) and (2.129), where uint and XL are functions of the given parameters, ri
and the function U , which is assumed to be known from the mechanical BVP. We show in this
subsection, that only ri and the boundary value U iM := −

∫
Ii
U · ν enter into uint and XL.

According to our approximation from Assumption 2.1 we have

ν · σ<·,·>S ν

ρS(U) = ν · σ<·,·>S ν

ρS
+O(h̃2).

Analogously to (2.91) and (2.94) we define chemical potentials ũ and ũL weighted with

m̃ :=
1− µ̃MAsnL

ρS

1− MAsnL
ρS

> µ̃ (2.130)

instead of µ̃. This definitions are suitable s.t. some terms from the mechanics cancel out later. We
have

ũ(y) := µAs(y)− 1
m̃
µGa(y) = RT ln(S̃(y)) + (1− µ̃

m̃
)MAs

ρS
(pS − p),

with
S̃(y) := y

yVγ (y)( yVα(y)
yGaα(y))

1
m̃

and

ũL(XL) = RT (ln(XL

XL
(1−XL

1−XL
)

1
m̃ ))− 2(L0 + 3L1)(XL −XL)

+ (L0 + 9L1 −
1
m̃

(L0 + 3L1))(X2
L −X

2
L)− 4L1(1− 1

m̃
)(X3

L −X
3
L)

+ 3kL
nL

1− m̃
m̃

(
−
∫
Ii
U · ν
ri

− δR − h∗L(XL)).

We abbreviate the chemical part of this weighted chemical potential

ũchemL (XL) := RT (ln(XL

XL
(1−XL

1−XL
)

1
m̃ ))− 2(L0 + 3L1)(XL −XL)

+ (L0 + 9L1 −
1
m̃

(L0 + 3L1))(X2
L −X

2
L)− 4L1(1− 1

m̃
)(X3

L −X
3
L)

and analogously introduce ũmech.
Due to (2.130) we have MAs

ρS
(1 − µ̃

m̃) + 1
nL

(1 − 1
m̃) = 0. Now the boundary conditions (2.128) and

(2.129) can be rewritten with using further the mechanical boundary condition (2.108)

uint − uL(XL, ri, U) =

uint − uchemL (XL) + 3kL
nL

1− µ̃
µ̃

(h∗L(XL)− aL(ri, U)) = 0 ∀x, |x| = ri, (2.131)

ũ(uint)− ũL(XL, ri, U)− (1− µ̃

m̃
)MAs

ρS
ν −
∫
Ii

σ<·,·>S ν =

ũchem(uint)− ũchemL (XL) + (1− µ̃

m̃
)MAs

ρS
(2σ
ri

+ 3kSh∗(uint)) = 0 ∀x, |x| = ri, (2.132)

where we got the last equation by taking 1
BI

(2.128) + ( 1
µ̃ −

1
m̃) 1

BI
(2.129) for regime (DC). (2.131)

is just the continuity of the total chemical potential on I.
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2.6. Exploitation of the availability inequality and the constitutive laws

In order h̃ we get (1− µ̃
m̃)MAs

ρS
= 1

Y AsnG
with (2.110).

We solve the last two equations, where (2.132) serves to give first uint in terms of XL and the
parameters, ri and the function U , and (2.132) serves to determine XL for given parameters.
Unfortunately this can’t be done explicitly since we have equations which are transcendant in XL

and uint.
We abbreviate U iM = −

∫
Ii
U · ν and nAs = Y AsnG. If we can neglect h∗ in the second equation and

assume strict monotonicity of ũchem in uint then (2.132) translates into

uint(ri, U iM ) := (ũchem)−1[ũchemL (XL(ri, U iM ))− 1
nAs

2σ
ri

] (2.133)

and (2.131) into

(ũchem)−1[ũchemL (XL(ri, U iM ))− 1
nAs

2σ
ri

]− uchemL (XL(ri, U iM ))

+3kL
nL

1− µ̃
µ̃

(h∗L(XL(ri, U iM ))− U iM
ri

+ δR) = 0,

equivalently

ũchemL (XL(ri, U iM ))− 1
nAs

2σ
ri

− ũchem(uchemL (XL(ri, U iM )) + 3kL
nL

1− µ̃
µ̃

(h∗L(XL(ri, U iM ))− U iM
ri

+ δR)) = 0
(2.134)

and by the mean value theorem one can prove existence of a XL(ri, U iM ) solving the last equation,
given ri and U iM . Therefore we have to use Assumption 2.1. We motivate the following assumption
in detail in Appendix A.5.

Assumption 2.4 (Well-posedness of boundary conditions on interfaces).
1) If ri > rmin ≥ 2σ

4GS+3kL , XL ≥ 1
2 , 1 > µ̃ > 1

3 and m̃ > 1, then exists a unique solution to
(uint, XL) ∈ Ju × JXL, as defined in (2.125) and (2.124), of the interface conditions (2.128) and
(2.129) for all parameters ri ∈ Jr := (rmin,∞) and solutions U of the mechanical BVP (where in
particular the data of the mechanical BVP is assumed to be in our approximation of O(h̃)).
2) uint and XL depend smoothly on ri and on −

∫
Ii
U · ν in our approximation from Assumption 2.1.

3) uint and XL depend smoothly on ri and are strictly monotone decreasing in ri, if we make a
further approximation, where we assume that uint and XL can be determined from a single droplet
problem. This approximation is exactly up to order O(h̃).

Unfortunately we cannot prove this, but under suitable scaling assumptions of droplet radii and
distances we can give formally an asymptotic expansion of the mechanical BVP in Chapter 3 of
our study, which allows to reduce the problem, to the point, that the boundary conditions on the
interfaces have to be solved for a single droplet problem. Under suitable assumptions we give a
proof of our assumption in case of a single droplet problem in Appendix C.1.2.
As abbreviation we write sometimes uiint = uint(ri,−

∫
Ii
U · ν). From now on we consider functions

of uiint and Xi
L, e.g. h∗(uiint) or h∗L(Xi

L), as functions of ri and −
∫
Ii
U · ν, unless otherwise stated.

Remark 2.5 (Comparison of b. c. on the interfaces with the classical Gibbs-Thomson law). If we
neglected bulk stresses i.e. U ≈ 0 and h∗L ≈ 0 and assume no misfit i.e. δR = 0 we would find
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uint(ri) = uchemL (XL(ri)),

XL(ri) = [ũchemL − ũchem ◦ uchemL ]−1( 1
nAs

2σ
ri

)

and with linearising this yields the classical Gibbs-Thomson law.

2.6.4. Diffusion equation

In this subsection we derive the diffusion equation in the solid

X (u)(∂tu+ v · ∇u) +∇ · v Ξ(u)− B

RT
∆u = 0 ∀x ∈ ΩS(t) ∀t ∈ (0, T ) (2.135)

where X (u) = n̂′As(u), (2.136)
Ξ(u) = n̂As(u). (2.137)

We see that (2.135) is indeed parabolic. Corresponding to (A4) the constitutive law (2.59) guar-
antees, when we bulk mobility is strictly positive, a positive entropy production. B could be either
a given constant B = B(T ) which we refer to as (B1) or a function B(nAs)

RT ∂nAsu(nAs, U) = D(T )
still depending on u, which can be determined by the diffusion constant D of interstitial As once a
solution u is known. The latter case is abbreviated by (B2).
We combine the local conservation of As (2.17) with (2.22),

∇ · j = −∂tnAsS −
∑
a∈SL

∇nAsav (2.138)

and with (2.59) and (2.91) we get the diffusion equation written with nAs as unknown for (B1)

∂tnAs +∇ · (nAsv) = 1
RT
∇ · (B(nAs)∇u(nAs, U)) = D∆nAs (2.139)

or for (B2)
∂tnAs +∇ · (nAsv) = B

RT
∆u(nAs, U). (2.140)

In principle we can treat both cases (B1) and (B2), i.e. (2.63) and (2.64), simultaneously since the
structure of the PDE remains the same. We present our analysis in the rest of the study in the
first case, the results in the second case can be similarly obtained. The mathematical analysis is
more interesting in the case (2.63), because in this case the diffusion equation is nonlinear, while
in the case (2.64) the diffusion equation is linear.
We use (2.101) instead of the law (2.17) and get a diffusion equation where the mechanics enters
only by the velocity and its divergence

∂tn̂AsS +∇ · (n̂Asv)− B

RT
∆u(n̂As) = 0. (2.141)

Since n̂As(u) is a continuous and strictly monotone function in u it is invertible w.r.t. u and we
find equivalently to (2.141) the diffusion equation (2.135).

Remark 2.6 (Alternative version of the diffusion equation). If we considered the density ρS as
function of u by assuming that U = U(u) in ΩS, then we could eliminate by means of the continuity
equation (2.20) the ∇ · v term and rewrite (2.135) as

X0(u)(∂tu+ v · ∇u)− 1
RT
∇ · (B∇u) = 0 ∀x ∈ ΩS(t) ∀t ∈ (0, T ) (2.142)
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with X0 defined as in (2.103). But since we want to have equivalence between (2.140) and (2.135)
without further assumptions we do not use (2.142).

Analogously to (2.138), in the liquid we have

∇ · jAsL = −∂tnAsL −∇ · (nAsLv), (2.143)

which we can rewrite if we extend (2.136) and (2.137) for nAsL

X (uL)(∂tuL + v · ∇uL) +∇ · v Ξ(uL) = −∇ · jAsL ∀x ∈ Ωi
L(t) ∀t ∈ (0, T ). (2.144)

Remark 2.7 (Diffusion in the liquid). If we did not assume a homogeneous liquid droplet i.e.
neglect diffusion in the liquid, we would have

jAsL = −B
L

RT
∇uL (2.145)

with BL(T ) (analogous to (2.63)) or (RT )−1BL(nAsL)u′L(nAsL) = DL analogous to (2.64). Then
we would find, corresponding to (2.139),

∂tnAsL +∇ · (nAsLv)−DL∆uL(nAsL , UL)) = 0 ∀x ∈ Ωi
L(t) ∀t ∈ (0, T )

or equivalently by using (2.136) and (2.137), extended onto the liquid,

X (uL)(∂tuL + v · ∇uL) +∇ · v Ξ(uL)− BL

RT
∆uL = 0 ∀x ∈ Ωi

L(t) ∀t ∈ (0, T ). (2.146)

But we want to assume that diffusion in the liquid is much faster than in the solid and that we deal
with homogeneous liquid droplets. Accordingly we have to let BL/B →∞ s.t. we find uL = const,
which still could depend on ri(t) and t and (2.145) cannot be used anymore. So we must work with
(2.143) instead of (2.146) and uL is determined by (2.94) where the constitutive laws (2.84) and
(2.85) enter.

The velocities vL and va, a ∈ aL are spherically symmetric due to Assumption 2.3. With Gauss’
theorem we derive from (2.20) and (2.19)

vL|Ii · ν = −
∫
Ii
∂tρL∫

ΩiL
ρL

, va|Ii · ν = −
∫
Ii
∂tna∫

ΩiL
na

∀a ∈ aL, ∀i ∈ N(t) ∀t ∈ (0, T ).

This yields for jAsL

jAsL |Ii · ν = nAsL

(∫
Ii
∂tnAsL∫

ΩiL
nAsL

−
∫
Ii
∂tρL∫

ΩiL
ρL

)
∀i ∈ N(t) ∀t ∈ (0, T ).

With Assumptions 2.2 and 2.3 the last three equations simplify by using Gauss’ theorem to

vL|Ii · ν = −ri3
∂tρ

i
L

ρiL
∀x ∈ Ii(t) ∀i ∈ N(t) ∀t ∈ (0, T ), (2.147)

va|Ii · ν = −ri3
∂tn

i
a

nia
∀x ∈ Ii(t) ∀i ∈ N(t) ∀t ∈ (0, T ) ∀a ∈ aL, (2.148)

jAsL |Ii · ν = ri
3

(
∂tnAsL −

nAsL
ρL

∂tρL

)
∀x ∈ Ii(t) ∀i ∈ N(t) ∀t ∈ (0, T ). (2.149)

Due to the monotonicities derived in Lemma A.3 or Lemma A.5 we could state the diffusion equation
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in the solid also in the variables y or XS and in the liquid we could state the diffusion equation in
the variable XL.
One might ask which is a suitable unknown for which the diffusion problem should be stated in
order to simplify the analysis? There are four candidates: y/XL, XS/XL, n̂As and the chemical
potential u. We decide to work with u and with n̂As as unknown. For applying standard results for
nonlinear diffusion equations it is more practical to work with n̂As, while in order to find a formally
homogenised solution of the diffusion problem, it is more convenient to use u, which is the variable
in the corresponding classical LSW models.

2.6.5. Stefan conditions and outer boundary conditions

We ask what can be said about the speed of a free boundary? For a given PDE with a free interface,
we can derive an explicit formula for the normal speed ṙi of a spherically free interface in terms of
the variables, u, U , Rbd and ri, called the Stefan condition. In this subsection we will derive this
formula for our model.
For spherically symmetric droplets the conditions (2.29) – (2.31) are rewritten as

(−
∫
Ii

jAs − jAsL + nAs −
∫
Ii

v+ − nAsLv−) · ν = [[nAs]]ṙi ∀x ∈ Ii(t) ∀i ∈ N(t) ∀t ∈ (0, T ), (2.150)

(−
∫
Ii

jGa − jGaL + nGa −
∫
Ii

v+ − nGaLv−) · ν = [[nGa]]ṙi ∀x ∈ Ii(t) ∀i ∈ N(t) ∀t ∈ (0, T ), (2.151)

(ρS −
∫
Ii

v+ − ρLv−) · ν = [[ρ]]ṙi ∀x ∈ Ii(t) ∀i ∈ N(t) ∀t ∈ (0, T ). (2.152)

We abbreviate in the following

U iM := −
∫
Ii

U · ν, (∇U)iM := −
∫
Ii

(∇U · ν) · ν, viM := −
∫
Ii

v · ν.

Furthermore we write ∂νu = ∇u · ν.

Lemma 2.3 (Stefan conditions and outer boundary condition).
1) With Fick’s law (2.59) and inserting (2.147) and (2.149) the equations (2.150), (2.152), (2.35)
and (2.37) imply

ṙi = B

RT

−
∫
Ii
∇u · ν

X(ri, U iM )
∀x ∈ Ii(t) ∀i ∈ N(t) ∀t ∈ (0, T ), (2.153)

B

RT
∂νu = 0 ∀x ∈ ∂Ω(t) ∀t ∈ (0, T ), (2.154)

Ṙbd = −
∫
∂Ω
v · ν ∀x ∈ ∂Ω(t) ∀t ∈ (0, T ) (2.155)

where we abbreviated

X = −ρL
ρS
nAs + nAsL + (∂rinAsL −

nAs
ρS

∂riρL)ri3 . (2.156)

2) In our approximation this yields

X(ri, U iM )

= nG(3− Y V )[(XS −XS)ρL
ρS

+ (XL −XL)(1 +
2U

i
M
ri
− 3δR

%
)− (XL −XS)

2U
i
M
ri
− 3δR

%
]

(2.157)
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with % := 1− ρL
ρS
.

3) X is strictly positive and strictly monotone increasing in ri.

Proof. We only prove 1) and show 2) and 3) in Appendix A.6. We plug in Fick’s law (2.59) into
(2.35) and get (2.154). From (2.37) follows (2.155).
The following assumption is crucial for the statement of the Stefan condition (2.153). We assume
we have given: uint and XL as function of ri and U iM , while v+ = [∂tU ]Ii . We get from (2.150)

−
∫
Ii

w · ν = −
( B
RT −

∫
Ii
∇u+ jAsL) · ν
[[nAs]]

+
−
∫
Ii

[[nAsv]] · ν
[[nAs]]

on Ii(t) ∀i ∈ N(t) for a.a. t ∈ (0, T ).

(2.158)
In a homogeneous and spherical liquid droplet we can solve the continuity equation for vL and
vAsL and get (2.147) and (2.148). For spherically symmetric droplets −

∫
Ii(t)w(x, t) · ν = ṙi(t) for all

i ∈ N(t).
Note that, due to (2.152),

viM = −
∫
Ii

v+ · ν = ṙi
[[ρ]]
ρS

+ ρL
ρS
v− · ν = (1− ρL

ρS
)ṙi −

∂tρL
ρS

ri
3 . (2.159)

We plug (2.147), (2.148), (2.149) and (2.159) into (2.158) and get

ṙi =
− B
RT −

∫
Ii
∇u · ν − (∂tρL

nAsL
ρL
− ∂tnAsL) ri3 + nAs((1− ρL

ρS
)ṙi − ∂tρL

ρS
ri
3 ) + nAsL

∂tρL
ρL

ri
3

[[nAs]]
.

That can be rewritten as

ṙi =
− B
RT −

∫
Ii
∇u · ν + (∂tnAsL −

nAs
ρS
∂tρL) ri3

ρL
ρS
nAs − nAsL

, (2.160)

which is the formula given by Dreyer and Duderstadt [DD08]. But on the r.h.s. of (2.160) ∂tρL
and ∂tnAsL depend on ṙi and we want to state an explicit formula for ṙi.
If we assume that, we can write ∂tρL = ∂riρLṙi and ∂tnAsL = ∂rinAsL ṙi, then by defining

X = −ρL
ρS
nAs + nAsL + (∂rinAsL −

nAs
ρS

∂riρL)ri3

we find the Stefan condition (2.153).

The boundary condition on the interface, the diffusion equation and the Stefan conditions are
different for (IC).

2.6.6. Differences for the regime (IC) in Subsections 2.6.3 – 2.6.5

We recall that in the interface controlled regime of interface motion the relation of the mobilities
is (2.66), while for regime (DC) we considered (2.65). The diffusion equation for (IC), (2.69), gives
directly that the chemical potential depends only on time,

u = u(t) = const(t) ∀x ∈ ΩS(t) ∀t ∈ (0, T ). (2.161)

Note, that the Stefan condition (2.153) is in the (IC) limit (2.66) of the form “0
0”. We have two

equations to derive ṙi and Xi
L, which follow from the necessary conditions (A3) i.e. the equations
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(2.128) and (2.129),

nRL(1− h∗L(Xi
L))3/2(vνAsL −

1
µ̃
vνGaL + (1− 1

µ̃
)(vνL − ṙi))

= − B
I

RT
(u− uchemL (Xi

L) + 1− µ̃
µ̃

3kL
nRL

(h∗L(Xi
L)−

−
∫
Ii
U · ν
ri

+ δR)) ∀x, |x| = ri(t) ∀i ∈ N(t),

nRL(1− h∗L(Xi
L))3/2(viAsL − ṙi)

= − B
I

RT
(µAs(u)− µAsL(Xi

L,−
∫
Ii

U · ν)− MAs

ρS
ν · σ<·,·>S ν) ∀x, |x| = ri(t) ∀i ∈ N(t),

where t ∈ (0, T ) is fixed. In regime (IC) we look for solutions (ṙi, Xi
L) = (ṙi, XL) ∈ R× (0, 1) of the

last two equations, where ṙi and XL each are functions of the given parameters ri and the function
U , which is assumed to be known from the mechanical BVP. The equation for ṙi serves as Stefan
condition for regime (IC).
We abbreviate

G(XL) := nRL(1− h∗L(XL))3/2.

We use that ∂tniAsL , ∂tn
i
GaL

and ∂tρ
i
L can be expressed as functions n′AsL ṙi, n

′
GaL

ṙi and ρ′Lṙi as
demonstrated in the proof of Lemma 2.3, and define

Hñ(XL, ri, U
i
M ) := (1− 1

ñ
)− ri

3 (
n′AsL
nAsL

− 1
ñ

n′GaL
nGaL

+ (1− 1
ñ

)ρ
′
L

ρL
), ñ ∈ {µ̃, m̃}.

Similar as in Subsection 2.6.3 we rewrite the second equation by combining RT
BI

(2.128) + ( 1
µ̃ −

1
m̃)RT

BI
(2.129). Furthermore by using (2.147) and (2.148) and the definitions of G and H, we get

G(XL)Hµ̃(XL, ri, U
i
M )ṙi = BI

RT
(u− uchemL (XL) + 3kL

nL

1− µ̃
µ̃

(h∗L(XL)− aL(ri, U))),

G(XL)Hm̃(XL, ri, U
i
M )ṙi = BI

RT
(ũchem(u)− ũchemL (XL) + (1− µ̃

m̃
)MAs

ρS
(2σ
ri

+ 3kSh∗(u))).

Eliminating ṙi yields one equation for XL

Hµ̃(XL, ri, U
i
M )

Hm̃(XL, ri, U iM )
(ũchem(u)− ũchemL (XL) + (1− µ̃

m̃
)MAs

ρS
(2σ
ri

+ 3kSh∗(u)))

= u− uchemL (XL) + 3kL
nL

1− µ̃
µ̃

(h∗L(XL)− aL(ri, U)),
(2.162)

and one for ṙi
ṙi = BI

RT

u− uL(Xi
L, U

i
M )

G(XL)Hµ̃(XL, ri, U iM )
, (2.163)

where we rewrite by means of (2.94) in the last equation.

Assumption 2.5 (Boundary conditions on the interfaces for regime (IC)). We assume that (2.162)
has a unique solution Xi

L ∈ JXL for given u, ri and U iM for typical material data as given in
Appendix D.
Then ṙi is uniquely determined by (2.163). We rewrite this Stefan condition for regime (IC) as

ṙi = BI

RT

u− uL(XL(u, ri, U iM ), U iM )
Z(u, ri, U iM )

(2.164)
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with
Z(u, ri, U iM ) := G(XL)Hµ̃(XL(u, ri, U iM ), ri, U iM ). (2.165)

and Z is strictly positive.

We can confirm this assumption so far only numerically.
We state as approximation in O(h̃)

Z(u, ri, U iM ) = nRL(1− 3
2h
∗
L(XL))

(
1− 1

µ̃
− ri

3 X
′
L( 1
XL

+ 1
µ̃

1
1−XL

)

− (1− 1
µ̃

)(1 + 3aL)(1 +
(3ρLρS − 1)U

i
M
ri
− 3ρLρS δ

R

1− ρL
ρS

)
)
,

which simplifies further to

Z(u, ri, U iM ) = nRL(1− 1
µ̃

)
(
1− 3

2h
∗
L(XL)−

[
(1 + 3aL −

5
2h
∗
L(XL)) µ̃

µ̃− 1
M(XL)(XL −XL)
MGaXL(1−XL)

− (1 + 3aL −
3
2h
∗
L(XL))

]
(1 +

2U
i
M
ri
− 3δR

%
)
)

where we use (A.22) and (A.25) for the last approximation. We see that Z > 0 holds.
A rough approximation in O(h̃1/2) but keeping the surface tension term and assuming Y � 1 and
Hµ̃/Hm̃ ≈ 1 yields

XL(u, ri, U iM ) = 1/
(

1 + ( 1
XL
− 1) exp((1 + m̃

1 + µ̃
− 1) 1

RT
u− µ̃

m̃
(1− µ̃

m̃
)2σ
ri

)
)
, (2.166)

Z(u, ri, U iM ) = nRL(1− 1
µ̃

)
(
2− ( µ̃

µ̃− 1
M(XL)(XL −XL)
MGaXL(1−XL) (1 +

2U
i
M
ri
− 3δR

%
)−

2U
i
M
ri
− 3δR

%
)
)
.

If we further assume that the argument of the exponential in (2.166) is small, we find

XL(u, ri, U iM ) ≈ XL(1 + (1−XL)((1 + m̃

1 + µ̃
− 1) 1

RT
u− µ̃

m̃
(1− µ̃

m̃
)2σ
ri

)). (2.167)

This corresponds in regime (IC) to the approximation, which is considered in Remark 2.5 in case
of regime (DC).

2.6.7. Dissolution of a droplet and the minimal radius

Despite we deal in our model with continuum mechanics we have to notice that liquid droplets
do not behave physically as a liquid if they are made arbitrarily small, which is modelled by the
introduction of a minimal radius rmin. Below rmin we do not consider liquid droplets as liquid
phase anymore.
Let

NL(ri, U iM ) := 4π
3 r3

i nL(ri, U iM )

denote the total number of particles in a droplet. In particular a liquid droplet has to have at least
two atoms, that allows to determine a lower bound rmin for a minimal radius. We calculate rmin in
the case of a As-droplet with two atoms, i.e. XL = 1, and maximal displacement i.e. |U iM | = h̃rmin
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with h̃ as determined in (2.127):

ri = 3

√
3

4π
2

nL(rmin, U iM )
= 3

√
3

2π
(1− h∗L(1))3

nL(1− aL(rmin, U iM ))3 ≥
1− h∗L(1)
1 + h̃max

3

√
3

2π
3− Y V

nG
=: rmin.

For typical material data we can estimate

rmin
>≈ 4.63 · 10−10m,

but we make use of this explicit value for the first time in Ch. 6.
Due to Assumption 2.1 we cannot solve the mechanical BVP in our approximation and due to to
Assumption 2.1 or Assumption 2.4 we also cannot solve the interface conditions (2.67) and (2.68)
as well as (2.56) and (2.57) below some radius, but this radius is smaller than rmin.
We model the vanishing of a droplet s.t. if ri = rmin for the first time i.e. at time τi (as defined
in (2.3)) we restart with a new problem with initial time τi where we have N − 1 droplets. Let
f be an arbitrary function in time, then f(τi+) := limt→τi+ f(t) denotes a limit from the r.h.s.
while f(τi−) := limt→τi− f(t) denote limits from times smaller than τi. We abbreviate [f ]+− :=
f(τi+)− f(τi−).

We have ΩS(τi+) = Ω(τi+) \ ∪j 6=i∈N(τi+)Ω
j
L(τi+) = ΩS(τi−) ∪ Ωi

L(τi−).
In principal at time τi we have a solid-solid phase transition on ∂Brmin∗ (Xi), where r∗min < rmin
is the radius corresponding to a non-misfit situation of a solid sphere in a solid crystal, i.e. we
have to solve the boundary value problem for regime (DC) with (2.114) – (2.117), (2.140), (2.133),
(2.153) – (2.155) with suitable initial conditions where we replace for the i-th droplet the equations
(2.117), (2.133) and (2.153) by

(λStr(∇U) + 2µSe(∇U)− 3kL
−
∫
Ii
U · ν
r∗min

) · ν = 0 on ∂Brmin∗ (Xi) ∀t ∈ (τi+, T ),

∂νu = 0 on ∂Brmin∗ (Xi) ∀t ∈ (τi+, T )

and
ṙi(t) = 0 ∀t ∈ (τi+, T ).

Furthermore we have a diffusion equation and a mechanical BVP in the solid droplet Brmin∗ (Xi),
which we have to solve.
We calculate r∗min

3

√
3

4π
2

nG(rmin, U iM )
≈ 3

√
3

2π
(1− h∗(1))3

nG(1− tr((∇U)iM ))
≥ (1− h∗(1)) 3

√
3

2π
1
nG

=: r∗min.

and estimate
r∗min

>≈ rmin ·
1− h∗(1)
1− h∗L(1)

1
3
√

3− Y V

= 1.81 · 10−10m.

For a spherically symmetric single droplet problem (SDP) in regime (DC), where we replace the
boundary condition (2.154) by u = uBC , uBC given, we can calculate explicitly a solution and find
semi-cusps close to the interface at τi−, before a droplet vanishes. At τi+ we expect to have a cusp
with a singularity only at Xi. Since uL or nAs|Ii is bounded we have that u or nAs stays finite in
each point. It is not clear how to extend this directly to a many droplet problem.
Instead we want to assume that the solid droplet is integrated into the crystal immediately. This

38
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is an mathematically motivated technical assumption. We see later that the error, which might be
made by our following assumption, can be made sufficiently small. We remark that the vanishing
of a droplet cannot be modelled by ri → 0 as e.g. in [Nie99] since for arbitrary small ri the interface
boundary conditions are not well-posed.

Assumption 2.6 (Modelling of a vanishing droplet).
We assume that the new initial value nAs(τi+, x) is given s.t.

1) Arsenic is conserved i.e.
∫

Ω(τi−) nAs(τi−, ·) =
∫

Ω(τi+) nAs(τi+, ·),
2) ‖nAs(τi+, ·)‖H1(ΩS(τi+)) <∞,
3) 0 ≤ nAs(τi+, x) ≤ nS for all x ∈ ΩS(τi+).

The three conditions guarantee that nGa(τi+, ·) fulfils conservation of gallium, is a H1 function on
ΩS(τi+) and is in (0, nS).
A nAs, which fulfils 1) - 3), can be constructed by means of polynomial interpolation. For example

nAs(τi+, x) :=
{
nAs(τi−, x) ; x ∈ ΩS(τi−)
nintAs (rmin) + p+3

p+1(( |x−Xi|rmin
)p − 1)[[nAs(τi−, x)|Ii ]]SL; x ∈ Ωi

L(τi−) (2.168)

for a p ∈ N \ {1} and p sufficiently large that condition 3) is fulfilled, since

min
ΩL(τi−)

nAs(τi+, ·) = nintAs (rmin), (2.169)

max
ΩL(τi−)

nAs(τi+, ·) = nAs(τi+, 0) = − 2
p+ 1n

int
As (rmin) + (1 + 2

p+ 1)nAsL(τi−). (2.170)

We choose to work with p = 20, since for As rich liquid droplets we have nAsL − 2
21 [[nAs]]SL < nS =

nRG(3 − Y V )(1 + O(h̃)) since XL ∈ (XR
L , XL(rmin)), XL(rmin) ≈ 0.95 < 1 and XS ∈ (1

2 , 1), see
Subsection 2.6.3, and [[n]] = O(h̃).
Since the displacement and the velocity problem are elliptic, there is no initial data at time τi− to
prescribe. The droplets in the index set N(τi+) := N(τi−) \ {i} are left. The new initial value for
the radii are rj(τi+) = rj(τi−), j ∈ N(τi+).
The error we make by our assumption is bounded by 4π

3 r
3
min max nAs and since we see later, that

rmin scales with ε, the error vanishes in the limit ε→ 0.

The continuity of nAs implies that the new initial data for the chemical potential u0(τi+) is con-
tinuous on Ii, too.
For the availability the vanishing of a droplet corresponds to a change of the model and of the
formula for the availability. We model this by defining

A(τi+) = A(τi−)−Adi (2.171)

where the energy of the droplet i which has dissolved is modelled by

Adi = [A(τi−)−A(τi+)]ΩiL(τi−) (2.172)

s.t. the availability is continuous in time.
Note, that in the case that a droplet does not disappear at all we have τi := +∞ by the definition
(2.3).
Important is that a fixed minimal radius rmin exists s.t. our assumptions on interface conditions
and small displacement gradients are fulfilled. We do not work with a concrete value for rmin in
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Chapter 2. Thermodynamically consistent model for gallium arsenide

the following. We recall, that the interval of possible radii is abbreviated by

Jr = (rmin,∞) ⊂ R.

2.7. Problem B and Problem BI – Many droplet problems

We summarise and state the full problem for the independent variables u, U(S), {ri}i∈N and Rbd in
case of arbitrary many spherical droplets. Herein we express the basic variables na by u and U , σS
by U and eliminate by exploiting the assumption of a homogeneous spherical droplet all quantities
from the liquid e.g we express pL by u, U and ri.
Problem B4 consists for regime (DC) of the mechanical BVP (2.114) – (2.117), the diffusion
equation (2.135) or (2.140) with boundary conditions (2.154) and (2.131) and an ODE for the
evolution of radii (2.153) and condition (2.155) for the evolution of the outer boundary. Further
we have to close our equations by imposing initial conditions on u, {ri}i∈N(0) and Rbd at t = 0. We
emphasise that initial conditions on U are not needed.
The mechanical BVP is the elliptic PDE wherein pL was eliminated by (2.115)

div (λStr(∇U) + 2µSe(∇U)) = 3kSh∗′(u)∇u in ΩS(t), (2.173)
(λStr(∇U) + 2µSe(∇U))ν = (p− p0 + 3kSh∗(u))ν on ∂Ω(t), (2.174)

(λStr(∇U) + 2µSe(∇U)

−3kL
−
∫
Ii
U · ν
ri

)ν = (2σ
ri
− 3kL(δR + h∗L(Xi

L))

+ 3kSh∗(uint(ri,−
∫
Ii

U · ν)))ν on Ii(t) ∀i ∈ N(t) (2.175)

for all t ∈ (0, T ). The diffusion problem is a nonlinear PDE for u,

∂tn̂As(u) +∇ · (n̂As(u)v)

− B

RT
∆u = 0 in ΩS(t) ∀t ∈ (0, T ), (2.176)

u = uint(ri,−
∫
Ii

U · ν) on Ii(t) ∀i ∈ N(t) ∀t ∈ (0, T ), (2.177)

∂νu = 0 on ∂Ω(t) ∀t ∈ (0, T ), (2.178)
u(·, t = 0) = u0 in Ω(0), (2.179)

with free boundaries Ii(t) and ∂Ω(t). The motion of the free boundaries is determined by

Ṙbd = −
∫
∂Ω
v · ν ∀t ∈ (0, T ), (2.180)

ṙi = B

RT

−
∫
Ii
∇u · ν

X(ri,−
∫
Ii
U · ν) ∀i ∈ N(t) ∀t ∈ (0, T ), (2.181)

Rbd(t = 0) = R0
bd, (2.182)

ri(t = 0) = r0
i ∀i ∈ N(0). (2.183)

The velocity v is determined from U by (2.13). The further unknowns Xi
L = XL(ri,−

∫
Ii
U · ν) and

aL, which replaces the unknown UL, are explicitly determined by the formulas (2.132) and (2.111).

4Problem A is the rescaled Problem B in the special case of a spherically symmetric single droplet problem and is
solved explicitly in Appendix C.1.
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In the liquid we have piL and uiL given for all i ∈ N(t) by the formulas (2.121) and (2.94). The
vanishing of a droplet is modelled as in Subsection 2.6.7.
We have that n̂As depends nonlinearly but monotone and smooth on u, independent of U . The
Stefan condition exhibits a smooth nonlinearity in ri and −

∫
Ii
U · ν.

We assume that at time t = 0 all droplets have radii r0
i > rmin. We recall that we denote the

time when the i-th droplet vanishes with τi as defined in (2.3). We solve Problem B (2.173) –
(2.183) up to times t = mini∈N(0) τi, w.l.o.g. τN (0) = mini∈N(0) τi, when the first droplet vanishes.
We start again solving a problem of the type as Problem B, now with initial conditions at T
and N − 1 droplets, which are determined as described in Subsection 2.6.7. We solve up to time
mini∈N(t) τi = min1≤i≤N (0)−1. We want to bear the criteria on T , stated in (2.1), in mind.
For the regime (IC) we consider Problem BI: find U, u, {ri}i∈N , Rbd s.t.

div (λStr(∇U) + 2µSe(∇U)) = 0 in ΩS(t), (2.184)
(λStr(∇U) + 2µSe(∇U))ν = (p− p0 + 3kSh∗(u))ν on ∂Ω(t), (2.185)

(λStr(∇U) + 2µSe(∇U)

−3kL
−
∫
Ii
U · ν
ri

)ν = (2σ
ri
− 3kL(δR + h∗L(Xi

L))

+ 3kSh∗(u))ν on Ii(t) ∀i ∈ N(t), (2.186)

for all t ∈ (0, T ),

u = const({ri}i∈N , Rbd, U) ∀t ∈ (0, T ), (2.187)

where u has to be determined s.t. mass and substance are conserved, and

ṙi = BI
u− uL(u, ri,−

∫
Ii
U · ν)

Z(u, ri,−
∫
Ii
U · ν) ∀i ∈ N(t) ∀t ∈ (0, T ), (2.188)

ri(t = 0) = r0
i ∀i ∈ N(0), (2.189)

Ṙbd = −
∫
∂Ω
∂tU · ν ∀t ∈ (0, T ), (2.190)

Rbd(t = 0) = R0
bd. (2.191)

The unknowns Xi
L and aL, which replaces the unknown UL, are explicitly determined by the

formulas (2.162) and (2.111).
In the liquid we have piL and uiL given for all i ∈ N(t) by the formulas (2.121) and (2.94). The
vanishing of a droplet is modelled as in Subsection 2.6.7.
Note, that all parts of Problem B are coupled with each other. The diffusion problem depends on
the free boundaries by the geometry and the radii enter as parameters in the boundary condition
on Ii. And the diffusion problem depends on the mechanics by the velocity v and by the boundary
condition on Ii. The Stefan condition (2.181) is coupled to the diffusion problem via −

∫
Ii
∂νu and

to the mechanics by X. The mechanical BVP depends on free boundaries by the geometry and
the data, the contribution from surface tension depends on 1

ri
and h∗L depends on ri by means of

Xi
L = XL(ri, U iM ). The mechanics are coupled to the diffusion by the data h∗. We met a similar

coupling in Problem BI.
Note, that we do not have a total spherical symmetry in ΩS , which can be assumed in case of
a single droplet centred in a spherical solid surrounding. For a single droplet in total spherical
symmetry we can calculate explicitly U in terms of rI , Rbd and u, see Appendix C.1.1), and then
only have to solve the diffusion equation, which is then only coupled to the Stefan condition. This
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Chapter 2. Thermodynamically consistent model for gallium arsenide

approach is followed in Appendix C where all explicit calculations are given.
We emphasise that the boundary conditions on the free boundaries ensure that we have spherical
droplets and a spherical Ω at all times.

Lemma 2.4 (Equivalent diffusion problem for variable n̂As). Let n̂As be a smooth, strictly mono-
tone and convex function of u. Then the diffusion problem (2.176) – (2.179) is equivalent to

∂tn̂As +∇ · (n̂Asv)

− B

RT
∆u(n̂As) = 0 in ΩS(t) ∀t ∈ (0, T ), (2.192)

n̂As = n̂intAs (ri,−
∫
Ii

U · ν) on Ii(t) ∀i ∈ N(t) ∀t ∈ (0, T ), (2.193)

and

∂ν n̂As = 0 on ∂Ω(t) ∀t ∈ (0, T ), (2.194)
n̂As(·, t = 0) = n̂0

As := n̂As(u0) in Ω(0). (2.195)

Proof. Since n̂As is smooth, strictly monotone and convex in u we have the following relation
between arbitrary norms ‖ · ‖ of u and norms of n̂As. By the mean value theorem there exists a
ξ ∈ Ju s.t.

‖n̂As(u)‖ = ‖n̂As(u = 0) + n̂′As(u = ξ)u‖ ≤ Y Asn
R
G‖1‖+ n̂′As(u = 0)‖u‖ (2.196)

and hence arbitrary norms of n̂As can be estimated by norms of u, if ‖1‖ is finite. By considering
u(n̂As) norms of n̂As can be estimated by u.
On the other hand u is smooth, strictly monotone and concave in n̂As and we can estimate u by
n̂As(u) norms.

From now on we use n̂As = YAsn
R
G instead of nAs = YAsnG, which does not appear anymore.

Abusing notation, we again write nAs.

Remark 2.8 (Discussion of approximations in the diffusion equation). If we would neglect the
drift-terms in the diffusion equation i.e. if we would set v = 0 this would violate the conservation
laws for substance and mass.
The case of a quasi-stationary approximation with completely neglecting the l.h.s. of the diffusion
equation (2.176) corresponds to the case BD → ∞ and hence to the diffusion problem in the (IC)
regime.

2.8. Available free energy – A Lyapunov function

In this chapter we have given so far a short derivation of Problem B for regime (DC) or Problem
BI for (IC) from thermodynamics. The detailed derivation in [DD08] shows that the PDEs and
ODEs are equivalent to (2.42).
Since we use in the rest of the study only that A is a Lyapunov function, we check in Appendix
A.7 by direct calculations that solutions of Problem B or Problem BI fulfil indeed (2.42).
We remark, that the following calculations are a priori i.e. in the sense that we assume that all
functions are smooth enough for differentiation and integration. These are justified, when we show
existence of classical solutions of the PDEs and ODEs of our problems under further assumptions
and that the energy, which turns out to be A = −

∫ T
0
∫

ΩS(t) |∇u|2 dx dt, is indeed finite.
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2.8. Available free energy – A Lyapunov function

Theorem 2.1 (Lyapunov function). Assume Problem B or Problem BI has a smooth solution
and assume in particular that ∂Ω and Ii for all i ∈ N are spheres and assume w|∂Ω ≈ Ṙbd in
good approximation. We assume the Helmholtz energy density ρψ to fulfil the relations (A.28) and
(A.29), we use local conservation of substance and assume all assumptions which we made so far
on material parameters to hold.
Then the availability is decreasing in time i.e. there holds

d

dt
A ≤ 0 ∀t 6= τi, i ∈ N(0) (2.197)

where the availability is modelled at τi as in (2.171). The therin appearing “availability of two
single atoms” Adi as defined by (2.172) is well-defined.
The availability is bounded from below and by adding up a suitable constant we can achieve that

A = 0

for an equilibrium. Hence A is a Lyapunov function in sense of [Wal00] w.r.t. this equilibrium.

For a proof we refer to Appendix A.7.
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Chapter 3.

Relevant scales and formal homogenisa-
tion

We want to consider the case of small volume fraction of liquid droplets. In general for given T
we can only solve Problem B and Problem BI for sufficiently small droplets, which we specify later
in Section 4.4. In the next section we determine typical scales of the diffusion problem as well as
of the mechanical BVP and rescale in order to formulate our Problems B and BI in dimensionless
variables and with a dimensionless scaling parameter ε. We proceed in Section 3.1 as outlined in
Eck et al. [EGK08], Kap. 1.4.
We find different scaling regimes. The corresponding problems are stated in Section 3.2.
Furthermore we are more interested in typical properties of our problem for a large number of
droplets than in solving the problem exactly for a certain number of droplets. Letting the scaling
parameter ε → 0, our final goal is to derive effective equations, which describe the macroscopic
behaviour with an error which vanishes as ε → 0. The formal homogenisation of Problem B and
Problem BI is considered in Section 3.3.

3.1. Dimensional analysis and scaling

3.1.1. Dedimensionalisation

Our independent dimensions are length L, time T, mass M and number N; e.g. the dimension of
number of atoms is usually measured in units of 1mol. In order to state this clearly, we make the
following definition.

Definition 3.1 (Scaling). We say that a quantity f scales with F, denoted by f ∼ F, if f = Ff̂ and
the rescaled quantity f̂ is dimensionless. Here and in the following we denote quantities without
dimensions by hats ˆ . F is a product of a dimension multiplied with a power of a scaling parameter.

We want to divide in Problem B and Problem BI all quantities by its dimension e.g. we divide x
by typical length L, t by typical time T, nAs by typical atom number per volume NL−3 and σS
by typical pressure M

L2T . Already dimensionless are by definition e.g. 1
RT u, y, Y ,XL and P . In this

section we consider thus our Problems B and BI without dimensions.
As important length scales for radii we define

R0 := 1
N 0

N 0∑
i=1

r0
i . (3.1)
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Chapter 3. Relevant scales and formal homogenisation

Since we assume that distances dij = |Xi − Xj |, i, j ∈ N(0) between neighbouring droplets and
distances di0 = dist(Xi, ∂Ω(0)), i ∈ N(0) between droplets and the outer boundary are of same
order, we define as relevant length scale for distances

D0 := 1
N 0(N 0 + 1)

N 0∑
i=1

N 0∑
j=0

dij . (3.2)

Further we define
di := min

j∈N(t)∪{0}
dij . (3.3)

If we can guarantee
ri <

di
2 , dist(Xi, ∂Ω(0)) < di

2 ∀i ∈ N(0) (3.4)

for all times t, this replaces (2.1).
As typical data of Problem B, which corresponds to the experimental situation, we have n0

As =
Y Asn

R
G ≈ nRG = 3.7 ·104molm−3, r0

i ≈ R0 = 10−9m and GS ≈ 3.5364 ·1010Nm−2. For regime (DC)
we consider B = 10−17mol m−1 s−1, while for regime (IC) BI = 7.3 · 106mol m−2 s−1. Furthermore
we assume L0 = R0

bd ≈ 10−9/2m−−10−5m and D0 = 10−6m. For a sphere Ω follows

N 0 ≈ |Ω(0)|
D3

0
= 4π

3 109. (3.5)

We continue with our dedimensionalisation. We emphasise that we still have the choice to scale
parameters like Y or data of the problems like σ. At first we consider regime (DC) and determine
possible scaling parameters. Applying the Pi-theorem of Buckingham [Buc14] we want to determine
all representations Π s.t.

Π = (n0
As)α(R0)β(GS)γBδ(L0)ζ(D0)ηY θ

σι,

which are dimensionless. There holds for the dimensions

[Π] = ( N
L3 )αLβ( M

LT2 )γ( N
LT)δLζLη( M

T2 )ι = Nα+δL−3α+β−γ−δ+ζ+ηMγ+ιT−2γ−δ−2ι.

Since all exponents have to vanish in a dimensionless representation we find α+ δ = 0, −3α+ β −
γ − δ + ζ + η = 0, γ + ι = 0 and −2γ − δ − 2ι = 0. Finally this implies α = 0, β = −ζ − η − ι,
γ = −ι, δ = 0 and hence

Π = (D0
L0

)−ζ(R0
D0

)−ζ−ηY θ( σ

GSR0
)ι.

We introduce as dimensionless scaling parameter

ε := D0
L0

and assume
R0
D0

= εr−1, Y = Y Rε
p,

σ

GSR0
= εo−r,

where r > 1, p > 0, o ≥ r and Y R is dimensionless. We determine r, p and o in the next Subsection
3.1.2.
The scaling of the mass is chosen s.t. stresses, strains and pressure are scale invariant i.e. M

LT2 ∼ ε0.
For the scale of mole N = εl we recall that we have defined the minimal radius rmin by NL = 2
and rmin ∼ ri ∼ R, which motivates l = 3r. This implies e.g. nL, nG ∼ 1. That nL and nG have to
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3.1. Dimensional analysis and scaling

have the same scaling follows from (2.112). W.l.o.g. we choose as typical length scale, time scale,
mass scale and number scale

L = εrL0, T = εq 1s, M = εr+2q MAs 1mol, N = ε3r 1mol.

For regime (IC) we have

[Π] = Nα+δL−3α+β−γ−2δ+ζ+ηMγ+ιT−2γ−δ−2ι (3.6)

and as in regime (DC) α = 0, β = −ζ − η − ι, γ = −ι, δ = 0 and the same scaling parameter ε.
The typical scales are

L = εrL0, T = εqI 1s, M = εr+2qI MAs 1mol, N = ε3r 1mol,

where time and mass are scaled different as for (DC).
Since it is for technical reasons easier to work on finite domain we scale R0

bd with ε−3. This implies
with (3.5) that N 0 ∼ ε3.
We emphasise that the relation between the microscopic length scale R0 and the macroscopic
length scale 1 corresponds to a single droplet problem where we scale ri ∼ R0 and Ribd ∼ L0 and
that the relation between mesoscopic and macroscopic length scale is only relevant for the relation
between the number of liquid droplets and their distances dij to each other and distances to the
outer boundary di0 = dist(Xi, ∂Ωε). The scaling of dij , di0 ∼ D0 is important in order to avoid
encounters.
From now on we consider everything without dimensions, unless otherwise stated. We introduce
the abbreviations R = εr and D = ε, which correspond to the dimensionful quantities R0 and D0.

3.1.2. Problem C and Problem CI

In order not to deal with fractions of droplets we require ε−1 to be a natural number. We could
get rid of this constraint by replacing everywhere ε by ([ε−1])−1 where [·] denotes Gauss’ brackets
and requiring ε ≤ 1.
In order not to have to many indices we drop the hats ˆ on dedimensionalised quantities and write
only f ε instead of f̂ if the quantity or function depends on ε.
The scaling of Y with εp represents that we deal with the last stage of phase separation and that
the deviation from the equilibrium concentration of the system is expected to be small. This
effect is called small “undercooling” in models of Ostwald ripening, where temperature instead of
concentration is varying, see [Nie99]. Our scaling implies that, XS , XL ∼ ε0 = 1, while Y ∼ εp.
This implies that X , h∗ ∼ εp.
We assume Ξ∇ · v ∼ εp, too. This can be motivated by considering a monopole approximation for
the displacement U (A) and the velocity v(A), which we derive in the following. Inserting U (A) into
the density yields in this approximation ρ(A)

S

′
(u) ∝ h∗. By ρ(A)

S = Ξ+ µ̃(n(A)
S (Ξ)−Ξ) the continuity

equation ρ(A)
S ∇ · v(A) = ρ

(A)
S

′
(u)(∂tu− v(A) · ∇u) yields the scaling of this term.

According to the last subsection we scale space variables s.t. x ∼ ε−r i.e. x→ xε = εrx and hence
gradients scale as ∇x ∼ εr by the chain rule. Analogously X ∼ ε−r and due to its definition (2.10)
we find U ∼ ε−r.
The elastic part of the Cauchy stress reads now σ̌S(∇xεU ε) = λStr(∇xεU ε) + 2µSe(∇xεU ε).
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Incorporating all scalings our Problem B translates into Problem C:

div σ̌S(∇xεU ε) = 3kSεph∗′(uε)∇xεuε in Ωε
S(tε), (3.7)

σ̌S(∇xεU ε)ν = (p− p0 + 3kSεph∗(uε))ν on ∂Ωε(tε), (3.8)

(σ̌S(∇xεU ε)− 3kL
−
∫
Iεi
U ε · ν
εrrεi

)ν = (εo−r 2σ
rεi
− 3kL(δR + h∗L(Xi

L))

+ 3kSεph∗(uiint))ν on Iεi (tε) ∀i ∈ N ε(tε) (3.9)

for all tε ∈ (0, εqT ), and

εp+q(X ε(uε)(∂tεuε +∇xεuε vε)
+Ξε(uε)∇xε · vε)− ε2r∆xεu

ε = 0 in Ωε
S(tε) ∀tε ∈ (0, εqT ), (3.10)

uε = uint(rεi ,−
∫
Iεi

U ε · ν) on Iεi (tε) ∀i ∈ N ε(tε) ∀tε ∈ (0, εqT ), (3.11)

∇xεuε · ν = 0 on ∂Ωε(tε) ∀tε ∈ (0, εqT ), (3.12)
uε(tε = 0) = u0,ε in Ωε(0), (3.13)

with

ṙεi = εr−q
−
∫
Iεi
∇xεuε · ν

X(rεi , ε3 −
∫
Iεi
U ε · ν) ∀i ∈ N ε(tε) ∀tε ∈ (0, εqT ), (3.14)

Ṙbd = −
∫
∂Ωε

vε · ν ∀tε ∈ (0, εqT ), (3.15)

rεi (tε = 0) = r0
i ∀i ∈ N ε(0), (3.16)

Rbd(t = 0) = R0
bd. (3.17)

In the liquid we have that, piL and uiL are scale-invariant, for all i ∈ N ε(tε) by the formulas (2.121)
and (2.94). The vanishing of a droplet is modelled as in Subsection 2.6.7.
(3.9) implies to choose o = r, in order to work in linear elasticity. Since only the term (rεi )−1−

∫
Iεi
U ε ·ν

enters into uint and σ
rεi
∼ 1, this implies that uint is scale-invariant. The scaling σ ∼ ε3 fits to given

material data and to (1.8) or (1.9), if we assume that our sharp-interface model can be derived
as the limit of a phase-field model similar to the Van der Waals-Cahn-Hilliard or Cahn-Larché
equations.
The scaled version of Problem BI is Problem CI: we have (3.7) – (3.9), (2.187), (3.15) – (3.17)
and instead of (3.14) holds

ṙεi = ε−qI
[[uε]]

Z(u, rεi ,−
∫
Iεi
U ε · ν) ∀i ∈ N ε(tε) ∀tε ∈ (0, εqIT ). (3.18)

Though the dimensionless droplets have radii εrrεi we want to characterise the radii just by rεi which
are of order 1. Note that now wε = εrṙεi . Furthermore we have |Iεi | = ε2r|Ii| and |Ωi,ε

L | = ε3r|Ωi
L|.

Our scaling of parameters ri ∼ R leaves ri invariant under application of both scalings.
If we want to consider the homogenised system up to non-vanishing and finite times T ε = T

εq we
have to scale T ∼ εq = 1 for (DC) or T ∼ εqI = 1 for (IC) i.e. q = qI = 0. For notation purposes
we introduce an average sum

−
∑
i∈Nε

:= ε3 ∑
i∈Nε

= 1
N 0

∑
i∈Nε

, (3.19)

which is scale invariant. We skip the ε on t and x from now on.
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3.1.3. Determination of the scaling exponents

For the scaling of radii we recall the following results of Cioranescu and Murat [CM82, CM97] or
Niethammer [Nie99]. Cioranescu and Murat consider for a similar geometry and fixed Ω ⊂ R3 the
Laplace equation with homogeneous Dirichlet boundary conditions. In this case uε ⇀ u∞ weakly
in H1

0 (Ω) and u∞ solves uniquely the Helmholtz equation ∆u∞−λ−2u∞ = 0, where λ = limε→0 λ
ε

and λε = (4πR
D3 )−1/2 is the so-called screening length in three dimensions. The screening length

λε is related to the capacity of all balls Ωi,ε
L , i ∈ N ε in Ω, which is proportional to εr−3. The

fundamental solution of this equation is u∞ = 1
|x| exp(− |x|λ ). Hence effective interactions take place

over the length scale λ, which should be of order of the length of the domain Ω i.e. λε ∼ 1. Thus the
result of Cioranescu and Murat is that the critical case is, if radii of droplets scale as ri ∼ R = εr,
r = 3, compared to their distance D = ε.
For Laplace’s equation with Dirichlet or periodic boundary conditions this shows that, if the radii
scale with εr, 1 ≤ r < 3, the radii dominate the solution u∞ as ε → 0, while for r > 3 they
have no influence on the equation, which is ∆u∞ = 0. The scaling r = 3 is considered for the
Mullins-Sekerka model in [Nie00].
In case of the heat equation and Dirichlet boundary conditions on Ii, i ∈ N ε and homogeneous
Neumann boundary conditions on ∂Ω Niethammer [Nie99] showed that if one scales radii with
r = 4 and p = 3r − 3 = 9, i.e. p like the volume fraction, then one finds in the limit an ODE for
an only time-dependent u∞.
We consider our situation. We plug our scaling into the time-derivative of the conservation of
arsenic law (2.38), which is nothing else than to test the diffusion equation (3.10) with 1, and get
in case of (DC) by means of the Reynolds’ transport theorem (see [EGK08], S. 205, Satz 5.4)

0 = εq∂tε
∫

Ωε
nεAs

=
∫

ΩεS
εpX ε(uε)∂tuε + ε3(r−1) −

∑
i∈Nε

∫
Ωi,εL

∂tn
i,ε
AsL

+
∫
∂Ωε

nεAsv
ε +

∫
∂Ωε

nεAs(Ṙbd − vε · ν)

− ε3r−3 −
∑
i∈Nε

∫
Iεi

[[nεAs]]ṙεi .

(3.20)

By exploiting the diffusion equation (3.10) in the solid and the conservation law (2.19) in the liquid
and Gauss’ theorem we find

0 =
∫

ΩεS
ε2r∆uε +

∫
∂Ωε

nεAs(Ṙbd − vε · ν)− ε2r−3 −
∑
i∈Nε

∫
Iεi

([[nεAs]]εrṙεi − [[nεAsvε · ν]] + ji,εAsL · ν)

=
∫

ΩεS
ε2r∆uε +

∫
∂Ωε

nεAs(Ṙbd − vε · ν)− ε3r−3 −
∑
i∈Nε

∫
Iεi

∇uε · ν,

(3.21)

where we use the jump condition (2.29) on the interfaces for the last step.
We have

∫
∂Ωε n

ε
As(Ṙbd − vε · ν) = εp

∫
∂Ωε Ξε(uε)(Ṙbd − vε) + o(εp) by a Taylor expansion. We use

this and multiply with ε−2r

0 =
∫

ΩεS
∆uε + εp−2r

∫
∂Ωε

Ξε(uε)(Ṙbd − vε · ν) + o(εp−2r)− εr−3 −
∑
i∈Nε

∫
Iεi

∇uε · ν.

The factor in front of the last term is just the capacity of all balls in Ω up to a constant. In order
not to loose the last term, which contains the contribution of the droplets, as ε → 0, we have to
set r = 3. We call this the “critical regime”. The second term is of order p − 2r and does not
contribute, if p > 2r or if vε · ν ≈ Ṙbd in higher order in ε.
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By comparing (3.20) and (3.21) we see that the X ε(uε)∂tuε term enters into the homogenised
equation if p = 3r−3 i.e. the “undercooling” equals the volume fraction. W.l.o.g. we consider here
p = 9.
If we want to consider the “dilute regime”, that the third term vanishes in the limit, then we have
to work with r > 3. W.l.o.g. we set r = 4. In order to end up in the homogenisation procedure
with an ODE for the mean field u∞, which is the limit of uε as ε→ 0 in an appropriate sense, we
have to choose p = 3r − 3 = 9. This choice is justified in the formal homogenisation in (3.78).
Another interesting scaling regime, which we do not consider, would be a critical regime where we
end up with a parabolic equation and a “radii term”, which follows for r = 3 and p = 6.
We consider the (IC) regime only in the dilute case

ṙεi = [[uε]]
Z(u, rεi ,−

∫
Iεi
U ε · ν) ∀i ∈ N ε(tε) ∀tε ∈ (0, T ). (3.22)

In order to compare our homogenisation result for (IC) with (DC) we choose p = 9.

Remark 3.1 (Dilute and critical scaling). We consider in the formal homogenisation, Sections 3.3
and 3.4, and for the simulations in Ch. 6, the dilute (or also called supercritical) scaling regime
with r = 4 and p = 9. The dilute scaling, with only time-dependent mean field, seems to fit better
to experiments.
In the existence and uniqueness result, Ch. 4 and the mathematical homogenisation, Ch. 5, we
consider the critical scaling, since this case is from a mathematical point of view more interesting. In
the critical scaling an additional term appears in the PDE for the mean field in the homogenisation
limit and the resulting mean field will be depending on time and slowly varying in space. At the
end of Ch. 5 we state the expected result for the dilute scaling.

We work now in the dilute scaling with r = 4, p = 9 for (DC) and (IC) in the rest of this chapter,
unless otherwise stated.
As a consequence of scaling Y ∼ ε9, the quantities Y a, a ∈ aS of the reference standard system in
the solid depend on ε, too. As we see from Appendix A.2 we get formally, if u or y is bounded, that
Y a → 1 for a ∈ {Gaα,Asβ,Vγ} and Y b → 0, b ∈ aS \ {Gaα,Asβ,Vγ} (that corresponds to scale
C1, C2 ∼ ε18 and C3 ∼ ε9). This implies 3−Y V → 2 as ε→ 0. Furthermore Y ∼ ε9 implies that ζ,
as defined in Lemma A.2, converges to ∞ as ε→ 0. Hence Jy depends on ε and limε→0 Jy = R+.

Remark 3.2 (An alternative scaling for the mechanics). We recall that we consider the mechanical
BVP in approximation of small displacement gradients, where we assume ∇U = O(h̃) for some
small h̃ ≈ 10−3. Our dimensional analysis shows that h̃ is independent of ε and fixed for our
homogenisation. Hence the limit h̃→ 0 would have to be performed separately.

3.2. The Problems D, DI and DCR for the different scaling regimes

In this section we solve formally for sufficiently small ε the following Problem D, which follows
from Problem C by inserting all scaling exponents, i.e. o, p and r, which have been determined in
the last subsections. It only makes sense to consider the Problem D for sufficiently small ε, because
then one can ensure that our problem is well-defined i.e. (3.4) is fulfilled.
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3.2. The Problems D, DI and DCR for the different scaling regimes

3.2.1. Rescaled differential equations in the dilute regime (Problems D and DI)

In rescaled variables we look for solutions U ε, uε, {ri}i∈Nε , Rεbd of the following coupled differential
equations for regime (DC) of the following Problem D.

div σ̌S(∇U ε) = ε93kSh∗′(uε)∇uε in Ωε
S(t), (3.23)

σ̌S(∇U ε)ν = (p− p0 + ε93kSh∗(uε))ν on ∂Ωε(t), (3.24)

(σ̌S(∇U ε)− 3kL
ε4ri
−
∫
Iεi

(U ε · ν))ν = (2σ
ri
− 3kL(δR + h∗L(Xi

L))

+ ε93kSh∗(uint(ri,−
∫
Ii

U ε · ν)))ν on Iεi (t) ∀i ∈ N ε(t), (3.25)

and

ε(X ε(uε)(∂tuε + vε · ∇uε) +∇ · vε Ξ(uε))−∆uε = 0 in Ωε
S(t) (3.26)

∇uε · ν = 0 on ∂Ωε(t), (3.27)

uε = uint(ri,−
∫
Ii

U ε · ν) on Iεi (t)∀i ∈ N ε(t), (3.28)

uε(·, t = 0) = u0,ε in Ωε
S(0), (3.29)

for all t ∈ (0, T ) with ODEs for the radii (Stefan conditions and ODE for external boundary)

ṙi = ε4
−
∫
Iεi
∇uε · ν

X(ri, ε4 −
∫
Iεi
U ε · ν) ∀i ∈ N ε(t) ∀t ∈ (0, T ), (3.30)

ri(t = 0) = r0
i ∀i ∈ N ε(0), (3.31)

Ṙbd = −
∫
∂Ωε

vε · ν ∀t ∈ (0, T ), (3.32)

Rεbd(t = 0) = R0
bd. (3.33)

The velocity vε is linked to U ε by (2.13). In the liquid we have piL and uiL given for all i ∈ N ε(t) by
the formulas (2.121) and (2.94) and the vanishing of a droplet is modelled as in Subsection 2.6.7.
For the regime (IC) we consider the Problem DI: find U ε, uε, {ri}i∈Nε , Rεbd s.t.

div σ̌S(∇U ε) = 0 in Ωε
S(t), (3.34)

σ̌S(∇U ε)ν = (p− p0 + 3kSh∗(uε))ν on ∂Ωε(t), (3.35)

(σ̌S(∇U ε)− 3kL
ε4ri
−
∫
Iεi

(U ε · ν))ν = (2σ
ri
− 3kL(δR + h∗L(Xi

L))

+ 3kSh∗(u))ν on Iεi (t) ∀i ∈ N ε(t), (3.36)

for all t ∈ (0, T ), and, supposed u0 ∈ R is given,

∂tu
ε = −

4π −
∑
i∈Nε r2

i

X(ri,uε,ri,−
∫
Iε
i

Uε·ν)

Z(uε,ri,−
∫
Iε
i

Uε·ν) (uε − uL(uε, ri,−
∫
Ii
U ε · ν))

|Ωε
S(t)|X ε(uε) ∀t ∈ (0, T ), (3.37)

uε(t = 0) = u0, (3.38)
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and

ṙi =
uε − uL(uε, ri,−

∫
Iεi
U ε · ν)

Z(uε, rεi ,−
∫
Iεi
U ε · ν) ∀i ∈ N ε(t) ∀t ∈ (0, T ), (3.39)

ri(t = 0) = r0
i ∀i ∈ N ε(0), (3.40)

Ṙbd = −
∫
∂Ωε

vε · ν ∀t ∈ (0, T ), (3.41)

Rεbd(t = 0) = R0
bd. (3.42)

In the liquid we have piL and uiL given for all i ∈ N ε(t) by the formulas (2.121) and (2.94) and the
vanishing of a droplet is modelled as in Subsection 2.6.7.
The equation (3.37) replaces (2.187) and will be derived later in (3.85), but is already stated here
in order to give a better overview over the full Problem DI.

3.2.2. Rescaled differential equations in the critical regime (Problem DCR)

In this subsection we state the corresponding problem to Problem D in the critical scaling regime,
Problem DCR. In rescaled variables we look for solutions U ε, uε, {ri}i∈Nε , Rεbd of the following
coupled differential equations for regime (DC):

div σ̌S(∇U ε) = ε93kSh∗′(uε)∇uε in Ωε
S(t), (3.43)

σ̌S(∇U ε)ν = (p− p0 + ε93kSh∗(uε))ν on ∂Ωε(t), (3.44)

(σ̌S(∇U ε)− 3kL
ε3ri
−
∫
Iεi

(U ε · ν))ν = (2σ
ri
− 3kL(δR + h∗L(Xi

L))

+ ε93kSh∗(uint(ri,−
∫
Ii

U ε · ν)))ν on Iεi (t) ∀i ∈ N ε(t), (3.45)

and

ε3X ε(uε)(∂tuε + vε · ∇uε +∇ · vε Ξ(uε))−∆uε = 0 in Ωε
S(t) (3.46)

∇uε · ν = 0 on ∂Ωε(t), (3.47)

uε = uint(ri,−
∫
Ii

U ε · ν) on Iεi (t) ∀i ∈ N ε(t), (3.48)

uε(·, t = 0) = u0,ε in Ωε
S(0), (3.49)

with ODEs for the radii

ṙi = ε3
−
∫
Iεi
∇uε · ν

X(ri, ε3 −
∫
Iεi
U ε · ν) ∀i ∈ N ε(t) ∀t ∈ (0, T ), (3.50)

ri(t = 0) = r0
i ∀i ∈ N ε(0), (3.51)

Ṙbd = −
∫
∂Ωε

vε · ν ∀t ∈ (0, T ), (3.52)

Rεbd(t = 0) = R0
bd. (3.53)

The velocity vε is linked to U ε by (2.13). In the liquid we have piL and uiL given for all i ∈ N ε(t) by
the formulas (2.121) and (2.94) and the vanishing of a droplet is modelled as in Subsection 2.6.7.
In regime (IC) we do not consider the critical scaling regime. We return now to the dilute regime.
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3.3. Formal homogenisation for regime (DC) in the dilute scaling

In order to solve Problem D or Problem DI formally we have a look at the following approximations
of our differential equations by superposition of solutions of the respective single droplet problems
for small ε. This allows us further to check if the scaling regime is appropriate to the experimental
situation.
We consider a fixed ε and drop the indices ε for the rest of this section.

3.3.1. Monopole approximation of the mechanical BVP

The solutions of the single droplet problems are called “monopoles”. We make a so-called mean
field ansatz. We assume that outside of shells Σi = BεRi

bd
(Xi) \ Bε4ri(Xi) around liquid droplets

i.e. in F := ΩS \ ∪i∈NΣi these single droplet problems are coupled by an only time-dependent
mean field of the chemical potential u(t) and a only time-dependent mean pressure field, which is
the outer pressure p0.
In this mean field approximation the chemical potential is denoted by uA, the displacement by W
and the radii are again denoted by ri and Rbd.
First we give an approximation by monopoles of the mechanical BVP and then use this approxi-
mation for stating an approximation of the diffusion problem.
Since the mechanical BVP, the diffusion problem and the ODEs for the free boundaries are all
coupled with each other, we have to put some assumptions in, which will be justified later. So we
assume that uA = u up to terms of O(ε) far away from droplets i.e. for x s.t. |x −Xi| > εD for
all i ∈ N . Furthermore Xi

L and uiint depend again on U , but we assume these terms as given for
the moment. uiint will drop out by taking only leading order terms in ε with us and Xi

L can be
determined later.
Let U be the exact solution of the following problem for N droplets, which is the problem (3.43)
– (3.45) and the rescaled equation (2.121): Find U ∈ C2(Ω(t)) for all t ∈ (0, T ) and given radii
evolution r(A)

i , given chemical potential u(A) and data s.t.

div σ̌S(∇U) = ε93kSh∗′(uA)∇uA in ΩS(t), (3.54)
σ̌S(∇U)ν = (p− p0 + ε93kSh∗(uA))ν on ∂Ω(t), (3.55)

(σ̌S(∇U)− (3.56)

−3kL
ε4ri

(−
∫
Ii

U · ν))ν = (2σ
ri
− 3kL(δR + h∗L(Xi

L)) + ε93kSh∗(uiint))ν on Ii(t) ∀i ∈ N, (3.57)

piL(U) = p− 3kL( 1
ε4ri
−
∫
Ii

(U · ν)− δR − h∗L(Xi
L)) in Ωi

L(t) ∀i ∈ N. (3.58)

The idea of a so-called monopole approximation is that W is a good approximation to U , if W
is given by superposition of the solutions of totally radial symmetric single droplet problems in a
spherical shell Σi around the centres.
We introduce the normalised vectors eri = x−Xi

|x−Xi| for all i ∈ N . The solutions Wi for problems,
where we consider each Σi separately, with possibly modified data, are the “monopoles”:

Wi(x) := (a|x−Xi|+ ε−3bi
ε12r3

i

|x−Xi|2
+ ci|x−Xi|)eri .

That we scale the term with bi additionally with a factor ε−3 is due to our expectation that locally
only one bi term contributes in O(ε0). The coefficients are from the solution of our mechanical part
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of the cell problem as given in Appendix C.1.1.

ai = a = p− p0
3kS

+ ε9 4GS
4GS + 3kS

h∗(u),

bi =
(1− kL

kS
)(p− p0)− 2σ

ri
+ 3kL(δR + h∗L(Xi

L)− ε9h∗(u))
4GS + 3kL

+ ε9 3kS(h∗(u)− h∗(uiint))
4GS + 3kS

,

ci = c(|x−Xi|) = ε9 3kS
4GS + 3kS

(h∗(u(|x−Xi|))−
1

|x−Xi|3
∫ |x−Xi|
ri

z3h∗′(u(z))u′(z)dz).

Our ansatz is now

W (x) = −
∑
i∈N

Wi(x) = −
∑
i∈N

((a+ ci)(x−Xi) + biε
9r3
i

x−Xi

|x−Xi|3
). (3.59)

We compute

∇W = (a+−
∑
i∈N

ci)I3 +−
∑
i∈N

c′i
(x−Xi)⊗ (x−Xi)

|x−Xi|
) +−

∑
i∈N

bi
ε9r3

i

|x−Xi|3
(I3 − 3(x−Xi)⊗ (x−Xi)

|x−Xi|2
).

∇W is symmetric, i.e. e(∇W ) = ∇W , where e(∇W ) is defined as in (2.76).
Since the following terms appear in the boundary conditions on the interfaces we give explicitly

W |Ij · erj = (a+ bj + ε3cj))ε4rj +−
∑
i 6=j

(bi
ε6r9

i

|x−Xi|3
+ ci)

(x−Xi) · (x−Xj)
ε4rj

,

[∇W ]Ij · erj = (a+−2bj + ε3(cj + c′jrj))erj +−
∑
i 6=j

bi
ε9r3

i

|x−Xi|3
(I3 − 3(x−Xi)⊗ (x−Xi)

|x−Xi|2
)erj

+−
∑
i 6=j

(ci + c′i
(x−Xi)⊗ (x−Xi)

|x−Xi|
)erj .

Note that

−
∫
Ij

(x−Xi) · (x−Xj) = ε8r2
j − ε4 −

∫
∂Brj (0)

Xi · x = ε8r2
j

and hence

−
∫
Ij

(W · erj ) = (a+ bj + ε3cj)ε4rj +−
∑
i 6=j
−
∫
Ij

bi(
ε9r3

i

|x−Xi|3
(x−Xi) · (x−Xj)

ε4rj
) +−
∑
i 6=j

(−
∫
Ij

ci)ε4rj .

For the trace of e(∇W ), which enters into the diffusion problem, holds

tr(e(∇W )) = −
∑
i∈N

(3(a+ ci) + c′i|x−Xi|).

Since we have an explicit formula for W we can give directly a monopole approximation vA = ∂tW
of v = ∂tU ,

∂tW (x) = −
∑
i∈N

∂tWi(x) = −
∑
i∈N

(∂t(a+ ci)|x−Xi|+ ε9(∂tbiri + 3biṙi)
r2
i

|x−Xi|2
)eri . (3.60)

For the part of the Cauchy stress tensor which depends only in U we get from our monopole
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approximation

σ̌S(∇W ) = 3kS −
∑
i∈N

(a+ ci + c′i
3 |x−Xi|)I3

+ 2GS −
∑
i∈N

(bi
ε9r3

i

|x−Xi|3
− c′i

3 |x−Xi|)(I3 − 3(x−Xi)⊗ (x−Xi)
|x−Xi|2

).

By construction we have div σS(∇W ) = ε93kS∇h∗′(u) in ΩS , but the boundary conditions are not
fulfilled by W :

σ̌S(∇W )ν = (3kS −
∑
i∈N

(a+ ci + c′i
3 |x−Xi|)I3

+ 2GS −
∑
i∈N

(bi
ε9r3

i

|x−Xi|3
− c′i

3 |x−Xi|)(I3 − 3(x−Xi)⊗ (x−Xi)
|x−Xi|2

))ν on ∂Ω(t),

and

(σ̌S(∇W )− 3kL
ε4rj

−
∫
Ij

(W · erj ))erj = (3kS −
∑
i∈N

(a+ ci)I3 + 2GS −
∑
i∈N

bi
ε9r3

i

|x−Xi|3
×

× (I3 − 3(x−Xi)⊗ (x−Xi)
|x−Xi|2

)

− 3kL((a+ bj + ε3cj) +−
∑
i 6=j
−
∫
Ij

bi
ε9r3

i

|x−Xi|3
×

× (x−Xi) · (x−Xj)
ε4r2

j

+−
∑
i 6=j
−
∫
Ij

ci))erj on Ij(t) ∀j ∈ N

where we use c(ε4ri)′ = 0. By plugging in a, bi, c(Rbd) = ε9( 3kS
4GS+3kS h

∗(u) +O(ε4)) and c(ε4ri) =
ε9 3kS

4GS+3kS h
∗(uiint)) and, since we assume (3.4) for the scaling of the geometry, we see that the

boundary conditions (3.55) and (3.56) only hold within an error of O(ε3):

σ̌S(∇W )ν = (p− p0 + ε93kSh∗(u) +O(ε6))ν on ∂Ω(t),
(σ̌S(∇W )−

− 3kL
ε4rj

−
∫
Ij

(W · erj ))erj = (3kS(a+ ε9 3kS
4GS + 3kS

h∗(uiint))− 4GSbj

− 3kL((a+ bj + ε9 3kS
4GS + 3kS

h∗(uiint))))erj +O(ε6) on Ij(t) ∀j ∈ N.

We have taken so far all terms in ε in the mechanical BVP in the monopole approximation with
us. Let IΩ(ε) → I†Ω as ε → 0, where IS denotes the characteristic function of a set S. Now we let
formally W (ε) →W † and get

W †(x) = a† −
∑
i∈N

(x−Xi) ∀x ∈ Ω† \ {Xi}i∈N† ,

with
a† = p− p0

3kS
(3.61)

and
(∇W †(x)) = a†I3 ∀x ∈ Ω† \ {Xi}i∈N† .
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Furthermore
W †(Xi) · ν

ε4rj
= a† + b†(ri) ∀x ∈ {Xi}i∈N† , (3.62)

where

b†(ri) :=
(1− kL

kS
)(p− p0)− 2σ

ri
+ 3kL(δR + h∗L(XA

L (ri)))
4GS + 3kL

. (3.63)

The complete formally homogenised mechanical BVP is stated in Subsection 3.3.5.
We define by inserting the solution of the monopole approximation of the mechanical BVP in
leading order in ε

uint(ri) = uint(ri, a† + b†(ri)) +O(ε6),
X(ri) = X(ri, a† + b†(ri)) +O(ε6).

Since b† depends again on XA
L we make a further approximation and take

XA
L (ri) = XL(ri, a† +

(1− kL
kS

)(p− p0)− 2σ
ri

+ 3kL(δR + h∗L(XL))
4GS + 3kL

) +O(ε6).

In functions which are defined in the solid ΩS we cannot neglect terms of order ε, if we want to
calculate u, when we insert the solution of the mechanical BVP:

ρA(u) = ρ(1− 3a† − 3ε9kSh
∗(u)), (3.64)

X (u) = XR(u)(1− 3a† − 3ε9 4GS
4GS + 3kS

h∗(u)) (3.65)

where we consider X now as X0 (see (2.142)) and split X0(u, U) = XR(u)(1 − tr(∇U)). Abusing
notation we write again uint instead of uint as well as ρ instead of ρA till the end of this chapter.

3.3.2. Monopole approximation of the diffusion problem and Stefan condition

We remark, that the following formal monopole approximation is just for illustration and is not
needed for the mathematical analysis in the Chapters 4 and 5.
On the left-hand side of the dimensionless diffusion equation we have a factor ε. This allows us
for an approximation to ignore at first the l.h.s. of the diffusion equation and we work on time-
dependent domain with ∆u = 0. We assume u ≈ u far away from droplets, where we determine
the only time dependent mean field u(t) by conservation of mass and substance. Close to droplets
we approximate u by “monopoles” ui

uA(x, t) = u(t) +
∑
i∈N

ui(x, t), ui(x, t) := −u(t)− uint(ri(t))
|x−Xi|

ε4ri(t). (3.66)

This ansatz is motivated by uA → u as ε → 0, x /∈ Ii, i ∈ N and by the assumption that small
droplets do interact with each other only via a space-independent mean field u between them.
This corresponds to the classical LSW theory, see Subsection 1.2.4, if one considers the ansatz (3.66)
only in a neighbourhood of a droplet Σi and truncates the terms with uint(rj), j 6= i. Furthermore
an LSW-ansatz for our situation would suggest

u = −
∑
i∈N uint(ri)ri
−
∑
i∈N ri

. (3.67)

However, we do not truncate (3.66) and continue with a monopole approximation for the diffusion
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problem. One checks that uA has then the following properties

∇uA =
∑
i∈N

u− uint(ri)
|x−Xi|3

ε4ri(x−Xi) in Ωε
S ,

∆uA = 0 in Ωε
S ,

∂νuA =
∑
i∈N

u− uint(ri)
|x−Xi|3

ε4ri(x−Xi) · ν = O(ε) on ∂Ω,

where the last equation holds, since the number of droplet centres, which is within distance of ε of a
point on ∂Ω, is of order 1, due to our assumption on typical particle distances. For the generalised
Gibbs-Thomson condition we find

uA = uint(rj) +
∑
i 6=j

u− uint(ri)
|x−Xi|

ε4ri = uint(rj) +O(ε) on Iεj ∀j ∈ N.

We make a different ansatz than (3.67), see Section 3.3.3, in order to determine u since we have
no volume conservation, but conservation of mass and substance. We will see later in Remark 6.4
that (3.67) approximately holds, if we are close to equilibria of the system.
For the time derivative of uA the monopole approximation yields

∂tuA = u̇−
∑
i∈N

(
u̇+ (−∂riuint(ri) + u−uint(ri)

ri
)ṙi

|x−Xi|
ε4ri) (3.68)

which is of order 1 in ε if u̇ = O(ε0). For the Stefan condition we find

X(rj)ṙj = ε4 −
∫
Ij

∂νuA = u− uint(rj)
rj

− ε5 −
∑
i 6=j

(u− uint(ri))ri −
∫
Ij

1
|x−Xi|3

(x−Xi) · ν. (3.69)

The second summand scales for droplets j which are within distance of ε of Xi with ε3. Hence in
leading order in ε we have as Stefan condition for (DC)

ṙj = u− uint(rj)
rjX(rj)

. (3.70)

3.3.3. Mean field formula and outer boundary radius

We still have to determine u. We derive now an explicit formula for the mean field u and a formula
for the outer boundary Rbd. We could derive the outer boundary by (3.60) but the determination
of u yields another approach to determine Ṙbd. Calculating in leading order in ε we can neglect
the dependence of U and v on u̇.
We rewrite the global conservation laws for As and for total mass, (2.38) and (2.40), for our mean
field ansatz,

NAs0 = (N0 −
4π
3 ε9 −

N∑
i=1

r3
i (t)nL(ri(t)))XS(u(t)) + 4π

3 ε9 −
N∑
i=1

r3
i (t)nAsL(ri(t)), (3.71)

M0 = (|Ω(t)| − 4π
3 ε9 −

N∑
i=1

r3
i (t))ρ(u(t)) + 4π

3 ε9 −
N∑
i=1

r3
i (t)ρL(ri(t)). (3.72)

Note, that in our scaling the number of atoms N0 is of order 1 in ε. (3.71) allows to compute

57



Chapter 3. Relevant scales and formal homogenisation

uniquely u, if we neglect, according to our mechanical monopole approximation, that nL does
depend on u via aL,

u = X−1
S (

X0 − 4π
3N0

ε9 −
∑N
i=1 r

3
i (t)XA

L (ri(t))nL(ri(t))
1− 4π

3N0
ε9 −
∑N
i=1 r

3
i (t)nL(ri(t))

) (3.73)

since XS is strictly monotone, see Appendix A.3. We refer to (3.73) as mean field formula.
(3.72) yields for the volume the formula

|Ω(t)| = 1
ρ(u(t))

[
M0 −

4π
3 ε9 −

N∑
i=1

r3
i ρ
i
L

]
+ 4π

3 ε9 −
N∑
i=1

r3
i , (3.74)

which yields also a formula for Rbd.
Once we have determined u and ri we can reconstruct |Ω(t)| for given |Ω(0)| > 0 or M0 via (3.74)
for all t ∈ (0, T ). Notice that we would not have needed any assumptions on the shape of ∂Ω(t)
here.

3.3.4. ODEs for mean field and for outer boundary

By means of the system of ODEs, which consists in regime (DC) of (3.70) for the radii together
with the explicit formulas (3.73) for the mean field u and (3.74) for the external boundary Rbd, we
could completely solve the formal asymptotics problem for a fixed ε. But XS still depends on ε
and for ε→ 0, we find formally XS → 1/2. Thus we derive from (3.73) and (3.74) ODEs for u and
Rbd and then solve the system of ODEs for {ri}i∈N , u and Rbd. This is also interesting for some
other purposes e.g. for stability analysis, see Section 6.3.
We recall that the sums are taken over allN = N (t) droplets, which still exist, i.e. with ri(t) > rmin,
at time t. The following considerations hold for all t ∈ (0, T ) except of times τi, when the i-th
droplet vanishes.
We determine an ODE for u by global conservation laws. We exploit the conservation law for As,

0 = d

dt

∫
Ω
nAs = ε9

∫
Ω
∂tnAs + ε9 −

∑
i∈N

∫
ΩiL
∂tnAsL +

∫
∂Ω
nAsv − ε9 −

∑
i∈N

∫
Ii

[[nAs]]ṙi

where we apply Reynolds’ transport theorem, where we use, that we consider domains with Lipschitz
boundaries. In the time derivative of u we neglect according to (3.68) terms of order ε12. This
yields for our mean field ansatz, where we use in particular that nAs(u) is constant on ∂Ω,

0 = ε9|ΩS(t)|n′As(u)u̇+ ε9 −
∑
i∈N
|Ωi
L|∂tnAsL + |∂Ω|nAs(u)Ṙbd − ε9 −

∑
i∈N
|Ii|(nAs(u)− niAsL)ṙi. (3.75)

We recall, that in the mean field ansatz we assume that, the dependence of ρS or X0 on the
mechanics is eliminated by inserting the monopole approximation and hence ρ(A)

S or X are in this
ansatz considered as functions of u. Analogously as (3.75) by global conservation of mass we get

0 = d

dt

∫
Ω
ρ(u) = ε9

∫
Ω
∂tρ(u) + ε9 −

∑
i∈N

∫
ΩiL
∂tρL + |∂Ω|ρ(u)Ṙbd − ε9 −

∑
i∈N

∫
Ii

[[ρ]]ṙi

and with the mean field ansatz

0 = ε9|ΩS(t)|ρ′(u)u̇+ ε9 −
∑
i∈N
|Ωi
L|∂tρL + ρ(u)

∫
∂Ω
v − ε9 −

∑
i∈N
|Ii|(ρ(u)− ρiL)ṙi.
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3.3. Formal homogenisation for regime (DC) in the dilute scaling

This allows to eliminate

Ṙbd = 1
|∂Ω|ρ(u) [−|ΩS(t)|ε9ρ′(u)u̇− ε9 −

∑
i∈N
|Ωi
L|∂tρL + ε9 −

∑
i∈N
|Ii|(ρ(u)− ρiL)ṙi] (3.76)

in (3.75)

0 = ε9|ΩS(t)|(n′As(u)− nAs(u)
ρ(u) ρ′(u))u̇+ ε9 −

∑
i∈N
|Ωi
L|(∂tnAsL + nAs(u)

ρ(u) ∂tρ
i
L)

− ε9 −
∑
i∈N

∫
Ii

((nAs(u)− niAsL)− nAs(u)
ρ(u) (ρ(u)− ρiL))ṙi.

This can be rewritten by multiplying with ε−9

0 = |ΩS(t)|X (u)u̇+−
∑
i∈N
|Ωi
L|(∂tnAsL − P (u)∂tρiL) +−

∑
i∈N

∫
Ii

(niAsL − P (u)ρiL))ṙi.

With the homogeneity of the liquid we find

0 = (|Ω(t)| − ε9 −
∑
i∈N

r3
i )X (u)u̇+−

∑
i∈N
|Ii|(

ri
3 (∂tnAsL − P (u)∂tρiL) + (niAsL − P (u)ρiL)ṙi) (3.77)

and now with (2.160) and (3.70), which we both combine with the scaling in (3.70) for (DC),

0 = (|Ω(t)| − ε9 −
∑
i∈N

r3
i )X (u)u̇+ 4π −

∑
i∈N

(u− uint(ri))ri.

This yields finally the ODE for the mean field, our so-called mean field equation

u̇ = −4π −
∑
i ri(u− uint(ri))
X (u)|Ω(t)|

, (3.78)

where we finally neglect terms of order ε9. By plugging in u̇ in (3.76) we get an explicit formula
for Ṙbd for given u

Ṙbd = 1
|∂Ω|ρ(u) [ε9ρ′(u)4π −

∑
i∈N (u− uint(ri))ri
X (u)

+ ε9 −
∑
i∈N
|Ii|(−

ri
3 ∂tρL + (ρ(u)− ρiL)ṙi)]. (3.79)

Plugging in the formula (2.159) into (3.79)

Ṙbd = ε9 ρ
′(u)
ρ(u)

4π −
∑
i∈N (u− uint(ri))ri
|∂Ω|X (u)

+ ε9 4π −
∑
i∈N r

2
i v
i
+ · ν

|∂Ω| .

We compare Ṙbd with v|∂Ω, where we do not take the mean value over ∂Ω.

Lemma 3.1 (Approximation of the evolution equation for the outer boundary). We assume that
(3.4) holds and that the velocity vA derived from our formally homogenised solution of Problem D,
see (3.60), is a good approximation to v. Let Ω∗ be a convex set of R3. If the deviation of sphericity
of ∂Ω∗ is of order ε̃, i.e. ∫

∂Ω∗
(|x∗| −Rbd)dA(x∗) = O(ε̃) (3.80)

and |Ω∗| − |Ω| = O(ε̃), then we have

Ṙbd(t)−−
∫
∂Ω∗

v(x∗, t)dA(x∗) = O(ε̃). (3.81)
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This justifies the approximation of v(x, t)|∂Ω by Ṙbd, since the error is of higher order in ε̃.

W.l.o.g. we could take ε̃ = ε.

Proof. We have |Ω∗| = |Ω| in O(ε̃) due to our assumption (3.81). This implies that we can assume
to have in both cases the same u in approximation of highest order terms in ε̃ and hence from
(3.70) the same radii ri in this approximation.
In distances bigger than O(ε) from droplets we find from our formal homogenisation (3.60), i.e.

vA(x) := ∂tW (x) = ∂ua u̇−
∑
j∈N

(x−Xj) +−
∑
j∈N

(∂rjbjrj + 3bj)ṙjε9 r
2
j (x−Xj)
|x−Xj |3

, (3.82)

that |vA| = O(ε). We evaluate (3.82) in direction of the outer normal on ∂Ω and get

vA(x) · ν|∂Ω = ∂ua u̇−
∑
j∈N

(x−Xj) ·
x

Rbd
+−
∑
j∈N

(∂rjbjrj + 3bj)ṙjε9 r
2
j (x−Xj)
|x−Xj |3

· x

Rbd
+ o(ε6),

while on ∂Ω∗ we have

vA(x∗) · ν|∂Ω∗ = ∂ua u̇−
∑
j∈N

(x∗ −Xj) ·
x∗

|x∗|
+−
∑
j∈N

(∂rjbjrj + 3bj)ṙjε9 r
2
j (x∗ −Xj)
|x∗ −Xj |3

· x
∗

|x∗|
+ o(ε6).

Equivalently to (3.80) we have

−
∫
∂Ω∗
|x∗|dA(x∗) = Rbd +O(ε̃) = −

∫
∂Ω
|x|dA(x) +O(ε̃).

Therewith we estimate in o(ε)

|Ṙbd(t)−−
∫
∂Ω∗

v(x∗, t) dA(x∗)|

≤ −
∑
j∈N
|∂uau̇|

∣∣∣∣−∫
∂Ω

(x−Xj) ·
x

Rbd
dA(x)−−

∫
∂Ω∗

(x∗ −Xj) ·
x∗

|x∗|
dA(x∗)

∣∣∣∣
+ ε9|∂rjbjrj + 3bj | |ṙj | r2

j

∣∣∣∣∣−
∫
∂Ω

(x−Xj)
|x−Xj |3

x

Rbd
dA(x)−−

∫
∂Ω∗

(x∗ −Xj)
|x∗ −Xj |3

x∗

|x∗|
dA(x∗)

∣∣∣∣∣
≤ −
∑
j∈N
|∂uau̇|

∣∣∣∣Rbd −−∫
∂Ω
Xj ·

x

Rbd
dA(x)−−

∫
∂Ω∗
|x∗| −Xj ·

x∗

|x∗|
dA(x∗)

∣∣∣∣
+ ε9|∂rjbjrj + 3bj | |ṙj | r2

j

∣∣∣∣∣∣−
∫
∂Ω

Rbd −Xj · x
Rbd

|x−Xj |3
dA(x)−−

∫
∂Ω∗

|x∗| −Xj · x
∗

|x∗|
|x∗ −Xj |3

dA(x∗)

∣∣∣∣∣∣
≤ (−
∑
j∈N
|∂uau̇|+ ε9|∂rjbjrj + 3bj | |ṙj |r2

j )O(ε̃)

and (3.81) follows by (3.78), (3.70) and (3.80).

We justify rigorously under suitable assumptions our mechanical monopole approximation later in
Lemma 5.4. Instead of using the monopole approximation for the diffusion problem, we differently
proceed later in Th. 5.7 in order to homogenise the diffusion problem.
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3.3.5. Formally homogenised problem for (DC)

Since Ṙbd → 0 as ε → 0 we have Ω† = Ω(0). Let formally pL → p†L. The formally homogenised
mechanical BVP is the problem for W †

div σ̌S(∇W †) = 0 in Ω(0) \ {Xi}i∈N ,
σ̌S(∇W †)ν = (p− p0)ν on ∂Ω(0),

p†L(ri) = p− 3kL(a† + b†(ri)− δR − h∗L(XA
L (ri))) ∀i ∈ N.

We give now X(ri) and X explicitly in formal homogenisation i.e. we let formally X→ X† as ε→ 0
and introduce analogously X †. (2.157) yields, where we use that formally XS → 1

2 , XS → 1
2 and

Y V → 1 as ε→ 0,

X† = 2nG((X†L(ri)−XL) + 1
2 + (1

2 −XL)a
† + b†(ri)− δR

%
) (3.83)

where X†L is the formally homogenised solution of the interface b.c. for (DC). From (A.19) we find
formally, where have to assume that u or y is uniformly bounded in ε,

X † = MGanG
1− 3a†

1 + µ̃
Y .

For the diffusion problem and the interface radii, we then have (3.78) and (3.70)

u̇ = −4π−
∑
i ri(u− uint(ri))
X|Ω(t)|

∀t ∈ (0, T ),

ṙj = u− uint(rj)
rjX(rj)

∀j ∈ N ∀t ∈ (0, T ),

together with initial conditions and Rbd = R0
bd.

3.4. Formal homogenisation for regime (IC)

The formal homogenisation for regime (IC) is easier than for (DC) since, we already know that u
is constant in ΩS , that is a good approximation once we have determined u by (3.73) or a mean
field ODE for regime (IC), which is similar to (3.78). The mechanical BVP has now no U iM on the
r.h.s. since we have uiint = u. We have for the displacement

Wi(x) := ((a+ ci)|x−Xi|+ bi
ε9r3

i

|x−Xi|2
)eri ,

where the coefficients are as described in Appendix C.2:

a = p− p0
3kS

+ ε9 4GS
4GS + 3kS

h∗(u),

bi =
(1− kL

kS
)(p− p0)− 2σ

ri
+ 3kL(δR + h∗L(XA

L (ri))− ε9h∗(u))
4GS + 3kL

,

ci = c(|x−Xi|) = ε9 3kS
4GS + 3kS

h∗(u).
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We put a and ci together to
a# = a+ ci = p− p0

3kS
+ ε9h∗(u)

and get

Wi(x) := (a#|x−Xi|+ bi
ε6r3

i

|x−Xi|2
)eri .

The formally homogenised mechanical boundary value problem for regime (IC) has the same form
as for regime (DC), see Subsection 3.3.1. We define by inserting the solution of the monopole
approximation of the mechanical BVP in leading order in ε:

uL(u, ri) = uL(u, ri, a† + b†(ri)) +O(ε6),
Z(u, ri) = Z(u, ri, a† + b†(ri)) +O(ε6),
X(u, ri) = X(u, ri, a† + b†(ri)) +O(ε6),

XA
L (u, ri) = XL(ri, a† +

(1− kL
kS

)(p− p0)− 2σ
ri

+ 3kL(δR + h∗L(XL))
4GS + 3kL

) +O(ε6),

where we note that, XA
L and X are defined different as for regime (DC). As in (3.64) and (3.65) we

define ρ(A) and X .
For the (IC) regime (without any mean field ansatz for u) we can proceed as in Subsection 3.3.4
until (3.77). We substitute ṙi by the Stefan condition of the (IC) regime, (2.164), where we inserted
consequently Z for Z and uL for uL, and get

0 = ε9(|Ω(t)| − ε9 −
∑
i∈N

r3
i )X (u)u̇+ ε9 −

∑
i∈N
|Ii|

X(ri, u)
Z(u, ri)

(u− uL(u, ri)) (3.84)

or

u̇ = −4π
−
∑
i∈N r

2
i

X(ri,u)
Z(u,ri)

(u− uL(u, ri))

|Ω|X (u)
. (3.85)

The formula for Ṙbd for regime (IC) reads:

Ṙbd = ε9 ρ
′(u)
ρ(u)

4π −
∑
i∈N r

2
i (u− uL(u, ri))X(ri,u)

Z(u,ri)

|∂Ω|X (u)
+ ε9 4π −

∑
i∈N r

2
i v
i
+ · ν

|∂Ω| . (3.86)

We give now for regime (IC) the formally homogenised functions uL(u, ri), X(ri, u) and Z(u, ri)
explicitly, by abuse of notation without an additional index “†” as above for (DC). Let XA

L (ri, u)
be the solution of (2.162), in the approximation of the formal homogenisation,

Hµ̃(XA
L , ri)

Hm̃(XA
L , ri)

(ũchem(u)− ũchemL (XA
L ) + (1− µ̃

m̃
)MAs

ρS

2σ
ri

)

= u− uchemL (XA
L ) + 3kL

nL

1− µ̃
µ̃

(h∗L(XA
L )− aL(ri))

(3.87)

where

Hñ(XA
L , ri) = (1− 1

ñ
)(1− [(1 + 3aL(ri)− h∗L(XA

L )) ñ

ñ− 1
M(XA

L )(XL −XA
L )

MGaXA
L (1−XA

L )

− (1 + 3aL(ri))](1 + 2(a† + b†(ri))− 3δR

%
)).
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A rough approximation for XA
L is given by (2.167). Then we get

uL(u, ri) = u− Hµ̃(XA
L , ri)

Hm̃(XA
L , ri)

(ũchem(u)− ũchemL (XA
L ) + (1− µ̃

m̃
)MAs

ρS

2σ
ri

), (3.88)

X(ri, u) = 2nG((XA
L −XL) + 1

2 + (1
2 −XL)a

† + b†(ri)− δR

%
), (3.89)

Z(u, ri) = nRL(1− 1
µ̃

)(2− ( µ̃

µ̃− 1
M(XA

L )(XL −XA
L )

MGaXA
L (1−XA

L )
(1 + 2(a† + b†(ri))− 3δR

%
)− 1)×

× 2(a† + b†(ri))− 3δR

%
). (3.90)

We see that we found in both cases, (DC) and (IC), for the formal homogenisation an ODE to
determine the mean field u, where we have to add the initial condition

u(t = 0) = u0.

For existence and uniqueness results of the so far formally derived mean field model we refer to
Lemma 6.1, for numerical simulations we refer to Section 6.6.

3.5. The relation of an experimental situation to the scaling

In this section we compare the dimensionless Problems D, DI and DCR including the scaling
parameter ε with the unscaled Problems B and BI. We establish that the experimental situation
i.e. our original problem corresponds to the case of ε = ε0 := 10−3/2 ≈ 0.031623 for the critical
scaling regime and to ε = ε0 ≈ 0.1 for the dilute scaling regime. We compare with typical values
for our original system.
Critical radii are about 1 nm and the minimal radius is about 0.2 nm. Thus our typical radii are
R0 = 10−9m = ε3

0L0 and typical particle distances are D0 = 10−6m = ε0L0, which implies that
L0 ≈ Rbd should be 10−9/2m ≈ 31.6µm for the critical case and L0 should be 10−5m for the dilute
case. The typical length scale of a wafer in height is about 0.2mm and about 20mm in diameter,
while from experiments it is known that the diameter of the region in a GaAs crystal in the interior
of a dislocation ring, in which we have homogeneous nucleation is about 10−4m = 100µm (see
[DDN06]). But in the last case we would have to consider different boundary conditions. We
emphasise that a L0 could be chosen arbitrarily by the experimenter.
It is confirmed by Fig. 6.2 and Fig. 6.4 later, that our choice of the length scales R0 and D0 yields
critical and stable radii in agreement with experiments.
Since in our critical case R0 and D0 are well-known we have that L0 > 10−9/2m corresponds to
r < 3 and L0 < 10−9/2m to r > 3, that leads to our choice of L0 in the critical case. In our analysis
we treat however the case r = 3 and also the case r = 4 where u → u = const as ε → 0 and
conjecture, if r < 3 then u− limr→∞ uint → 0 as ε→ 0.
Summarised our scaling corresponds to the case of an area, in which homogeneous
nucleation takes place and which is cut out of the wafer and undergoes a heat treatment
separately. We consider the critical case and the dilute case, which are mathematically
most interesting, i.e. we assume a length scale L0 of the wafer under heat treatment,
which corresponds to the critical or the dilute case. From the real length of the wafer
we can then decide, which case applies.
We continue with the dilute regime and L0 = 10−5m.
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Chapter 3. Relevant scales and formal homogenisation

Remark 3.3 (Number of precipitates and atoms in an experimental system). Our original system
deals hence with about N 0

0 ε
−3
0 = N 0

0 · 103 precipitates. In order to determine N 0
0 we compare with

the data from experiments, see [Ste01], p. 92 f. and p. 112, where as density of precipitates
NDP = 108cm−3 is given, which was determined by laser scattering experiments. This yields
approximately 4π

3 L
3
0NDP ≈ 0.42 precipitates in our original system.

Further by comparison with the density nG, nL and the value for NAs given in [Ste01], p.112,
which is in this study the number of As atoms in all precipitates, we see that the value of NDP from
scattering experiments is too small. This claim is enforced by the diagrams in [Ste01], p. 93, where
NDP grows with time, where we in general expect the number of precipitates to decrease with time.
This is explained, if we assume that in scattering experiments only large enough droplets can be seen,
while we expect droplets to increase in size with time. We will work with NDP = 1014cm−3 instead,
which fits to our values for the densities nG and nL. This yields approximately 4200 precipitates
in our original system. This holds for both regimes (DC) and (IC).

The typical time scale τ0 for regime (DC) is derived from the diffusion constant resp. the bulk mo-
bility. For the diffusion constant Steinegger ([Ste01], S. 106) gives in a corresponding experimental
situation, but at T = 1373K,

D = 10−12 m2

1 s = 1 nm2

10−6s . (3.91)

With R = 10−9m this implies as typical time scale in our original problem in regime (DC) that
τ0 = 10−6s. This yields times τj for vanishing of droplets, which correspond to the study of
Steinegger [Ste01] as we see later in Chapter 6. The typical time scale τ0 is the same for the case
of constant mobility (2.63) and for the case of constant diffusion coefficient (2.64).
For regime (DC) the bulk mobility is calculated from the Stefan condition to

B = nRGD = nRGR2
0

τ0
= 37000 mol

m3
(10−9m)2

10−6s = 3.7 · 10−8mol
m s = 3.7 · 10−23 mol

nm µs ≈ 2.2 · 10 1
nm µs .

(3.92)
In case of interface controlled interface motion we have the interface mobility by the formula (2.62)

BI =
√

8.314 · 1100
2π · 74.56 · 10−3

J
kg · 70000mol

m3 ≈ 9.8 · 106 mol
m2s = 9.8 · 10−12 mol

nm2s ≈ 5.9 · 1012 1
nm2s .

(3.93)

Then for (IC) the typical time scale is determined by τ I0 = nRGR
BI
≈ 3.8 · 10−12s.

Remark 3.4 (Uncertain data). Since the data for B, D and BI is still uncertain, we cannot decide
from the data for mobilities and considering the relations (2.65) or (2.66), whether the (DC) regime
whether the (IC) regime corresponds to the experimental situation.
For comparison to (3.91), measurements by Uematsu et al. [UWS+95] in a slightly different exper-
imental situation suggest by extrapolation as diffusion constant for interstitial As in GaAs values
between 10−16 cm2 s−1 and 10−18 cm2 s−1 at T = 1100 K and under p0 = 105 N m−2.
The equation (2.62) is used as a guess, since there are no data from measurements available.
This implies that the time scales τ0 or τ I0 relying on D or BI cannot be determined accurately.

We work with τ0 = 10−6s and τ I0 = 10−12s and return to this question in Section 6.5.
Due to the experimental data we expect L0 between 10−5m and 3.16 · 10−5m. Numerics yield the
guess, that the dilute regime might fit to our original problem. We give now an overview of most
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3.5. The relation of an experimental situation to the scaling

of the used unscaled quantities and their scaling behaviour in Problem D or DI and Problem B or
BI, see Table 3.1.

Quantity Value without Scaling Value in Value in
scaling (cf. Def. 3.1) Pb. D/DI Pb. B/BI

Quantity f F f̂ f̂ with dim.

Scaling parameter 1 ε ε0 = 10−1 ε0

Length of wafer L0 = R0
bd 10−5m R0

bd 1 10−5m
Typ. droplet dist. D0 10−5m ε1R0

bd 1 10−6m
Typ. initial radii R0 10−5m L = ε4R0

bd 1 10−9m

Typical times (DC) τ0 10−6s T = τ0 1 10−6s
Typical times (IC) τ I0 10−12s T = τ I0 1 10−12s

Typical massesM 7.492 · 103kg M = ε4MAs 1mol 1 MAs 1mol
= 7.492 · 10−1kg

# of droplets N 0 N 0
0 = 4π

3 ≈ 4 (L0
D0

)3 = ε−3 4π
3 · 103 4π

3 · 103

≈ 4.2 · 103 ≈ 4.2 · 103

Typ. # of atoms N0 1.01 · 102mol N = ε12 1mol 1.01 · 10−10 1.01 · 10−10mol
≈ (3− Y V )nRGR3

bd

NR
0 = N0

N0 2.4 · 101mol N = ε15 1mol 2.4 · 10−14 2.4 · 10−14mol

Concentr. Asγ Y (1019/2) ε9 10−4 10−4

Mobility (DC) B 3.7 · 10−6 mol
m s

N
LT ∝ ε

8 3.7 · 10−23 3.7 · 10−23 mol
nm s by (3.92)

Mobility (IC) BI 9.8 · 1010 mol
m2 s

N
L2T ∝ ε

4 9.8 · 10−24 9.8 · 10−12 mol
nm2 s by (3.93)

= 9.8 · 10−24 mol
nm2 10−12s

Diff. const. (DC) D 10−4 m2

s
L2

T ∝ ε
8 1 1 nm2

µs by (3.91)

Typ. stresses 1010 N
m2

M
LT2 ∝ ε0 1 1010 N

m2

Typ. forces 1N ML
T2 ∝ ε8 10−8 10−8N

Surface tension 7.5 · 103 N
m

M
T2 ∝ ε4 0.0075 0.075Nm−1

Typ. energy nRGRTL3
0

ML2

NT2 ∝ 1 6.76 · 10−6 6.76 · 10−7J
Typ chem. pot. RT ML2

NT2 ∝ 1 9.14 · 103 RT = 9.14 · 103J mol−1

Table 3.1.: Overview of typical quantities for a fictive unscaled problem i.e. ε = 1, the scaling,
the scaled Problems D or DI and the original Problems B or BI.

From the value of Y for ε = 1 we see that the maximal possible value for our scaling parameter in
order to ensure Y < 1 is ε < 10−19/18 ≈ 8.7992 · 10−2, which is fulfilled for ε0.
In particular we expect as typical displacements

Ũ = 10−21/2m ≈ 3.16 · 10−11m = O(h̃)R0.

We remark that the displacements are small compared to distances between droplets, U � D0 ∼ ε,
that motivates again that the mechanical BVP is more or less a superposition of pairwise indepen-
dent mechanical BVPs for single droplets.
From now on we drop the upper index ε on all scaled quantities.
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Chapter 4.

Existence and uniqueness for a class of
models

In this chapter we prove for sufficiently small but fixed ε existence and uniqueness of the following
Problem E. Contrary to Problem DCR (3.43) – (3.53) we neglect the h∗ term on the r.h.s of
the mechanical BVP (3.43) – (3.45). Furthermore we modify (3.52) of Problem DCR and make
stronger assumptions on the dependences of uint and X on the variables, see Assumptions 4.3 and
4.4. Because ε is fixed we could transfer all results of this chapter to a modification of Problem D.

4.1. The abstract problem E

In rescaled variables we look for solutions U ε, uε, {ri}i∈N , Rbd of the following coupled differential
equations for regime (DC):

div σ̌S(∇U ε) = f ε0 in Ωε
S(t), (4.1)

σ̌S(∇U ε)ν = gε0ν on ∂Ω(t), (4.2)

(σ̌S(∇U ε)− 3kL
ε3ri
−
∫
Iεi

(U ε · ν))ν = gεi ν on Iεi (t) ∀i ∈ N ε(t), (4.3)

for all t ∈ (0, T ), where f ε0 , gεi , i ∈ N ε∪{0} can depend on all ri, i ∈ N ε but not on other variables,

ε3(X (uε)(∂tuε + vε · ∇uε) +∇ · vε Ξ(uε))−∆uε = 0 in Ωε
S(t) (4.4)

∇uε · ν = 0 on ∂Ω(t), (4.5)
uε = uint(ri) on Iεi (t) ∀i ∈ N ε(t), (4.6)

uε(·, t = 0) = u0,ε in Ωε
S(0), (4.7)

for all t ∈ (0, T ), and with ODEs for the radii

ṙi = ε3
−
∫
Iεi
∇uε · ν

X(ri,−
∫
Ii
U ε · ν) · ν) ∀i ∈ N ε(t) ∀t ∈ (0, T ), (4.8)

ri(t = 0) = r0
i ∀i ∈ N ε(0), (4.9)

Ṙbd = (I−−
∫
∂Ω
∇U ∂RbdΦ(Φ−1))−1 ×−

∫
∂Ω
vε · ν ∀t ∈ (0, T ), (4.10)

Rbd(t = 0) = R0
bd. (4.11)
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Chapter 4. Existence and uniqueness for a class of models

The velocity is vε = U ε as defined in (2.13). In the liquid we have piL and uiL given for all i ∈ N ε(t)
by the formulas (2.121) and (2.94) and the vanishing of a droplet is modelled as in Subsection 2.6.7.
We have modified in (4.10) the original evolution equation for Rbd,

Ṙbd = −
∫
∂Ω
vε · ν

in order to avoid technical difficulties after transformation of Problem E on fixed domain Ω(0),
which is carried out in Section 4.2. The corresponding transformation Φ, which enters in (4.10), is
constructed in Appendix B and is assumed to be a given smooth invertible function, which depends
on Rbd and ri, i ∈ N . The norm of the matrix term −

∫
∂Ω∇U ∂RbdΦ(Φ−1) is of order O(h̃) and hence

our modification is small in our approximation of small displacement gradients, see Assumption
2.1.
In (4.1) – (4.3) the r.h.s. f ε0 , gεi , i ∈ {0} ∪N ε would correspond to Problem DCR if we set

f ε0 = ε9kSh
∗′(uε)∇uε, (4.12)

gε0 = p− p0 + ε93kSh∗(uε), (4.13)

gεi = 2σ
ri
− 3kL(δR + h∗L(ri)) + 3kSε9h∗(uint(ri,−

∫
Ii

U ε · ν)) ∀i ∈ N ε, (4.14)

but since we neglect h∗ and the dependence of uint on U ε, compared to our original situation, we
set in Problem E

f ε0 = 0, (4.15)
gε0 = p− p0, (4.16)

gεi = 2σ
ri
− 3kL(δR + h∗L(ri)) ∀i ∈ N ε. (4.17)

We consider Problem E under the following assumptions, which we summarise here.

Assumption 4.1 (Assumptions on the mechanics). The constants kS, GS and kL are strictly
positive and h∗L is considered as given function of ri.
The data of the mechanical BVP is small i.e.

p− p0
3kS

,
2σ

3kLrmin
, δR, h∗L ≤ h̃, (4.18)

where h̃� 1, confer Assumption 2.1.

Assumption 4.2 (Assumptions on the diffusion problem). We assume:
1) Ξ(uε) := nεAs(uε) is bounded and strictly positive, uniformly for all ε.
2) The function X (uε) = nεAs

′(uε) depends continuously on uε and is bounded, strictly positive
and strictly monotone (increasing). Vice versa this holds for uε(nεAs), if we consider nεAs
instead of uε as variable. This implies, that nεAs(uε) is convex or uε(nεAs) is concave.

3) As assumptions on initial data we make u0(x) ∈ Ju (or equivalently n0
As(x) ∈ Jn := nεAs(Ju))

for all x ∈ ΩS(0) and u0 ∈ H1(ΩS(0)) (or n0
As ∈ H1(ΩS(0))) and we make assumptions on

new initial data after vanishing of a droplet as in Assumption 2.6.

The last assumptions allow to consider equivalently to (4.4) – (4.11) the diffusion problem for the
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4.1. The abstract problem E

regime (DC), written for the variable nεAs,

ε3(∂tnεAs +∇ · (nεAsvε))−∆uε(nεAs) = 0 in Ωε
S(t) (4.19)

∇nεAs · ν = 0 on ∂Ω(t), (4.20)
nεAs = nintAs (ri) on Ii(t) ∀i ∈ N ε(t), (4.21)

nεAs(·, t = 0) = n0,ε
As in Ωε

S(0), (4.22)

which is sometimes more suitable for our analysis than the formulation (4.4) – (4.7) with uε.

Assumption 4.3 (Generalised Gibbs-Thomson law). We assume that the boundary value for the
chemical potential in the solid uint depends only on the radius i.e. uint(ri,−

∫
Ii
U ε · ν) = uint(ri) =

uiint, that is expected from the formal homogenisation of Chapter 3 to be a good approximation for
sufficiently small ε→ 0. Furthermore let uint be monotone decreasing and

0 < uint(ri) ≤ uint(rmin) ∀ri ∈ Jr.

Assumption 4.4 (Assumptions on the radii evolution). The denominator X of the Stefan condition
depends continuously on ri and on the trace of U on the interface Ii. X is strictly positive

X(ri,−
∫
Ii

U · ν) > 0 ∀ri ∈ Jr ∀U with ‖∇U‖ = O(h̃).

and bounded.

Neglecting the possible dependence of X on ∇U might be motivated by replacing ∇U by the
explictly known solution for the displacement problem for a single droplet problem (SDP) with
h∗ = 0, W = W (ri), which is sensible for sufficiently small ε.

Assumption 4.5 (Assumptions on geometry and scaling). We assume initial data r0
i , R0

bd and Xi

s.t. the droplets are disjoint and do not intersect the outer boundary for t = 0:

r0
i < ε−2di

2 , dist(Xi, ∂Ω(0)) < ε
di
2 ∀i ∈ N ε, (4.23)

i.e. (3.4) is fulfilled for all ε for t = 0.

One can check that Assumptions 4.1, 4.2 1), 4.2 2) and 4.4 are fulfilled for typical material data
and experimental values, as given in Appendix D.
We always assume in the Chapters 4 and 5 that the Assumptions 4.1 – 4.5 hold – without further
reference on these assumptions.
Since solutions of Problem E depend on time and space we need the following function spaces.

Definition 4.1 (Bochner spaces). Let here Ω an open, bounded, possibly time-dependent domain
in R3. Let Lq(Ω(t)), 1 ≤ q ≤ ∞ the space of functions f : Ω(t) → Rk, k ∈ N, with |f |p integrable
and f measurable in the sense of Lebesgue.

1) The space Lp(0, T ;Lq(Ω(t))) are all strongly measurable functions f : [0, T ] → Lq(Ω(t)),
defined by [f(t)](x) := f(x, t), with

‖f‖Lp(0,T ;Lq(Ω(t)) = (
∫ T

0
‖f(t)‖pLq(Ω(t))dt)

1/p <∞

for 1 ≤ p <∞. We abbreviate LpLq := Lp(0, T ;Lq(ΩS)).
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Chapter 4. Existence and uniqueness for a class of models

2) We define C0(0, T ;Lq(Ω(t))) as the set of all continuous functions f : [0, T ] → Lq(Ω(t)),
defined by [f(t)](x) := f(x, t), with

‖f‖C0(0,T ;Lq(Ω(t)) := max
0≤t≤T

‖f(t)‖Lq(Ω) <∞

which is abbreviated by C0Lq.
3) Analogously we define spaces like HkLq, W k,pLq, L∞Lq, CkLq and W k,pCk.

For this definition, further definitions regarding Bochner spaces, definitions of Banach spaces and
definitions of Sobolev spaces we refer to [Eva02], §5.9.2, p. 285f.

Definition 4.2 (Generalised solution of Problem E). Let us define a generalised solution of Problem
E as functions (uε, U ε, {ri}, Rbd) in L∞H1 ∩H1L2×L∞C2 ∩H1C1× [H1]N 0 ×H1 which fulfil the
usual weak formulations of Problem E.
In order to guarantee the validity of our model i.e. that Problem E makes sense we have to show
that u is in a suitable interval e.g. u ∈ Ju which includes our reference value u = 0 for all
times t ∈ (0, T ). For our approach to work in linear elasticity, we have to show ‖∇U ε‖L2(ΩS(t)),
‖∇vε‖L2(ΩS(t)) = O(h̃) for all times t.

This definition of a generalised solution turns out to be adequate for our problem, see Th. 4.7.

Definition 4.3 (Classical solution of Problem E). By a classical solution we mean that all partial
derivatives up to the partial derivatives of highest order, which appear in the statement of the PDE,
exist and are continuous and bounded. Precisely, we introduce for the diffusion problem the space

C2
1 (0, T ; ΩS(t)) := C1((0, T ];C1(ΩS(t))) ∩ C0([0, T ];C2(ΩS(t))).

The space C2
1 (0, T ; ΩS(t)) will turn out to be the right space in the light of the regularity result in

Th. 4.5, 3).
We expect to find generalised solutions U ε ∈ L∞C2∩H1C1, uε ∈ H1L2∩L∞H1 and ri, Rbd ∈ H1 for
small times. By exploiting further regularity of geometry and data we expect then to find classical
solutions U ε ∈ C1C2, uε ∈ C2

1 (0, T ; ΩS(t)) and ri, Rbd ∈ C1 as long as no encounters or the
disappearance of a droplet occurs.

4.2. Transformation of the problem on a fixed domain

We want to prove existence and uniqueness of solutions to Problem E. We follow the idea of proof
given in [Nie99] or given with more details in [Nie96] and transform Problem E on a fixed domain,
where we can apply standard results.
To keep notation short we introduce vectors, in which we list the radii of the free boundaries.

Definition 4.4 (Vector of free boundaries). The vector of all interface radii is R(t) := (ri(t))i ∈
[Jr]N

0 and the vector of all radii, including the outer free boundary, is R̃(t) := (Rbd, R(t)) ∈
[Jr]N

0+1 where R̃0 = Rbd, R̃i = Ri = ri, for all i ∈ N .
Furthermore we write R−1

i := (Ri)−1, i ∈ N and analogously we understand R̃−1
i .

We consider the transformation

φ(·, R̃(t)) : Ωε
S(0)→ Ωε

S(t),

with the additional property that particle centres Xi remain fixed.
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4.2. Transformation of the problem on a fixed domain

Since the time dependence enters into the transformation only by free boundaries we consider
instead

Φ(·, t) : Ωε
S(0)→ Ωε

S(t), Φ(z, t) := φ(z,R(t), Rbd(t)).

We write
∂tΦ = ∇R̃φ · ∂tR̃ :=

∑
i∈Nε

∂R̃iφ ∂tR̃i =
∑
i∈Nε

∂riφ ṙi + ∂Rbdφ Ṙbd.

We consider Ωε
S(t), the closure of the domain Ωε

S(t), in Cartesian coordinates x := Φ(z, t), in
which our PDEs are stated. Now we change coordinates to the coordinates z = Φ−1(x, t) of the
closure of the initial domain, Ωε

S(0), which will be equipped with a new time-dependent metric
g(z, t) := DΦT (z, t)DΦ(z, t). Accordingly the PDEs transform to PDEs in this new coordinates z.
By definition there holds g(·, t = 0) = I3 and g is positive definite and symmetric.
Our notation and our treatment of the coordinate transformation follows the textbook of Ciarlet
[Cia00]. For the rest of this chapter indices take their values in {1, 2, 3} unless otherwise mentioned
and we use the Einstein summation convention. Here we have to distinguish in our notation
between contravariant indices, which are upper indices, and covariant indices, which are lower
indices, because only for Cartesian coordinates co- and contravariant coincide.
Consequently, we write for covariant components of the metric gij and for contravariant components
gij , which furthermore fulfil gij = (gij)−1. Furthermore we introduce three vectors gq by [gq(z)]i :=
∂zqΦi(z) and analogously we define gq by [gq(z)]i := ∂xi(Φ−1)q(x(z)).

Remark 4.1 (New coordinates and Lagrangian coordinates). The coordinates z are in general not
the Lagrangian coordinates X. Only in the special case that ṙi = v+ = v− on all interfaces or
N = ∅ the coordinates z and X could be chosen s.t. z ≡ X.

We give explicitly a transformation Φ ∈ C∞(Ωε
S(0)) from the fixed domain onto the time-dependent

domain Ωε
S(t) in Appendix B.1. In particular the transformation Φ is a regular matrix and smooth

i.e. detDΦ 6= 0 and Φ ∈ C∞, if for all droplets the Assumption 4.5 holds.
We repeat a definition and a result from differential geometry, which we need in the following.

Definition 4.5 (Christoffel symbols of the second kind). We introduce Christoffel symbols of the
second kind as functions Γqlk : ΩS(0) → R defined by Γqlk(z) := [gq(z)]i∂zl [gk(z)]i as defined in
[Cia00], pp. 27-32 or [Arf85], pp. 160-167. By this definition Γqlk = Γqkl.
We note that one should keep attention, that another definition of Christoffel symbols of the second
kind, which is not symmetric in l and k, is sometimes used in literature, e.g. [MTW73], p. 209
and the remarks in [RSW08].

Since Φ is smooth in space and as regular in time as R̃, we see that the Christoffel symbols have
the same regularity.

Lemma 4.1 (Covariant derivatives). Let vi[gi]k a vector field with covariant components vi ∈
C1(ΩS(0)) and let Aij [gi]k[gj ]l a tensor field with contravariant components Aij ∈ C1(ΩS(0)).

1) The covariant derivative vi||j : ΩS(0) → R of a vector field with covariant components vi :
ΩS(0)→ R3 is vi||j := ∂zjvi − Γpijvp.

2) The covariant derivative Aij ||k : ΩS(0) → R3 of the contravariant components of a tensor
field Aij : ΩS(0)→ R3×3 is Aij ||k := ∂zkA

ij + ΓipkApj + ΓjkqAiq.

For a proof we refer to [Cia00], Th. 1.4-1 and Th. 1.6-1.
We denote the transformed function of a function f by f̃ , unless otherwise stated. We give now
how the important quantities of Problem E are transformed. Due to our choice of Ωε

S(0) or Ωε
S(t),
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Chapter 4. Existence and uniqueness for a class of models

which have both spherical interfaces and spherical outer boundary, we have on all boundaries ν̃ = ν
and in particular ∂tν̃ = ∂tν = 0.
Furthermore the volume element transforms accordingly to

dx =
√

det g(z) dz,

and the surface area element transforms as

dA(x) =
√

det g(z)
√
ν(z)g(z)ν(z) dÃ(z).

Note that scalar products are invariant under change of coordinates of this type.
We define the transformed functions

ũε(z, t) := uε(Φ(z, t), t), Ũ ε(z, t) := U ε(Φ(z, t), t).

In particular

∇uε = DΦ−T∇ũε,
∂tu

ε = ∂tũ
ε −DΦ−T∇ũε · ∂tΦ,

1
|Iεi (t)|

∫
Iεi (t)
∇uε · ν = 1

|Iεi (0)|

∫
Iεi (0)

DΦ−T∇ũε · ν,

∇U ε = DΦ−T Ũ ε·||·DΦ−1,

where, since the displacement has covariant components,

Ũ εi||j := ∂jŨ
ε
i − ΓqijŨ

ε
q = (∇Ũ ε)ij − ΓqijŨ

ε
q . (4.24)

Analogously for the symmetrisation of the displacement gradient

ei||j(∇Ũ ε) := eij(∇Ũ ε)− ΓqijŨ
ε
q .

For brevity of notation we state in ei||j(∇Ũ ε) only the dependence on the function ∇Ũ ε and not
on Ũ ε and ∇Ũ ε.
The part of the Cauchy stress σ̌S has contravariant components and transforms, written in com-
ponents, to

σ̃S(∇Ũ ε)ij = K̃ijklek||l(∇Ũ ε) = K̃ijkl(ekl(∇Ũ ε)− ΓqklŨ
ε
q ) (4.25)

with the transformed stiffness tensor

K̃ijkl = λSg
ijgkl + µS(gikgjl + gilgjk).

In principle we would have to write σ̃S(∇Ũ ε, Ũ ε)ij in order to state the dependence of σ̃S on the
gradient of the displacement and the displacement itself, but for keeping notation short we write
σ̃S(∇Ũ ε)ij instead. The formula (4.25) is derived in [Cia00], too.
Summarising after transformation on fixed domain the mechanical BVP (4.1) – (4.3) reads

σ̃·jS ||j(∇Ũ
ε) = f̃ ε0 in Ωε

S(0), (4.26)
σ̃S(∇Ũ ε)ν = g̃ε0ν on ∂Ω(0), (4.27)

(σ̃S(∇Ũ ε)− 3kL
ε3ri
−
∫
Iεi (0)

(Ũ ε · ν))ν = g̃εi ν on Iεi (0) ∀i ∈ N, (4.28)
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where the transformed divergence of the reduced Cauchy stress is according to Lemma 4.1, 2)

σ̃i·S ||·(∇Ũ ε) := σ̃ijS ||j(∇Ũ
ε) := div σ̃i·S(∇Ũ ε) + Γipj σ̃

pj
S (∇Ũ ε) + Γjjpσ̃

ip
S (∇Ũ ε)

= K̃ijkl(∂zjekl(∇Ũ ε)− Γqkl(∇Ũ
ε)qj)− (ΓkpjK̃plij + ΓlpjK̃pkij)ekl(∇Ũ ε)

+ (ΓkpjK̃plij + ΓlpjK̃pkij)ΓqklŨ
ε
q .

We examine the dependence of the mechanical BVP in time in order to state a problem for the
transformed velocity field

ṽε = ∂tŨ
ε −DΦ−T Ũ ε·||·DΦ−1∂tΦ. (4.29)

By transformation on fixed domain of the problem (4.26) – (4.28) for the displacement Ũ ε and
derivation w.r.t. time we find the following problem for η := ∂tŨ

ε.

σ̃·jS ||j(∇η) = −(div (∂tσ̃S)(∇Ũ ε)
+ ∂tΓ·pj σ̃

pj
S (∇Ũ ε) + ∂tΓjjpσ̃

·p
S (∇Ũ ε)

+ ∂tf
ε
0 in Ωε

S(0), (4.30)
σ̃S(∇η)ν = (−(∂tσ̃S)(∇Ũ ε) + ∂tg

ε
0)ν on ∂Ω(0), (4.31)

(σ̃S(∇η)− 3kL
ε3ri
−
∫
Iεi (0)

(η · ν))ν = (−(∂tσ̃S)(∇Ũ ε)

+ [− 3kL
ε3r2

i

−
∫
Iεi (0)

(Ũ ε · ν) + ∂rig
ε
i ]ṙi)ν on Iεi (0) ∀i ∈ N ε, (4.32)

where (∂tσ̃S)(∇Ũ ε)ij := λS [∂tgijek||l(∇Ũ ε)gkl + gij(∂te)k||l(∇Ũ ε)gkl + gije(∇Ũ ε)k||l∂tgkl]
+ µS [∂tgikek||l(∇Ũ ε)gjl + gik(∂te)k||l(∇Ũ ε)gjl + gikek||l(∇Ũ ε)∂tgjl

+ ∂tg
ilel||k(∇Ũ ε)gjk + gil(∂te)l||k(∇Ũ ε)gjk + gilel||k(∇Ũ ε)∂tgjk]

and (∂te)i||j(∇Ũ ε) := −∂tΓqjiŨ
ε
q .

For details of the derivation of the velocity problem we refer to Appendix B.3.
The transformed diffusion problem in the regime (DC) is

ε3√det gX (ũε)(∂tũε −DΦ−T∇ũε(∂tΦ− ∂tŨ ε+
+DΦ−T Ũ ε·||·DΦ−1∂tΦ))−∇ · (

√
det gg−1∇ũε)

+ε3∇ · (
√

det gDΦ−1(∂tŨ ε −DΦ−T Ũ ε·||·DΦ−1))Ξ(ũε) = 0 in Ωε
S(0) (4.33)

∇ũε · ν = 0 on ∂Ω(0), (4.34)
ũε = ũint(ri) on Iεi (0) ∀i ∈ N ε, (4.35)

ũε(·, t = 0) = u0 in Ωε
S(0), (4.36)

and the transformed ODEs are

ṙi = ε3
−
∫
Iεi (0)DΦ−T∇ũε · ν
X(R̃,−

∫
Iεi (0) Ũ

ε · ν)
∀i ∈ N ε, (4.37)

ri(t = 0) = r0
i ∀i ∈ N ε, (4.38)

Ṙbd = −
∫
∂Ω(0)

(∂tŨ ε −DΦ−T Ũ ε·||·DΦ−1∂RΦ · ∂tR) · ν, (4.39)

Rbd(t = 0) = R0
bd. (4.40)
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Chapter 4. Existence and uniqueness for a class of models

We remark, that the modification of (4.10) yields that, Ṙbd does not appear on the r.h.s. in (4.39).
We also give the transformed diffusion problem in the formulation with ñεAs as unknown

ε3(∂tñεAs −DΦ−1∂tΦ · ∇ñεAs) + ε3 1√
det g

×

×∇ · (
√

det gDΦ−1ñεAs(∂tŨ ε −DΦ−T Ũ ε·||·DΦ−1∂tΦ))

− 1√
det g

∇ · (
√

det gg−1∇uε(ñεAs)) = 0 in Ωε
S(0), (4.41)

∇ñεAs · ν = 0 on ∂Ω(0), (4.42)
ñεAs = ñintAs (ri) on Iεi (0) ∀i ∈ N ε, (4.43)

ñεAs(·, t = 0) = n0,ε
As in Ωε

S(0), (4.44)

and in the transformed ODEs we replace (4.37) by

ṙi = ε3
u′(ñintAs )−

∫
Iεi (0)DΦ−T∇ñεAs · ν

X(R̃,−
∫
Iεi (0) Ũ

ε · ν)
∀i ∈ N ε. (4.45)

With the formulas ∂zi
√

det g =
√

det gΓqqi (for a proof we refer to [Cia00], proof of Th. 1.6-1, step
(i)) we can rewrite (4.41) as

∂tñ
ε
As + 1√

det g
∇ · (

√
det gDΦ−1(∂tŨ ε −DΦ−T Ũ ε·||·DΦ−1∂tΦ))ñεAs

−DΦ−1(∂tΦ− (∂tŨ ε −DΦ−T Ũ ε·||·DΦ−1∂tΦ)) · ∇ñεAs
−Γqqig

i,·ε−3ũε′(ñεAs)∇ñεAs −∇ · (g−1ε−3ũε′(ñεAs)∇ñεAs) = 0.

We introduce

α := DΦ−1(∂tŨ ε − (I +DΦ−T Ũ ε·||·DΦ−1)∂tΦ)− Γqqig
i,·ε−3ũε′(ñεAs), (4.46)

β := DΦ−1∇ · (∂tŨ ε −DΦ−T Ũ ε·||·DΦ−1∂tΦ), γ := ε−3g−1ũε′(ñεAs). (4.47)

For our following analysis it turns out to be useful to treat the more general case of a transformed
diffusion problem with a source term f̃ on the r.h.s. Instead of (4.41) we look at the diffusion
equation, written in divergence form,

∂tñ
ε
As −∇ · (γ(x, t, ñεAs)∇ñεAs) + α(x, t, ñεAs, ∂tŨ ε, Ũ ε,∇Ũ ε, ∂tR̃, R̃) · ∇ñεAs

+ β(x, t,∇ · ∂tŨ ε, Ũ ε,∇Ũ ε,∆Ũ ε, ∂tR̃, R̃)ñεAs = f̃ . (4.48)

Sometimes it is more useful to work with the PDE in nondivergence form

∂tñ
ε
As − a(x, t, ñεAs, R̃)∆ñεAs + b(x, t, ñεAs,∇ñεAs,∇ · ∂tŨ ε, Ũ ε,∇Ũ ε,∆Ũ ε, ∂tR̃, R̃) = f̃ , (4.49)

where we abbreviated

b = [α−∇xγ] · ∇ñεAs + βñεAs − ∂ñεAsγ |∇ñ
ε
As|2

= [DΦ−1(∂tŨ ε − (I +DΦ−T Ũ ε·||·DΦ−1)∂tΦ)− Γqqig
i,·ε−3ũε′(ñεAs)−∇g−1ε−3ũε′(ñεAs)] · ∇ñεAs

+ (DΦ−1∇ · (∂tŨ ε −DΦ−T Ũ ε·||·DΦ−1∂tΦ)))ñεAs − g−1ε−3u′′(ñεAs))|∇ñεAs|2

a = γ = g−1ε−3u′(ñεAs)).
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In the case that we assume Ũ and R̃ to be given we write in the following just

α(x, t, ñεAs), β(x, t), γ(x, t, ñεAs) or a(x, t, ñεAs), b(x, t, ñεAs,∇ñεAs).

We refer to the mechanical BVP (4.26) – (4.28) with the velocity problem (4.30) – (4.32) and
the diffusion problem (4.48), (4.42) – (4.44) and the radii evolutions, (4.45), (4.38) – (4.40), as
transformed Problem E.

4.3. Local existence and uniqueness

First we solve independently a general version of both the mechanical problem (4.26) – (4.28) and
the velocity problem (4.30) – (4.32), then the diffusion problem (4.48), (4.41) – (4.44) and then
the ODEs (4.45), (4.38) – (4.40) for interfaces on fixed domain, where we assume that the data in
each of the problems is already known. This serves as a building block for proving local existence
and uniqueness of a generalised solution to the transformed Problem E by a fixed point argument
in this section.
We emphasise that ε is fixed and our local existence and uniqueness result holds for any allowed
choice of ε. Later it turns out, that ε has to be sufficiently small in order to avoid collisions of
droplets with each other or with the outer boundary, that is needed for the global existence and
uniqueness result, which follows in Section 4.4.
We skip in the following the indices ε on scaled functions and domains, since we consider only
scaled functions and scaled domains from now on.

4.3.1. Mechanical boundary value problems

Instead of the problem (4.26) – (4.28) and (4.30) – (4.32) we analyse in the following the more
general type of mechanical boundary value problem. We recall that Φ and g depend on x, t and
R̃. Find a function η ∈ H1(ΩS(0); R3) s.t.

S̃jk||k(∇η, R̃) = −F j0 (∇Ũ ε, R̃, ∂tR̃) + F jk1 ||k(ũε, R̃) in Ωε
S(0), (4.50)

S̃jk(∇η, R̃)νk = (G0(∇Ũ ε, R̃, ∂tR̃) + F jk1 (ũε, ∂tuε))νk on ∂Ω(0), (4.51)
(S̃jk(∇η, R̃) (4.52)

−C(ri)−
∫
Iεi (0)

ηlνl)νk = (Gi(∇Ũ ε, R̃, ∂tR̃) + F jk1 (ũε, ∂tuε))νk on Iεi (0) ∀i ∈ N ε, (4.53)

where the equations hold for all components j ∈ {1, 2, 3} and the tensor field S̃ fulfils

S̃jk(∇η, R̃) = K̃jklm(R̃)el||m(∇η, R̃)

with K̃jklm(R̃) = K̃jkml(R̃) and el||m = em||l as defined in (4.2). If we assume R̃ to be given
explicitly then we write only S̃jk(∇η) and ẽ(∇η). Furthermore we do not denote the dependency
on x explicitly.
The abstract problem (4.50) – (4.52) can be applied to the displacement problem and the velocity
problem as well. For the problem for Ũ i.e. (4.26) – (4.28) we set η = Ũ and for the data

F j0 = 0, F1
jk = 0 Gjk0 = (p− p0)δjk, Gjki = (2σ

ri
− 3kL(δR(ri) + h∗L(ri)))δjk ∀i ∈ N,
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Chapter 4. Existence and uniqueness for a class of models

or for the problem for ∂tŨ i.e. (4.30) – (4.32) we set η = ∂tŨ and

F j0 = 0, F1 = −(∂tσ̃S)(Ũ ε)jk, Gjk0 = 0,

Gjki = −[ 3kL
ε3r2

i

−
∫
Iεi (0)

((Ũ ε)lνl) + 3kLh∗L
′(ri)− 3kSh∗′ +

2σ
r2
i

]ṙiδjk ∀i ∈ N,

where the time-derivatives of the Christoffel symbols, of g and of DΦ depend on the given evolution
of R̃. In both cases C(ri) = 3kL

ε3ri
. We formulate the consequences of the following theorem for the

transformed Problem E in Th. 4.2 and Th. 4.3.

Theorem 4.1 (Abstract mechanical BVP). Assume for all t ∈ (0, T ) that ΩS(t) ∈ R3 is given and
that Φ is a C2 diffeomorphism of ΩS(0) onto ΩS(t), s.t. the three vectors gq are linearly independent
at all points z ∈ ΩS(0).
Let λS ≥ 0, µS > 0, kL > 0.
We assume that our data fulfils the compatibility condition∫

ΩS(0)
F k0 φk dz +

∫
∂ΩS(0)

Gjk0 φkνj dÃ−−
∑
i∈N

∫
Ii

Gjki φkνj dÃ = 0 (4.54)

for all φ ∈ RD.
1) (Existence of a weak solution)

If F j0 , F
jk
1 ∈ L6/5(ΩS(0)), Gjk0 νk ∈ L4/3(∂Ω(0)) and Gjki νk ∈ L4/3(Ii(0)) for all i ∈ N , then there

exists a weak solution η ∈ H1(ΩS(0); R3) of (4.50)-(4.52), i.e.∫
ΩS(0)

K̃jklmel||m(∇η)ej||k(∇φ)
√

det g dz +
∑
i∈N

C(ri)(−
∫
Ii

ηkνk)
∫
Ii

φkνk
√

det g dÃ

=
∫

Ω(0)
(F j0φj − F

jk
1 ∂kφj)

√
det g dz +

∫
∂ΩS(0)

G0δ
jkφkνj

√
det g dÃ−

∑
i∈N

∫
Ii

Giδ
jkνjφj

√
det g dÃ

for all φ ∈ H1(ΩS(0); R3). Furthermore |
−
∫
Ii
ηkνk

ri
| ≤ Const(F0, F1, {Gi, ri}i∈{0}∪N ).

2) (Uniqueness)
η is unique only up to functions in the class of equivalence RD as defined in Def. 2.1, i.e. η is
non unique up to translations and rotations (that corresponds to Galilei invariance of the PDE)
and only ∇η can be determined uniquely.
3) (Regularity result)
If the boundary is smooth i.e. ∂ΩS(0) ∈ Cm+2, m ∈ N \ {0} and F j0 ∈Wm,p(ΩS(0)) for p ≥ 6

5 and
F jk1 ∈Wm+1,6/5(ΩS(0)), Gjk0 νk ∈ H1−1/p,p(∂Ω(0)), Gjki νk ∈ H1−1/p,p(Ii(0)) then η ∈Wm,p.
Hence for m = 2 and p = 2 there exists a classical solution η ∈ C2.
4) (Consistence with approximation of small displacement gradients)
If ‖F0‖L6/5(ΩS(0)), ‖F1‖L6/5(ΩS(0)), ‖G0‖L4/3(∂ΩS(0)), {‖Gi‖L4/3(Ii(0))}i∈N ≤ max{λS , µS , kL}O(h̃),
then we have

‖∇η‖L2(ΩS(0)), ‖
−
∫
Ii
ηkνk

ri
‖L2(Ii(0)) ≤ Const2(λS , µS , kL,ΩS(0),Φ)O(h̃),

where Const2 is independent of h̃ for sufficiently small but fixed ε. This justifies our approximation
of small displacement gradients of Assumption 2.1 for h̃� 1.
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4.3. Local existence and uniqueness

5) (Dependence on time)
In this problem time enters as a parameter. Assume the time evolution given by R̃ ∈ L2(0, T ) and
the data to be L2 in time. Then we have η ∈ L2H1. For smooth enough boundaries and data we
get η ∈ L2C2.
6) (Results for time-dependent domain)
If T < mini∈N τi, then the transformation Φ is smooth and then all results 1) - 5) carry over to
the problem on ΩS(t).

We remark, that for the proof it is not important that we consider −
∫
Ii
ηkνk instead of ηkνk on the

l.h.s. of (4.52), if each Gi is constant on Ii.

Proof. We want to follow the classical results like in [Cia98], p. 296, Th. 6.3-6 for cartesian
coordinates and its generalisation to curvilinear coordinates [Cia00], p. 52+53, Th. 1.8-2. Note,
that up to the term −C(ri) −

∫
Iεi (0) η

pνp on the l.h.s. of (4.52) our problem is a standard so-called
pure-traction problem, which is treated in literature for Cartesian coordinates and curvilinear
coordinates as well. The assumptions on the mapping Φ ensure that Γijk and gij are continuous on
ΩS(0).
λS ≥ 0, µS > 0 guarantee that the tensor K̃ is uniformly positive definite i.e. there exists a constant
c(ΩS ,Φ, µS), where c ∝ 1

2µS , s.t. ∑
i,j

|tij |2 ≤ cK̃ijkl(z)tkltij (4.55)

for all z ∈ ΩS(0) and for all symmetric matrices tij . For details we refer to [Cia00], Th. 1.8-1.
kL > 0 implies C > 0.
1) (Existence of a weak solution)
We consider first a fixed time t ∈ (0, T ) s.t. the data is well-defined at t. Due to definition of the
covariant derivative and since S̃ is symmetric there holds∫

ΩS(0)
S̃jk(∇η)ej||k(φ)

√
det g dz

= −
∫

ΩS(0)
S̃jk||k(∇η)φj

√
det gdz +

∫
∂ΩS(0)

S̃jk(∇η)φjνk
√

det g dÃ

for all φ ∈ H1(ΩS ; R3).
We test (4.50) with η ∈ H1(ΩS(0); R3) and get with the definition of S̃ and the boundary conditions∫

ΩS(0)
K̃jklmel||m(∇η)ej||k(∇η)

√
det g dz +

∑
i∈N

C(ri)|Ii|[−
∫
Ii

ηkνk
√

det g dÃ]2

=
∫

ΩS(0)
(F j0 ηj − F

jk
1 ∂kηj)

√
det g dz +

∫
∂Ω(0)

G0δ
jkηjνk

√
det g dÃ−

∑
i∈N

∫
Ii

Giδ
jkηjνk

√
det g dÃ.

By exploiting (4.55) together with C > 0 we can estimate

1
c

∫
ΩS(0)

|ej||k(∇η)|2
√

det g dz

≤
∫

ΩS(0)
(F j0 ηj − F

jk
1 ∂kηj)

√
det g dz +

∫
∂Ω(0)

G0δ
jkηjνk

√
det g dÃ−

∑
i∈N

∫
Ii

Giδ
jkηjνk

√
det g dÃ.
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Chapter 4. Existence and uniqueness for a class of models

By using again our assumptions on Φ we can apply Korn’s inequality for curvilinear coordinates
(see [Cia98], [Cia00], Th. 1.7-4) on the space H1/RD, since ‖ej||k‖L2(ΩS(0)) is not only a semi-norm
as on H1(ΩS(0)) but a norm on the quotient space H1(ΩS(0))/RD ([Cia98]; [DL76], p. 119),

∑
j,k

∫
ΩS(0)

|∂jηk|2
√

det g dz ≤ K
∫

ΩS(0)
|ej||k(∇η)|2

√
det g dz,

where K = K(ΩS(0),Φ) > 0 is Korn’s constant. Now we can estimate together with the Sobolev
embedding theoremH1(G) ⊂ L6(G) ([Cia98], Th. 6.1-3 1.) and the trace theoremH1(G) ⊂ L4(∂G)
([Cia98], Th. 6.1-7 (a) 1.) since n = 3, that

‖∇η‖L2(ΩS(0)) ≤
c

K
(‖F0‖L6/5(ΩS(0)) + ‖F1‖L6/5(ΩS(0)) + ‖G0‖L4/3(∂Ω(0)) +

∑
i∈N
‖Gi‖L4/3(Ii(0))).

(4.56)

This shows existence of an η ∈ H1/RD fulfilling the given integral identity for data Fj ∈ L6/5,
0 ≤ j ≤ 2 , Gi ∈ L4/3, i ∈ {0} ∪N . Furthermore we can estimate

|
∫
Ii

ηkνk
√

det g dÃ| ≤ c

K

√
4π√
3kL

ε9/2r
3/2
i (

1∑
j=0
‖Fj‖L6/5(ΩS(0)) + ‖G0‖L4/3(∂Ω(0)) +

∑
i∈N
‖Gi‖L4/3(Ii(0))).

(4.57)

2) (Uniqueness)
If we assume that there exist two solutions η(1) and η(2), then the difference η = η(1) − η(2) solves
the problem with zero data. The space of infinitesimal rigid displacements RD, which is defined
in Def. 2.1, is the kernel of S̃(∇η), see [Cia00], Th. 1.7-3 a). In our estimate (4.57), where the
norms of the data on the l.h.s. are now zero, also the square of −

∫
Γi η · ν has to vanish for a function

a + b × z in RD. We compute −
∫
Γi(a + b × z) · ν = 0 by exploiting local spherical coordinates i.e.

−
∫
Γi(a+b×z) ·ν = −

∫
Γi(a

rer+b×rier) ·err2
i dA(r) and then that the parallelepipedal product (b×x) ·ν

is cyclic. Hence we have uniqueness if and only if η ∈ H1/RD.
3) (Regularity result)
We refer to the remark following Th. 6.3-6 in the first volume of the book of Ciarlet [Cia98], the
third volume [Cia00] and the references there in: There hold regularity results for problems with
pure Dirichlet boundary conditions, also called pure-displacement problems, or problems with pure
Neumann boundary conditions, also called pure-traction problems, or for problems with Neumann
b.c. and Dirichlet b.c., so-called displacement-traction problems. For the proof of these regularity
results it is to verify in particular that S̃ is uniformly elliptic and the supplementary and comple-
menting conditions of Agmon, Douglis, Nirenberg [ADN64], [RR04] for the space H1

0 in the first
case and for the quotient space H1/RD in the last two cases are satisfied. Important is for the
displacement-traction problem, that there is no point of the boundary, where the type of boundary
condition changes.
In order to transfer this to our situation — we have Neumann b.c. on ∂Ω or mixed b.c. on Ii — we
split up our mechanical problem into a problem for U1, where we modify the b.c. on Ii s.t. we have
only Neumann b.c. S̃jk(∇η, R̃)νk = 0 on Ii, and into a problem for U2 s.t. we have only Dirichlet
b.c. C(ri) −

∫
Iεi (0) η

lνlνk = 0 on Iεi (0), S̃jk(∇η, R̃) = 0 on ∂Ω and divS̃jk = 0 in ΩS . For U1 we can
apply the regularity result of the pure-traction problem and U2 ≡ 0 is a solution, which is unique
according to 2). Then U = U1 +U2 solves our full problem and the regularity results transfer from
the pure-traction problem to the U in our situation.
The condition that the boundary is of class Cm+2 is fulfilled for all m due to our restriction on
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4.3. Local existence and uniqueness

spherical boundaries. Then from η ∈ Hm+2,2(ΩS(0)), form ≥ 3/2 the Sobolev to Hölder embedding
theorem yields the C2 result. Hence η is a classical solution for all times t.
4) (Consistence with approximation of small displacement gradients)
From the estimates (4.56) and (4.57) proved in 1) follows that, if the norms are bounded by O(h̃)
times a constant, that this holds for ‖∇η‖L2(ΩS(0)) and −

∫
Ii
ηkνk, where

Const2 = max(λS , µS , kL)c(ΩS(0),Φ, µS)
K(ΩS(0),Φ) .

Since c ∝ 1
2µS and λS , kL = O(µS) and we can expect for sufficiently small but fixed ε that the

influence of the geometry and the transformation is limited on the constants and ‖∇η‖L2(ΩS(0)),
| −
∫
Ii
ηkνk| = O(h̃).

5) (Dependence on time)
Now we let t vary in (0, T ). For the regularity in time of η we consider a sequence of corresponding
BVP’s on fixed domain ΩS(0) with solution η(t), where t is a parameter. Since our problem is a
linear PDE the norms of η(t) depend linearly on the data, whose regularity in time is given: the
statement about the integrability in time follows for ΩS(0) by integrating (4.56) and (4.57) on both
sides w.r.t. time.
6) (Results for time-dependent domain)
If T < mini∈N τi we can assume the existence of a smooth transformation Φ and all estimates carry
over to the problem on time-dependent domain ΩS .

We formulate the consequences of Th. 4.1 for our transformed Problem E. We note that it can
also be applied to the mechanical displacement problem as considered in Problem DCR if ũε ∈
H2(Ωε

S(0)) or to the velocity problem corresponding to Problem DCR if ∂tũε ∈ H1(Ωε
S(0)).

Theorem 4.2 (Displacement problem on fixed domain).
Assume for all t ∈ (0, T ) that ΩS(t) ∈ R3 is given and that Φ is a C2 diffeomorphism of ΩS(0)
onto ΩS(t), s.t. the three vectors gq are linearly independent at all points z ∈ ΩS(0). Let ∂ΩS(0)
be smooth.
Let λS ≥ 0, µS > 0, kL > 0, let ri ≥ rmin, let σ > 0, p, p0, δR be given constants and let h∗, h∗L be
given smooth functions.
1) (Existence of a weak solution)
If ñAs ∈ L6/5(ΩS(0)), then there exists a weak solution Ũ ∈ H1(ΩS(0); R3) of (4.26) – (4.28).

Furthermore |
−
∫
Ii
Ũkνk

ri
| ≤ Const(ñAs).

2) (Uniqueness)
Ũ is unique only up to functions in the class of equivalence RD, as defined in Def. 2.1, i.e. Ũ is
non unique up to translations and rotations (that corresponds to Galilei invariance of the PDE),
only ∇Ũ can be determined uniquely.
3) (Regularity result)
If ñAs ∈ Wm,p(ΩS(0)) for p ≥ 6

5 , then Ũ ∈ Wm,p. Hence for m = 2 and p = 2 i.e. if ñAs ∈
H2(ΩS(0)) there exists a classical solution Ũ ∈ C2.
4) (Consistence with approximation of small displacement gradients)
Let p−p0

3kS , h
∗, 2σ

3kLrmin , δ
R be of order O(h̃) and let ‖ñAs‖L6/5(ΩS(0)) ≤ κ, κ ∈ O(h̃0).

79



Chapter 4. Existence and uniqueness for a class of models

Then we have

‖∇Ũ‖L2(ΩS(0)), ‖
−
∫
Ii
Ũkνk

ri
‖L2(Ii(0)) ≤ Const1(λS , µS , kL,ΩS(0),Φ)O(h̃),

where Const1 = O(h̃0) for sufficiently small but fixed ε. This justifies our approximation of small
displacement gradients of Assumption 2.1, if h̃� 1.
5) (Dependence on time)
Assume the free boundaries R̃ = (R,Rbd) to be given and at least in [L2(0, T )]N 0+1 and the data of
the displacement problem to be L2 in time, then we have Ũ ∈ L2H1.

For the time derivative of the displacement we have the following result.

Theorem 4.3 (Velocity problem on fixed domain). We make the same assumptions as in the
last theorem 4.2. Furthermore we assume now the evolutions of free boundaries to be given, R̃ ∈
[H1(0, T )]N 0+1 with supi∈N R̃i ≤ k.
1) (Existence of a weak solution)
If ñAs ∈ H1W 1,6/5(ΩS(0)), Ũ ∈ L2H1 then there exists a weak solution ∂tŨ ∈ H1(ΩS(0); R3) of

(4.30) – (4.32). Furthermore |
−
∫
Ii
∂tŨkνk

ri
| ≤ Const(ñAs,Φ).

2) (Uniqueness)
∂tŨ is unique only up to functions in the class of equivalence RD. If Ũ is unique up to a + b × z
then ∂tŨ is unique up to ∂ta+ ∂tb× z.
3) (Regularity result)
If ñAs ∈ H1Wm,p(ΩS(0)) for p ≥ 6

5 , then ∂tŨ ∈W
m,p. Note, that Ũ ∈ L2H2(ΩS(0)), needed here,

follows from Th. 4.2 3) by the regularity assumptions on ñAs. Hence for m = 2 and p = 2, i.e. if
ñAs ∈ H1H2(ΩS(0)), there exists a classical solution ∂tŨ ∈ C2.
4) (Consistence with approximation of small displacement gradients)
If 2σ

3kLrmin are of order O(h̃) and if ‖ñAs‖H1W 1,6/5(ΩS(0)) ≤ κ, κ ∈ O(h̃0), then we have

‖∇∂tŨ‖L2(ΩS(0)), ‖
−
∫
Ii
∂tŨ

kνk

ri
‖L2(Ii(0)) ≤

k

rmin
Const′1(λS , µS , kL,ΩS(0),Φ)O(h̃),

where Const′1 = O(h̃0) for sufficiently small but fixed ε. This justifies our approximation of small
displacement gradients of Assumption 2.1, if h̃� 1.
5) (Dependence on time)
Under the assumptions of 1) the data of the velocity problem is L2 in time. Then we have together
with Th. 4.2 5) that Ũ ∈ H1H1. For smooth enough boundaries and data, i.e. we get Ũ ∈ H1C2 ⊂
C0C2.
6) (Velocity)
For the velocity ṽ as defined in 4.29 we get together with Th. 4.2 the same results as in 1) – 5) for
∂tŨ .

We check that the assumptions on the data in the Th. 4.1 are fulfilled by the assumptions in Th.
4.2 and in Th. 4.3. The compatibility condition (4.54) is fulfilled for the displacement problem and
the velocity problem, since ∫

S
φjνkδ

jk =
∫
S
Aklblνk +

∫
S
ckνk = 0 (4.58)
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4.3. Local existence and uniqueness

for A a skew-symmetric matrix, c a constant vector and S an arbitrary smooth closed surface.
Hence Th. 4.2 and Th. 4.3 follow.

Remark 4.2. The assumptions on the constants λS , µS , kL, σ, rmin, p, p0, δ
R in Theorem 4.2 and

Theorem 4.3 are fulfilled for typical experimental values.

Theorem 4.4 (Displacement and velocity problem on time-dependent domain).
If T < mini∈N(0) τi and further the transformation Φ on fixed domain is smooth, then all statements
from Theorem 4.2 and Theorem 4.3 hold also for the problem on ΩS(t) instead on ΩS(0), too.
The statement from 4.2 4) justifies our approximation of (2.12) by (2.13) i.e. v = ∂tU .

4.3.2. Diffusion problem

In order to prove local existence of a solution of the transformed diffusion problem we need a max-
imum and minimum principle while for global existence we will even need a comparison principle.
We prove a comparison principle which implies a maximum and minimum principle for nAs and,
since the chemical potential u depends strictly monotone on nAs, the As particle density in the
solid, we get a comparison, maximum and minimum principle on u as well. Analogously we could
replace nAs (or u) by the relative lattice occupancy y = yAsγ of As on the γ sublattice in the
following lemmata and theorems of this subsection. We chose to work in the remaining part of this
subsection with nAs as variable, since this allows to compare with standard results for quasilinear
parabolic PDE more directly.
Since our transformation Φ is smooth we can equivalently deal with the equation on time-dependent
domain as long as we assume that an evolution of free boundaries is given. But before we have to
introduce some general definitions.

Definition 4.6 (Sub- and supersolution). We say that η is a subsolution to the diffusion problem
in the regime (DC) (4.19) – (4.22) if

∂tη +∇ · (ηv)− ε−3∆u(η) ≤ 0 in ΩS(t) (4.59)
∇η · ν ≤ 0 on ∂Ω(t), (4.60)

η ≤ nintAs (ri) on Ii(t) ∀i ∈ N, (4.61)
η(·, t = 0) ≤ n0

As in ΩS(0). (4.62)

Analogously, we say that η̂ is a supersolution to (4.19) – (4.22) if

∂tη̂ +∇ · (η̂v)− ε−3∆u(η̂) ≥ 0 in ΩS(t) (4.63)
∇η̂ · ν ≥ 0 on ∂Ω(t), (4.64)

η̂ ≥ nintAs (ri) on Ii(t) ∀i ∈ N, (4.65)
η̂(·, t = 0) ≥ n0

As in ΩS(0). (4.66)

We emphasise that we assume that a solution U of the mechanical BVP and a radii evolution R̃ is
given and fixed for all solutions, sub- and supersolutions.

Remark 4.3 (Equality and inequalities in Sobolev spaces). In the preceding definition we under-
stand “≥” for the weak formulation in the sense of H1(Ω), which is defined as in [KS00], p. 35,
Def. 5.1. This means that we expect ∆u(η) ∈ L2.
This definition says: Let Ω be a bounded connected domain of RN , E ⊂ Ω and f ∈ H1(Ω). u ≥ 0
on E in H1(Ω), iff there exists a sequence fn ∈ H1,∞ s.t. fn(x) ≥ 0 for x ∈ E, fn → f ∈ H1(Ω).
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Chapter 4. Existence and uniqueness for a class of models

Analogously we define “≤” in sense of H1 and “=” in sense of H1 if “≥” and “≤” hold in sense
of H1.
We remind that this definition is equivalent to the notion f ≥ 0 on Ω a.e., but this equivalence does
not hold e.g. for sets E of measure zero, see [KS00], p. 35, prop. 5.2 and the following remark
therein.

Lemma 4.2 (Comparison principle for the diffusion problem). We assume the evolution of free
boundaries R̃ ∈ H1(0, T ) to be given and that v ∈ L∞(0, T ;W 1,∞(ΩS(t))).
Let u be a strictly monotone and smooth function in nAs and let for two functions nAs, n̂As

∂t(nAs − n̂As) +∇ · (v(nAs − n̂As))− ε−3∆(u(nAs)− u(n̂As)) ≤ 0 in ΩS(t) (4.67)
∂ν(nAs − n̂As) ≤ 0 on ∂Ω(t), (4.68)

nAs − n̂As ≤ 0 on Ii(t) ∀i ∈ N, (4.69)
(nAs − n̂As)(·, t = 0) ≤ 0 in ΩS(0). (4.70)

1) If nAs, n̂As ∈ C2
1 (0, T ; ΩS(t)) then

nAs ≤ n̂As ∀(x, t) ∈ {(t,Ωε
S(t))|0 ≤ t < T }.

2) If nAs, n̂As ∈ L∞(0, T ,W 1,∞(ΩS(t))) and u′(nAs) is bijective in Jn := nAs(Jy), then

nAs ≤ n̂As for a. a. (x, t) ∈ {(t,Ωε
S(t))|0 ≤ t < T }.

The bijectivity of u w.r.t. nAs follows from Assumption 4.2.

We remark, that a maximum and minimum principle holds under assumptions, which are weaker
than nAs ∈ L∞L2 ∩ L2H1 or n̂As ∈ L∞L2 ∩ L2H1.

Proof of 2). Let φ := max(nAs − n̂As, 0) ∈ L∞W 1,∞. We prove the statement of the lemma by
contradiction. We assume that there exists a set M := {(x, t) ∈ ΩT |φ(x, t) > 0}, w.l.o.g. let
M = {(t, G(t))|t ∈ (0, T )}.
We test the problem (4.19) – (4.22) with φ in space and get after an integration by parts∫

G(τ)
(∂t(nAs − n̂As) +∇ · (v(nAs − n̂As)))(nAs − n̂As) + ε−3∇(u(nAs)− u(n̂As))·

· ∇(nAs − n̂As)−
∫
∂G(τ)∩∂Ω(τ)

∂ν(nAs − n̂As)(nAs − n̂As) ≤ 0,
(4.71)

where we emphasise that ∂G ∩ Ii = ∅ at any time and that we omit the last term in the following
since it is nonnegative due to (4.68).
If we only wanted to prove a maximum or minimum principle we would set

n̂As = max{max
i∈N

nint,iAs , sup
Ω(0)

n0
As},

which is constant in space, and get∫
G(τ)

(∂t(nAs − n̂As) +∇ · (v(nAs − n̂As)))(nAs − n̂As) +
∫
G(τ)

ε−3u′(nAs)|∇nAs|2 ≤ 0

which could be led to a contradiction as in the following without further regularity assumptions on
nAs.
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For a minimum principle we would set nAs = min{mini∈N nint,iAs , infΩ(0) n
0
As}, multiply with −1 and

would get an inequality with inverse sign and proceed analogously.
But for a comparison principle we have to exploit the additional assumption nAs, n̂As ∈ L∞W 1,∞

and exploit that u′ is bijective, which holds e.g. for u ≥ 0 (i.e. y ≥ 1).
The mean value theorem of differential calculus gives the existence of a function ξ, nAs < ξ < n̂As
s.t.

u(nAs)− u(n̂As) = u′(ξ)(nAs − n̂As),

where ξ is as smooth as u, nAs and n̂As if u′(ξ) is bijective, since

ξ = (u′)−1(u(nAs)− u(n̂As)
nAs − n̂As

).

This allows us to rewrite the second integral in (4.71) as∫
G(τ)
|∇(nAs − n̂As)|2u′(ξ) + ε−3u′′(ξ)∇ξ(nAs − n̂As) · ∇(nAs − n̂As)

≥
∫
G(τ)
|∇(nAs − n̂As)|2u′(ξ)− ε−3‖u′′(ξ)‖L∞(G(τ))‖∇ξ‖L∞(G(τ))×

× ( 1
2δ‖nAs − n̂As‖

2
L2(G(τ)) + δ

2‖∇(nAs − n̂As)‖2L2(G(τ)))

≥ minξ∈Jn u′(ξ)
2

∫
G(τ)
|∇(nAs − n̂As)|2 −

ε−3

2δ ‖u
′′(ξ)‖L∞(G(τ))‖∇ξ‖L∞(G(τ))‖nAs − n̂As‖2L2(G(τ)),

where we have chosen δ < ε3 minξ∈Jn u′(ξ)
‖u′′(ξ)‖L∞(G(τ))‖∇ξ‖L∞(G(τ))

small enough. Since the first term in the last
inequality is nonnegative we have to consider only∫

G(τ)

1
2(∂t|nAs − n̂As|2 +∇ · (v|nAs − n̂As|2)) + 1

2(∇ · v)|nAs − n̂As|2

− 1
2δε3 ‖u

′′(ξ)‖L∞(G(τ))‖∇ξ‖L∞(G(τ))‖nAs − n̂As‖2L2(G(τ)) ≤ 0.

We apply Reynolds transport theorem and Lemma 3.1 and estimate downwards

∂τ‖nAs − n̂As‖2L2(G(τ)) − (‖∇ · v‖L∞(M) + 1
δε3 ‖u

′′(ξ)‖L∞(M)‖∇ξ‖L∞(M))‖nAs − n̂As‖2L2(G(τ)) ≤ 0

and integrate now in time

‖nAs − n̂As‖2L2(G(τ)) − c̃
∫ t

0
‖nAs − n̂As‖2L2(G(τ))dτ ≤ 0,

where we introduced the positive constant c̃ = ‖∇ · v‖L∞(M) + 1
δε3 ‖u

′′(ξ)‖L∞(M)‖∇ξ‖L∞(M) and
exploited ∂M ∩ ΩS(0) = ∅. We apply the lemma of Gronwall and get since we had no additive
constant on the r.h.s. of the last inequality that

‖nAs − n̂As‖2L2(G(τ)) ≤ 0,

which is a contradiction, unless G(t) = ∅ where 0 < t < T is arbitrary.

We remark that if an inequality holds in sense of H1 in time this implies that the inequality holds
pointwise in time due to the embedding H1 ↪→ C0 in one dimension.
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Proof of 1). For comparison principles it is appropriate to work with the differential operator in
nondivergence form. We follow the proof of ([Fri64], Th. 16, p.52), but we have to include a
homogeneous Neumann boundary condition on ∂Ω additionally and we deal with inequalities in
some statements, where our reference works with strict inequalities, and vice versa. We introduce
pi := ∂iη, Pi,j := ∂i,jη, 1 ≤ i, j ≤ 3 and check preliminarily that

F (x, t, η, p, P ) := −∇ · v(x, t)η − v(x, t) · p+ ε−3u′′(η)|p|2 + ε−3u′(η)
3∑
i=1

Pi,i

is continuous together with its first derivative w.r.t. Pi,j , 1 ≤ i, j ≤ 3 and ∂Pi,jF is a positive
definite matrix, since due to the strict monotonicity of u

∂Pi,jF (x, t, η, p, P ) = ε−3u′(η)δi,j > 0. (4.72)

First we examine the case, when we have strict inequality in (4.67).
We consider the maximal time τ := supt∈[0,T ){n̂As ≥ nAs ∀x ∈ ΩS(t)}. If we prove that τ = T ,
then our lemma is demonstrated.
Due to (4.70) we have τ > 0. If we assume τ < T then n̂As−nAs is nonnegative in Zτ := {(x, t)|x ∈
ΩS(t), 0 ≤ t ≤ τ} and there exists a point (x0, t0) ∈ Zt0 for some space point x0 ∈ ΩS(t0) ∩ ∂Ω(t0)
(x0 /∈ Ii due to (4.69)) and some time t0, τ < t0 < T s.t. n̂As < nAs. If the only such space point
x0 ∈ ∂Ω(t0), this is a contradiction to ∂ν(n̂As − nAs) ≥ 0. Hence there exists a minimum point
(x0, t0) in ΩS(t0) and necessarily, ∇(n̂As − nAs)(x0, t0) = 0.
Consider now the infimum of all t0, i.e. t0 = τ with corresponding x0. Then n̂As(x0, t0) =
nAs(x0, t0). Since (x0, t0) is a minimum in ΩS(t0), the Hessian is positive semidefinite:

∂i,j(n̂As − nAs)(x0, t0) ≥ 0.

W.l.o.g. by a change of coordinate system, where we exploit that ∂Pi,jF is symmetric and uniformly
elliptic, see (4.72), we can assume

3∑
i,j=1

∂Pi,jF (ξ)∂i,j(n̂As − nAs)(x0, t0) ≥ 0, (4.73)

for any ξ ∈ ΩT × R3 × R3×3. Indeed by a linear transformation x→ y = Cx, ΩS(t)→ Ω∗S(t) with
C s.t. C∂Pi,jF (ξ)CT = I3, (η̂− η)(y, t) = (n̂As−nAs)(x, t) and then y0 = Cx0 is the new minimum
in Ω∗S(t). Then (4.73) follows, where we replaced w.l.o.g. y0 by x0 and η̂ − η by n̂As − nAs.
The mean value theorem applied to F (·, P ) in the minimum (x0, t0) yields with (4.73)

F (x0, t0, n̂As,∇n̂As, D2n̂As)− F (x0, t0, n̂As,∇n̂As, D2nAs) ≥ 0

and hence ∂t(n̂As − nAs)(x0, t0) > 0 due to (4.67), but (n̂As − nAs)(x0, t0) ≤ (n̂As − nAs)(x, t) for
all (x, t) ∈ Zτ , a contradiction unless τ = T .
In order to enlarge our result to the case of non strict inequality in (4.67), we perturb n̂As − nAs
and work with zδ := (n̂As−nAs) + δt, δ > 0 and replace F by F δ := F + δt η(x, t)∇ · v(x, t). There
exists T δ < min{ δ

max(0,T δ) maxΩS(t) |(n̂As−nAs)∇·v|
, T } s.t. the strict inequality holds for t up to T δ

and we can apply our previous result to zδ and hence zδ ≥ 0 or n̂As − nAs ≥ −δt. If we let δ → 0,
where we remind that F δ depends smoothly on δ, we find the statement of the lemma, since we
can start again with T δ as new initial time.

Remark: we allowed the non-strict inequality in (4.59), (4.63) and (4.67) only for the following
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corollary, for other applications of the comparison principle the strict inequality would be enough.
Remark: the last lemma does not apply for a subsolution nAs and a supersolution n̂As but for any
nAs and any n̂As that fulfil the partial differential inequality (4.67) – (4.70).
We abbreviate

nint,minAs := lim
r→∞

nintAs (r), nint,maxAs := nintAs (rmin)

or analogously
uminint := lim

r→∞
uint(r), umaxint := uint(rmin).

Furthermore we introduce

F̂ := max{nint,maxAs , supΩS(0)n
0
As}, F := min{nint,minAs , inf

ΩS(0)
n0
As} (4.74)

or F̂ := max{umaxint , supΩS(0)u
0}, F := min{uminint , inf

ΩS(0)
u0}. (4.75)

Corollary 4.1 (Uniqueness of classical solution of the diffusion problem). If we have two classical
solutions η1, η2 in the sense of Definition 4.3 of the diffusion problem, we can plug them into the
comparison principle and we get immediately η1 ≤ η2 and η1 ≥ η2 i.e. the solution is unique almost
everywhere.

Corollary 4.2 (Weak maximum and minimum principle for the diffusion problem). 1 Let R̃ ∈ H1

and v ∈ L∞W 1,∞. If nAs ∈ L∞L2 ∩ L2H1 is a subsolution to (4.19) – (4.22) then there holds

sup
ΩT

u ≤ max{max
i∈N

uint(ri), sup
ΩS(0)

u0} ≤ F̂

or for a supersolution n̂As ∈ L∞L2 ∩ L2H1 we have

F ≤ min{ min
{i∈N}

uint(ri), inf
ΩS(0)

u0} ≤ inf
ΩT

û.

Corollary 4.3 (Sub- and supersolution on ΩS). Let R̃ ∈ H1 and v ∈ L∞W 1,∞. The constant
function F̂ and max{nint,maxAs , supΩS(0)n

0
As}, constant in space, are supersolutions on ΩS, while F

and min{nint,minAs , infΩS(0) n
0
As} are global subsolutions.

Corollary 4.4 (Weak bounds on the solution of the diffusion problem). Let R̃ ∈ H1 and v ∈
L∞W 1,∞. If a solution nAs ∈ L∞L2 ∩ L2H1 exists then

F ≤ min{ min
{i∈N}

nint,iAs , inf
Ω(0)

n0
As} ≤ nAs ≤ max{max

{i∈N}
nint,iAs , sup

Ω(0)
n0
As} ≤ F̂ . (4.76)

Theorem 4.5 (Existence and uniqueness of the diffusion problem on fixed domain). We treat the
more general case of the transformed diffusion problem (4.48), (4.42) – (4.44) where we allow β
also to depend on η.
We assume that nintAs is C2 and we assume initial and boundary data s.t.

0 ≤ n0
As, n

int
As ≤ nmaxAs := lim

u→∞
nAs(u).

Remark: by our choice of nintAs (ri) the last assumptions on nintAs are fulfilled for arbitrary ri.

Let T <∞, let be given the evolutions R̃ = (R,Rbd) ∈ [H1(0, T )]N 0+1 with supi∈N R̃i ≤ k, and let

1For brevity we just use the notion “maximum principle” when we refer to the “maximum and minimum principle”.
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the following smoothness assumptions on α, β, γ hold,

α(x, t, η) · ξ is bounded and continuous in η ∀(x, t) ∈ Ω0
S × (0, T ), ∀ξ ∈ R3 (4.77)

β(x, t, η) is bounded and continuous in η ∀(x, t) ∈ Ω0
S × (0, T ), (4.78)

ξ · γ(x, t, η)ξ is bounded and continuous in η ∀(x, t) ∈ Ω0
S × (0, T ), ∀ξ ∈ R3 (4.79)

∃C > 0, indep. of x, t, η, s. t. ξ · γ(x, t, η)ξ ≥ const|ξ|2 ∀(x, t) ∈ Ω0
S × (0, T ), ∀ξ ∈ R3. (4.80)

1) (Existence and uniqueness, first estimate)
If the initial data n0

As is in L2(ΩS(0)) and f̃ ∈ L2(0, T ;L2(ΩS(t))) then there exists a unique
solution

ñεAs ∈ L∞(0, T ;L2(ΩS(0))) ∩ L2(0, T ;H1(ΩS(0)))

of the transformed diffusion problem (4.48), (4.42) – (4.44) where we allow β to depend on
x, t and η. We have the estimate

‖η‖2L∞L2 + ‖∇η‖2L2L2 ≤ c(‖η0‖2L2(ΩS(0)) + ‖f‖2L2L2) (4.81)

with a positive constant c depending on T , α, β and γ.
2) (Existence and uniqueness, second estimate)

If n0
As ∈ H1(ΩS(0)) and f̃ ∈ L2(0, T ;H1(ΩS(t)) then exists a unique solution

ñεAs ∈ L∞(0, T ;H1(ΩS(0))) ∩H1(0, T ;L2(ΩS(0)))

in particular ∂tnAs ∈ L2(0, T ;L2(ΩS(t))) and ∆ñεAs ∈ L2(0, T ;L2(ΩS(t))). An estimate
therefor is

‖∇η‖2L∞L2 + ‖∂tη‖2L2L2 ≤ c∗(‖η0‖2H1(ΩS(0)) + ‖f‖2L2L2) (4.82)

with a positive constant c∗ depending on T , α, β and γ.
As further estimate we have

‖u‖L2H2 ≤ Const‖X (u)(∂tu+ v · ν) + Ξ(u)∇ · v‖L2L2 = Const ε−3/2‖∆u‖L2L2 (4.83)

with a constant independent of ε.
3) (Regularity result)

The assumptions on α, β and γ can be weakenend in the sense that measurability in t and x
is enough. In particular for our PDE for diffusion in the transformed Problem E it is then
enough to assume ∂tŨ and ∇∂tŨ to be measurable e.g. ∂tŨ ∈ L2H1/RD.
If we assume additionally u′′(ñεAs) ≥ 0 (that can be achieved by choosing Jn s.t. nminAs ≥
nAs(ymin)), initial domain Ω0

S ∈ C2 and initial data u0 ∈ H1, and if we assume for the
nonlinearities,

α(x, t, η), β(x, t, η) ∈ L∞(0, T ; ΩS(0)), γ(x, t, η) ∈ L5(0, T ; ΩS(0)) (4.84)

and source term f̃ ∈ H1, then there exists a unique classical solution

ñεAs ∈ C2
1 (0, T ; ΩS(0)).

Since Φ is smooth this translates into

nεAs ∈ C1(0, T ;C2(ΩS(t))).
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All assumptions of this theorem on smoothness and on nonlinearities are fulfilled for our concrete
model, which is in particular due to ri ≥ rmin and |ṙi| ≤ k.
We note that, the reason for including a more general β = β(x, t, η) is that we reduce the proof to
the case of homogeneous Dirichlet boundary conditions. By this reduction such a term β(x, t, η)
appears in the diffusion equation, anyway.
We could apply results of parabolic theory as in [LSU88] or [RH08], but we give a direct proof for
the first two statements of our theorem, since we need explicitly estimates on ñAs, (4.81) and (4.82)
later in Section 5.4.

Proof. 1) & 2) (Existence and uniqueness)
The following proof uses the weak maximum principle stated in Corollary 4.2. Roughly speaking,
this principle ensures that the nonlinearity explodes only if the solution explodes.
1st step) Simplification to an equivalent problem of same type
Our proof utilises the divergence form of the PDE, i.e. the problem (4.48), (4.42) – (4.44), where
we work with a general term f̃ on the r.h.s. This allows w.l.o.g. to work with homogeneous
Dirichlet boundary conditions. Indeed this can be justified by considering an extension of the
Dirichlet boundary condition nintAs smoothly onto Ω0

S s.t. the Neumann boundary condition remains
unchanged, again denoted by nintAs and then substituting ñεAs by η := ñεAs−nintAs , which yields again
a problem of same type now with unknown η since nintAs is smooth and bounded and the strict
monotonicity of u and hence of the new γ-term, which reads now γ(x, t, η), is preserved. The α-
term is replaced by α(x, t, η)− ∂ηγ(x, t, η)∇nintAs , β-term is replaced by β(x, t) + α(x, t, η) · ∇nintAs +
γ(x, t, η)∆nintAs i.e. now depending on the solution η and the source term just becomes −∂tnintAs −
β(x, t)nintAs . The Assumptions (4.77) – (4.80) and (4.84) hold also for substituted nonlinearities.
2nd step) Approximation scheme
We consider an implicit approximation scheme with semi-discretisation in time, the so-called
Rothe’s method. For details of Rothe’s method we refer e.g. to [Kač85] or [Vis96], ch. II &
III, which give both extensions of this method to more general monotone operators. Besides this
procedure provides directly a numerical method how to find explicitly the solution.
Let tn∆, 1 ≤ n ≤ M , M ∈ N the time increments s.t.

∑M
n=1 t

n
∆ = T . Time steps are denoted by

tn :=
∑n
i=1 t

n
∆, 0 ≤ n ≤M , where t0 = 0 is the initial time.

In case of equidistant time steps this means t∆ := tn∆ = T
M , tn := n(∆t), 0 ≤ n ≤M , but we want

to deal with an adaptive choice of tn∆, which allows faster numeric algorithms.
We denote

ηn(M)(x) := η(t = tn, x).

Note that the lower indexM at un(M) emphasises the refinement of the time approximation. Clearly
u0

(M) := u0 is the initial data for all M ∈ N. If not necessary for understanding, we suppress in the
following the index M for better readability. Analogously we define

αn := α(t = tn, η = ηn), βn := β(t = tn, η = ηn), γn := γ(t = tn, η = ηn) ∀1 ≤ n ≤M

and
fn(x) := 1

tn∆

∫ tn

tn−1
f̃(x, t)dt ∀1 ≤ n ≤M ∀x ∈ ΩS(0).

We consider the semi-discretisation of problem (4.48), (4.42) – (4.44) after reduction to homo-
geneous Dirichlet boundary conditions i.e. the sequence of elliptic problems with solutions ηn,
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1 ≤ n ≤M , so that

ηn − ηn−1

t∆
+ αn(x, ηn) · ∇ηn + βn(x, ηn)ηn

−∇ · (γn(x, ηn)∇η) = fn in Ω0
S , (4.85)

∂νη
n = 0 on ∂Ω0, (4.86)
ηn = 0 on Ii(0) ∀i ∈ N, (4.87)
η0 = n0

As − nintAs (t = 0) in ΩS(0). (4.88)

We show that we can solve problem (4.85) – (4.88) step by step. Fix any n ∈ {1, ...,m} and assume
ηn−1 ∈ L2(ΩS(0)). We have to determine ηn. Then tn is fixed and existence and uniqueness of
ηn ∈ H1(ΩS(0)) follow by standard results for elliptic PDE since we have also fn ∈ L2(ΩS(0)).
But for our purposes we want to get estimates over space AND time.
3rd step) A priori estimates
In order to derive the result given in statement 1) of the theorem we test with tn∆ηn∫

ΩS(0)
|ηn|2 − ηn−1ηn + tn∆α

n · ∇ηnηn + tn∆β
n|ηn|2 + tn∆γ

n|∇ηn|2 =
∫

ΩS(0)
tn∆f

nηn.

With the strict monotonicity of u in ηn we estimate for δn1 > 0

(1− δn1
2 )‖ηn‖2L2(ΩS(0)) − t

n
∆‖αn‖L∞(ΩS(0))‖∇ηn‖L2(ΩS(0))‖ηn‖L2(ΩS(0))

− tn∆‖βn‖L∞(ΩS(0))‖ηn‖2 + tn∆( min
ΩS(0)

‖γn‖)‖∇ηn‖2L2(ΩS(0))

≤ 1
2δn1
‖ηn−1‖2L2(ΩS(0)) + tn∆‖fn‖L2(ΩS(0))‖ηn‖L2(ΩS(0)).

We introduce some abbreviations

α̂n := ‖αn‖L∞(ΩS(0);R3), β̂n := ‖βn‖L∞(ΩS(0)), γn := min
ΩS(0)

‖γn‖L∞(ΩS(0);R3×3)

and furthermore for later

α̂ := max
1≤n≤M

α̂n, β̂ := max
1≤n≤M

β̂n, γ := min
1≤n≤M

γn.

We rearrange our estimate

(1− δn1
2 − t

n
∆( 1

2δn2
α̂n + β̂n + δn3

2 ))‖ηn‖2L2(ΩS(0)) + tn∆(γn − δn2
2 α̂

n)‖∇ηn‖2L2(ΩS(0))

≤ 1
2δn1
‖ηn−1‖2L2(ΩS(0)) + tn∆

1
2δn3
‖fn‖2L2(ΩS(0)),

where δn2 , δn3 > 0. We choose δn2 ≤
γn

α̂n .
Now summing up over n from 1 to m, 1 ≤ m ≤M we get

m∑
n=1

(1− δn1
2 − t

n
∆(1

2((α̂n)2

γ
n

+ δn3 ) + β̂n))‖ηn‖2L2(ΩS(0)) + 1
2

m∑
n=1

tn∆γ
n‖∇ηn‖2L2(ΩS(0))

≤
m∑
n=1

1
2δn1
‖ηn−1‖2L2(ΩS(0)) +

m∑
n=1

tn∆
1

2δn3
‖fn‖2L2(ΩS(0)).
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We would like to choose δn1 s.t. 1− δn1
2 − t

n
∆(1

2( (α̂n)2

γ
n

+ δn3 ) + β̂n = 1
2δn1

in order to sum up directly,
but this leads to a contradiction. Instead we choose δn1 = δn3 = 1 and find by further multiplying
by 2

‖ηm‖2L2(ΩS(0)) +
m∑
n=1

tn∆γ
n‖∇ηn‖2L2(ΩS(0))

≤ ‖η0‖2L2(ΩS(0)) +
m∑
n=1

tn∆((α̂n)2

γ
n

+ 1 + 2β̂n)‖ηn‖2L2(ΩS(0)) + tm
T
‖f‖2L2(0,T ;L2(ΩS(0)).

We choose
tn∆ ≤

1
2

1
(α̂)2

γ + 1 + 2β̂
.

We apply the discrete lemma of Gronwall. It states that for non-negative sequences bn and un

um ≤ u0 +
m∑
n=1

bnun

=⇒ um ≤ u0(1 +
m∑
n=1

bn

m∏
l=n

(1− bl)−1)
bn=btn∆≤1/2
≤ u0(1 + b

m∑
n=1

tn∆ exp(3
2b(tm − tn−1))),

and get

‖ηm‖2L2(ΩS(0)) +
m∑
n=1

tn∆γ
n‖∇ηn‖2L2(ΩS(0))

≤ (1 + ((α̂)2

γ
+ 1 + 2β̂)tm exp(3

2((α̂)2

γ
+ 1 + 2β̂)T ))(‖η0‖2L2(ΩS(0)) + tm

T
‖f‖2L2(0,T ;L2(ΩS(0))))

where the r.h.s. is finite if T <∞ i.e.

‖ηm‖2L2(ΩS(0)) + γ
m∑
n=1

tn∆‖∇ηn‖2L2(ΩS(0)) ≤ const(T , (â)2, b̂, γ)(‖η0‖2L2(ΩS(0)) + ‖f‖2L2(0,T ;L2(ΩS(0))))

(4.89)
and since m, 1 ≤ m ≤M , is arbitrary

max
1≤n≤M

‖ηn‖2L2(ΩS(0)) + γ
M∑
n=1

tn∆‖∇ηn‖2L2(ΩS(0))

≤ const(T , (â)2, b̂, γ)(‖η0‖2L2(ΩS(0)) + ‖f‖2L2(0,T ;L2(ΩS(0)))),
(4.90)

which is a discretised version of the claimed L∞L2 ∩ L2H1 estimate for the PDE.
For the estimate given in 2) we test with ηn−ηn−1

γntn∆∫
ΩS(0)

1
γn
|ηn − ηn−1|2

(tn∆)2 + 1
tn∆

αn

γn
· ∇ηn(ηn − ηn−1) + 1

tn∆

βn

γn
(|ηn|2 − ηnηn−1)

+ 1
tn∆

(|∇ηn|2 −∇ηn · ∇ηn−1) + 1
tn∆

∂ηγ
n

γn
(∇ηn −∇ηn−1)∇ηn(ηn − ηn−1) =

∫
ΩS(0)

ηn − ηn−1

γntn∆
fn.

We estimate by the maximum principle (max(ηn − ηn−1) ≤ C)

∂ηγ
n

γn
(∇ηn −∇ηn−1)|∇ηn(ηn − ηn−1) ≥ −const(∂ηγ

n

γn
)C‖∇ηn −∇ηn−1)‖‖∇ηn‖

89



Chapter 4. Existence and uniqueness for a class of models

and include this term in the estimate of the 1
tn∆

(|∇ηn|2−∇ηn ·∇ηn−1) term since we assumed above

−const(∂ηγ
n

γn )C < 1. We proceed as above and get for δni > 0, 1 ≤ i ≤ 4,

1
γ̂n
‖η

n − ηn−1

tn∆
‖2L2(ΩS(0)) −

α̂n

γn
(δ
n
1
2 ‖

ηn − ηn−1

tn∆
‖2L2(ΩS(0)) + 1

2δn1
‖∇ηn‖2L2(ΩS(0)))

− β̂n

γn
(δ
n
2
2 ‖

ηn − ηn−1

tn∆
‖2L2(ΩS(0)) + 1

2δn2
‖η‖2L2(ΩS(0))) + 1

tn∆
((1− δn3

2 )‖∇ηn‖2L2(ΩS(0))

− 1
2δn3
‖∇ηn−1‖2L2(ΩS(0))) ≤

δn4
2γn ‖

ηn − ηn−1

tn∆
‖2L2(ΩS(0)) + 1

2δn4 γn
‖fn‖2L2(ΩS(0)),

where we introduce

γ̂n := max
ΩS(0)

‖γn‖ = ‖γn‖L∞(ΩS(0)), γ̂ := max
1≤n≤M

γ̂n.

This yields by multiplying i.a. with tn∆

( 1
γ̂n
− 1
γn

(δ
n
1
2 α̂

n + δn2
2 β̂

n + δn4
2 ))tn∆‖

ηn − ηn−1

tn∆
‖2L2(ΩS(0)) + ((1− δn3

2 )− tn∆
2δn1

α̂n

γn
)‖∇ηn‖2L2(ΩS(0))

≤ 1
2δn3
‖∇ηn−1‖2L2(ΩS(0)) + tn∆

2δn2
β̂n

γn
‖ηn‖2L2(ΩS(0)) + tn∆

2δn4 γn
‖fn‖L2(ΩS(0)).

We choose δn3 = 1 and 1
4
γn

γ̂n ≤ δ
n
1 α̂

n + δn2 β̂
n + δn4 ≤ 1

2
γn

γ̂n , multiply by 2 and sum up as above over n
from 1 to m, 1 ≤ m ≤M ,

m∑
n=1

tn∆‖
ηn − ηn−1

tn∆
‖2L2(ΩS(0)) +

m∑
n=1

(1− tn∆
δn1

α̂n

γn
)‖∇ηn‖2L2(ΩS(0))

≤
m∑
n=1
‖∇ηn−1‖2L2(ΩS(0)) +

m∑
n=1

tn∆
δn2

β̂n

γn
‖ηn‖2L2(ΩS(0)) +

m∑
n=1

tn∆
δn4 γ

n
‖fn‖L2(ΩS(0)),

(4.91)

which can be now reformulated with (4.89) as

m∑
n=1

tn∆‖
ηn − ηn−1

tn∆
‖2L2(ΩS(0)) + ‖∇ηm‖2L2(ΩS(0))

≤ ‖∇η0‖2L2(ΩS(0)) + 4γ̂α̂
(γ)2

m∑
n=1

tn∆‖∇ηn‖2L2(ΩS(0)) + 4γ̂
(γ)2 ‖f‖L2(0,T ;L2(ΩS(0)))

+ 4γ̂β̂
(γ)2

m∑
n=1

tn∆(const(T , â, b̂, γ)‖η0‖2L2(ΩS(0)) −
M∑
l=1

tl∆‖∇ηl‖2L2(ΩS(0)))

≤ 4γ̂
(γ)2 (α̂− tmβ̂)

m∑
n=1

tn∆‖∇ηn‖2L2(ΩS(0))

+ Const(T , â, b̂, γ, γ̂)(‖η0‖2H1(ΩS(0)) + ‖f‖2L2(0,T ;L2(ΩS(0)))).

Again by the discrete lemma of Gronwall or by plugging in (4.89) we finally find a bounded constant
c∗(T , â, b̂, γ, γ̂) s.t.

max
1≤m≤M

‖∇ηm‖2L2(ΩS(0)) +
M∑
n=1

tn∆‖
ηn − ηn−1

tn∆
‖2L2(ΩS(0)) ≤ c

∗(‖η0‖2H1(ΩS(0)) + ‖f‖2L2(0,T ;L2(ΩS(0)))),

(4.92)
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which is a discretised estimate of the type L∞H1 ∩H1L2.
4th step) Limit procedure
We assume that the refinement of our semi-discretisation in time (∆t)M := max1≤n≤M tn∆ tends
to zero with ratio (∆t)M ≤ Const

M → 0 as M → ∞. We annotate that this is a restriction to an
adaptive algorithm.
We have not shown yet that our discretised problem and its solution converges to our original PDE
and its solution. Therefore we construct the time interpolation of our discretisation, the so-called
Rothe’s function

ηM :=
M∑
n=1

(ηn + t− tn−1
tn∆

(ηn − ηn−1))I(t)[tn−1,tn]

and as a kind of time derivative multiplied with tn∆ we introduce the step function

η̌M :=
M∑
n=1

ηnI(t)(tn−1,tn] + η0I(t)0,

which is defined being continuous from the left. For the data we introduce

fM :=
M∑
n=2

fnI(t)(tn−1,tn] + f1I(t)[0,t1].

We rewrite the semi-discretised problem (4.85) – (4.88) with these definitions

∂tηM + αn(x, η̌M ) · ∇η̌M + βn(x, η̌M )η̌M
−∇ · (γn(x, η̌M )∇η̌M ) = fM in Ω0

S , (4.93)
∂ν η̌M = 0 on ∂Ω0, (4.94)
η̌M = 0 on Ii(0), (4.95)
η̌0
M = n0

As − nintAs (t = 0) in ΩS(0). (4.96)

We have immediately from (4.90) and (4.92) the following a priori estimates on ηM and η̌M :

‖ηM‖H1(0,T ;L2(ΩS(0))) ≤ C1, ‖η̌M‖H1(ΩS(0)) ≤ C2 for a.a. t ∈ (0, T )

uniformly in M .
We have equicontinuity of the L2 norm of Rothe’s function in time i.e.

‖ηM (t1)− ηM (t2)‖L2(ΩS(0)) ≤ const1‖t1 − t2‖ (4.97)

and
‖η̌M (t)− ηM (t)‖L2(ΩS(0)) ≤

const2
M

(4.98)

uniformly in m for all t, ti ∈ (0, T ), i ∈ {1, 2}.
Since H1 embeds compactly into L2, ‖η̌M‖H1(ΩS(0)) ≤ C2 and (4.97) we can apply the theorem of
Arzelà-Ascoli, which ensures there exists η ∈ C0(0, T ;L2(ΩS(0))) and a subsequence again denoted
by {ηm} s.t.

ηM → η in C0(0, T ;L2(ΩS(0))), M →∞.

By ‖η̌M‖H1(ΩS(0)) ≤ C2 and (4.98) follows

η̌M (t)→ η(t) in H1(ΩS(0)) ∀t ∈ (0, T ), M →∞. (4.99)
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Hence η ∈ L∞(0, T ;H1(ΩS(0))).
Now (4.97) implies that η(t) : (0, T )→ L2(ΩS(0)) is Lipschitz continuous i.e.

‖η(t1)− η(t2)‖L2(ΩS(0)) ≤ const1‖t1 − t2‖

for almost all times. With Rademacher’s theorem (see [Eva02], §5.8.3, Th. 6, p. 281) it follows
that

∂tη ∈ L∞(0, T ;L2(ΩS(0))).

Further the ‖∂tηM‖L2(ΩS(0)) ≤ C1 estimate gives

∂tηM → ∂tη in L2(0, T ;L2(ΩS(0))), M →∞. (4.100)

5th step) Convergence of approximation scheme
We test the approximated problem (4.93) – (4.96) with φ ∈ H1(ΩS(0)) and integrate over an arbi-
trary time interval (t1, t2). We see by (4.100) and (4.99) together with the preliminary Assumptions
(4.77) – (4.77) on α, β and γ, that a solution of problem (4.93) – (4.96) converges to a solution η
of the original problem as M →∞.
The estimates (4.90) and (4.92) translate into the estimates

‖η‖2L∞(0,T ;L2(ΩS(0))) + γ‖∇η‖2L2(0,T ;L2(ΩS(0)))

≤ const(T , (â)2, b̂, γ)(‖η0‖2L2(ΩS(0)) + ‖f‖2L2(0,T ;L2(ΩS(0))))

and

‖∇η‖2L∞(0,T ;L2(ΩS(0))) + ‖∂tη‖2L2(0,T ;L2(ΩS(0)))

≤ c∗(T , â, b̂, γ, γ̂)(‖η0‖2H1(ΩS(0)) + ‖f‖2L2(0,T ;L2(ΩS(0)))).

6th step) Uniqueness
The maximum principle i.e. Corollary 4.2), which has been proved for functions in L∞L2 ∩ L2H1,
yields that a solution η is unique. Up to now we had only convergence of a subsequence of ηM and
η̌M but since the limit problem has a unique solution this yields convergence of the whole sequences
ηM and η̌M .
7th step) Estimate on the Laplacian
We proceed as in the proof of [Eva02], Th. 5, step 3 and show (4.83). For the moment we consider
the diffusion equation in u on time-dependent domain. For almost all t we test the diffusion equation
with φ ∈ H1

0 (ΩS(t)) and get∫
ΩS(t)

ε3(X (u)(∂tu+ v · ν) + Ξ(u)∇ · v)φ−∇u · ∇φ = 0.

For given h = ε3X (u)(∂tu+ v · ν) + Ξ(u)∇· v ∈ L2(ΩS) this a elliptic boundary value problem with
smooth boundary and we have the standard estimate

‖u‖H2(ΩS(t)) ≤ Const ε3/2‖X (u)(∂tu+ v · ν) + Ξ(u)∇ · v‖L2(ΩS(t))

with a constant, which is independent of ε, and for almost all t. The scaling of the constant can
be seen analogously as in lemma 5.2 by

ε3‖∂xj∂xku‖
2
L2(Σεi )

≤ Const ε6−3‖X (u)(∂tu+ v · ν) + Ξ(u)∇ · v‖2L2(Σεi )
.
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Summing up over t and using the above estimates we find (4.83).
3) (Regularity)
The idea to prove better regularity, which depends on smoothness of data, is, that regularity carries
over from semi-discretised problems which are elliptic, but we want to refer to an abstract result.
We apply an abstract result from [LSU88], Ch. V, §7, Th. 7.4 (p. 491) for exponent β̃ > 0 and
parameter τ = 1 therein and the following references to literature therein on p. 492, or the survey
article [LU86]. The result for Hölder continuity of solutions of a quasilinear parabolic PDE, under
weakest possible assumptions on the coefficients, as far as known by the author, is given by [Lie01],
Th. 7.5 and Coroll. 7.6.
Our problem in nondivergence form (4.49), (4.42) – (4.44) is a special case of the class of problems
considered there. We abbreviate p = ∇xη and check the premises in our reference, which follow
from our Assumptions (4.77) – (4.80) and (4.84): for arbitrary η

0 ≤ γ|ξ|2 ≤ a(x, t, η)ξ · ξ ≤ γ̂|ξ|2 ∀(x, t) ∈ ΩS(0)× (0, T ),

and by using the monotonicity of u′(η)

−ηb(x, t, η, p) ≤ c0p
2 + c1η

2 + c2 ∀(x, t) ∈ ΩS(0)× (0, T )) \ ΩS(0)

with nonnegative constants c0 = ‖g−1‖‖u′′‖L∞‖η‖L∞ + 1
2(‖∇xg−1‖L∞‖u′‖L∞ + α̂) (‖η‖L∞ < const

due to the maximum principle), c1 = β̂ + 1
2(‖∇xg−1‖L∞‖u′‖L∞ + α̂) + 1

2‖f̃‖
2
L2 and c2 = 0, further

for bounded η and p the functions a, b are bounded. The domain ΩS(0) is of class C2.

4.3.3. Radii evolutions

The following theorem illustrates with which regularity we have to work, in order to get classical
solutions of the radii evolutions.

Theorem 4.6 (Existence and uniqueness of solutions of the ODE for free boundaries). Let ñAs ∈
C0H2 and Ũ ∈ (C1H1∩C0H2)/RD be given and let the initial data r0

i , i ∈ N(0) and R0
bd in Jr. If

X is Lipschitz continuous in ri and Φ depends smoothly on ri and R̃, then the ODEs for the |N(t)|
radii ri of the interfaces and the radii of the outer boundary Rbd have each a unique solution ri and
Rbd in C1((0, T ) \ ∪i∈N(0)τi) ∩ C0(0, T ).

Proof. We apply the classical Picard-Lindelöf theorem to the maps

ri → ε3−
∫
Ii(0)DΦ−T (R,Rbd)∇ũ(ñAs) · ν̃

X(ri,−
∫
Ii(0) Ũ · ν)

, i ∈ N, Rbd → −
∫
∂Ω(0)

(∂tŨ − Ũ·||·∇RΦ(R,Rbd)∂tR) · ν,

(4.101)
which yields ri and Rbd in C1(0, T ) for T < mini∈N τi. If a droplet vanishes at time τi, then the
time derivatives of ri and Rbd have jumps in general. Hence ri and Rbd globally in H1(0, T ).

4.3.4. The coupled problem

Our strategy is to exploit the estimates for the equations on fixed domain from Subsections 4.3.1
and 4.3.2, where we assumed in the mechanical BVP for the velocity that an evolution of the
free boundaries R̃ ∈ [H1(0, T )]N 0+1 and a ñAs ∈ L2H1 is given, while in the diffusion problem
we assumed that R̃ ∈ [H1(0, T )]N 0+1 and ∂tŨ is given, where ṽ and ∇ṽ are measurable e.g.
Ũ ∈ H1H1/RD ∩ L2H2/RD.
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For systems of coupled parabolic and elliptic equations without free boundaries and without mixed
boundary conditions there does not seem to exist many results. Our situation can be covered by
the much more general results in [AL83], [Kač90a], [Kač90b], [FK95] or [AB04], but they only
consider variational solutions i.e. solutions, which are L∞ or L1 in time and with time-derivatives
in the sense of distributions, which is not enough for our purposes. Our system on fixed domain,
consisting of the equations (4.48), (4.42) – (4.44) for ñAs and the equations (4.26)-(4.28) for Ũ and
(4.30) – (4.32) for ṽ, are not included in the work of Sapa [Sap06], since this result holds only in
one space dimension. A result, which comes close to what we need is [MS07], but they prove only
convergence of a difference scheme and restrict to cubical domains.
We show that we can solve, at first locally, the transformed Problem E, which is stated on fixed
domain, by means of Banach’s fixed point theorem i.e. we prove existence of a fixed point (R̃, ñAs, Ũ)
in the space

M :=Mk
T ×Mκ

T ×MK
T

where

Mk
T := {R̃ ∈ [H1(0, T )]N 0

, sup
i
‖∂tRi‖L2(0,T ) ≤ k},

Mκ
T := {ñAs ∈ H1(0, T ;L2(ΩS(0))) ∩ L∞(0, T ;H1(ΩS(0))), ‖∂tñAs‖L2L2 + ‖∇ñAs‖L∞L2 ≤ κ},

MK
T := {Ũ ∈ L∞(0, T ;C2(ΩS(0); R3)/RD) ∩H1(0, T ;C1(ΩS(0); R3)/RD),

‖∇Ũ‖L∞C0 + ‖∇∂tŨ‖L2C0 ≤ K}

with suitable constant k s.t. neither droplets do intersect each other neither intersect the outer
boundary nor droplets vanish up to time T , suitable κ s.t. the approximation (4.128) is justified
and suitable K s.t. the r.h.s. of the displacement problem is of order O(h̃) and the r.h.s. of the
velocity problem is of order O(h̃)k.
Then the assumption ṽ ∈ L2H1/RD which is assumed for a solution of the diffusion problem in
4.3.2 is fulfilled.

Theorem 4.7 (Local existence and uniqueness for Problem E). Under the Assumptions 4.1, 4.2
and 4.4 and the assumptions on regularity and smallness of data in Theorems 4.2, 4.3 and 4.5 there
exists T > 0 s.t. a unique solution of Problem E exists:

ñAs ∈ H1(0, T ;L2(ΩS(0))) ∩ L∞(0, T ;H1(ΩS(0))),
Ũ ∈ L∞(0, T ;C2(ΩS(0); R3))/RD ∩H1(0, T ;C1(ΩS(0); R3))/RD,

and R̃ ∈ H1(0, T )

and hence on time-dependent domain

nAs ∈ H1(0, T ;L2(ΩS)) ∩ L∞(0, T ;H1(ΩS)),
U ∈ L∞(0, T ;C2(ΩS ; R3))/RD ∩H1(0, T ;C1(ΩS ; R3))/RD,

and R̃ ∈ H1(0, T ).

Proof. We define the mapping

F :M→[H1(0, T )]N 0+1 × [H1(0, T ;L2(ΩS(0)) ∩ L∞(0, T ;H1(ΩS(0)))×
× [L∞(0, T ;C2(ΩS(0); R3) ∩H1(0, T ;C1(ΩS(0); R3))]

by
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(F(R̃, ñAs, Ũ))0(t) := R0
bd +

∫ t

0
−
∫
∂Ω(0)

(∂sFN 0+2 − (FN 0+2)·||·
∑
i∈N

∂FiΦ∂tFi) · ν dA ds,

(F(R̃, ñAs, Ũ))i(t) := r0
i + ε3

∫ t

0
−
∫
Ii

(DΦ−T (R̃)∇ũ(ñAs)) · ν
X(ri,−

∫
Ii
Ũ · ν)

dA ds ∀i ∈ N

and F(R̃, ñAs, Ũ)N 0+1(t) as the unique solution of the diffusion problem (4.33) – (4.36), wherein
R̃ is replaced by Fi, 0 ≤ i ≤ N 0 and Ũ is replaced by FN 0+2, i.e.

∂tFN 0+1 −∇ · (γ(x, t, {Fi}0≤i≤N 0+1))
+α(x, t, {Fi}0≤i≤N 0+2) · ∇FN 0+1

+β(x, t, {Fi}0≤i≤N 0+2)FN 0+1 = 0 on ΩS(0), (4.102)
∂νFN 0+1 = 0 on ∂Ω(0), (4.103)
FN 0+1 = nintAs (ri) on Ii(0) ∀i ∈ N, (4.104)

FN 0+1(·, t = 0) = ñ0
As in ΩS(0), (4.105)

and F(R̃, ñAs, Ũ)N 0+2(t) as unique solution of the mechanical problem (4.26) – (4.28), wherein R̃
is replaced by Fi, 0 ≤ i ≤ N 0.
We have to show that F is a strict contractive mapping fromM in itself for T small enough. Then
we can apply Banach’s fixed point theorem to conclude the existence and uniqueness of R̃, ñAs and
Ũ in the given spaces.
Let (R̃(1), η(1), Ũ (1)), (R̃(2), η(2), Ũ (2)) ∈ M be two pairs of solutions to the transformed Problem
E. Analogously define the transformations Φ(1) and Φ(2) onto fixed domain corresponding to the
different radii evolutions R̃(1) and R̃(2).
Let σ̃S,(j) denote the reduced Cauchy stress corresponding to the radii evolution R̃(j), j = 1, 2.
Analogously solves Ũ (1) − Ũ (2) the elliptic problem

σ̃·,jS,(1)||j(∇(Ũ (1) − Ũ (2))) = (σ̃·,jS,(1)||j − σ̃
·,j
S,(2)||j)(∇(Ũ (2))) in Ωε

S(0),

σ̃S,(1)(∇(Ũ (1) − Ũ (2)))ν = (σ̃S,(1) − σ̃S,(2))(∇(Ũ (2)))ν on ∂Ω(0),
(σ̃S,(1)(∇(Ũ (1) − Ũ (2)))

− 3kL
ε3r

(1)
i

−
∫
Iεi (0)

((Ũ (1) − Ũ (2)) · ν))ν = ( 2σ
r

(1)
i

− 2σ
r

(1)
i

− 3kL(h∗L(r(1)
i )− h∗L(r(2)

i ))

+ (σ̃S,(1) − σ̃S,(2))(∇(Ũ (2)))

− 3kL
ε3 ( 1

r
(1)
i

− 1
r

(2)
i

)−
∫
Iεi (0)

(Ũ (2) · ν))ν on Iεi (0) ∀i ∈ N

which yields with ‖∇Ũ (2)‖L∞L2 ≤ K the estimate

‖∇(Ũ1 − Ũ2)‖L2(ΩS(0)) ≤ const(k,K) sup
i∈{0}∪N

|R̃(1)
i − R̃

(2)
i | (4.106)

and
‖∇Ũ (1) −∇Ũ (2)‖L∞L2 ≤ const(k,K)‖R̃(1) − R̃(2)‖L∞ , (4.107)

respectively. Similarly we get the estimate

‖D2Ũ (1) −D2Ũ (2)‖L∞L2 ≤ const(k,K)‖R̃(1) − R̃(2)‖L∞ . (4.108)
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∂tŨ
(1) − ∂tŨ (2) solves a similar elliptic problem and with ‖∇∂tŨ (2)‖L∞L2 ≤ K we can derive the

bound

‖∇(∂tŨ1−∂tŨ2)‖L2(ΩS(0)) ≤ const(k,K)( sup
i∈{0}∪N

|R̃(1)
i − R̃

(2)
i |+ sup

i∈{0}∪N
|∂tR̃(1)

i −∂tR̃
(2)
i |). (4.109)

For the velocity we get consequently

‖∇ṽ(1) −∇ṽ(2)‖L2L2 ≤ const(k,K)(‖R̃(1) − R̃(2)‖L∞ + ‖∂tR̃(1) − ∂tR̃(2)‖L2). (4.110)

We abbreviate for j ∈ {1; 2} according to (4.46) and (4.47)

α(j) := α(x, t, η(j), ∂tŨ
(j),∇Ũ (j), ∂tR̃

(j), R̃(j)), β(j) := β(x, t, η(j),∇ · ∂tŨ j ,∇Ũ (j), R̃(j), ∂tR̃
(j)),

γ(j) := γ(x, t, η(j), R̃(j))

and furthermore we write f̃ (j) := f̃(R̃(j)). Then the difference η(1) − η(2) solves the diffusion eq.

∂t(η(1) − η(2))−∇ · (γ(1)∇(η(1) − η(2))) + α(1) · ∇(η(1) − η(2)) + β(1)(η(1) − η(2)) = F (4.111)

with zero boundary conditions and zero initial data and r.h.s.

F := f̃ (1) − f̃ (2) −∇ · (γ(1) − γ(2))∇η(2) − (α(1) − α(2)) · ∇η(2) − (β(1) − β(2))η(2).

We first test by η(1) − η(2) and then by ∂t(η(1) − η(2))∫ T
0

∫
ΩS(0)

∂t(η(1) − η(2))(η(1) − η(2)) + α(1) · ∇(η(1) − η(2))(η(1) − η(2)) + β(1)|η(1) − η(2)|2

+ γ(1)|∇η(1) −∇η(2)|2 =
∫ T

0

∫
ΩS(0)

F(η(1) − η(2)).

We estimate with ‖v‖L2L∞ , ‖∇ · v‖L2L∞ ≤ const(k,K)

‖(η(1) − η(2))(T )‖2L2 + 1
2‖∇(η(1) − η(2))‖2L2L2

≤ const({α(j), β(j), γ(j)}j=1,2)‖η(1) − η(2)‖2L2L2

+ const({f̃ (j), α(j), β(j), γ(j)}j=1,2, ‖∇η(2)‖L∞L2 , ‖η(2)‖L∞L2)(‖R̃(1) − R̃(2)‖2L∞(0,T )

+ ‖∂tR̃(1) − ∂tR̃(2)‖2L2(0,T ) + ‖∂tŨ (1) − ∂tŨ (2)‖2L2H1 + ‖Ũ (1) − Ũ (2)‖2L2H2).

By Gronwall we get according to (4.90)

‖η(1) − η(2)‖2L∞L2 + ‖∇(η(1) − η(2))‖2L2L2

≤ const(f̃ , α, β, γ, ‖∇η(2)‖L∞L2 , ‖η(2)‖L∞L2)(‖R̃(1) − R̃(2)‖L∞(0,T ) + ‖∂tR̃(1) − ∂tR̃(2)‖2L2(0,T )

+ ‖∂tŨ (1) − ∂tŨ (2)‖2L2L2 + ‖Ũ (1) − Ũ (2)‖2L2L2) exp(T const(α, β, γ))
≤ const(k, κ,K) exp(T const(k,K))(‖R̃(1) − R̃(2)‖2L∞(0,T ) + ‖∂tR̃(1) − ∂tR̃(2)‖2L2(0,T )

+ ‖∂tŨ (1) − ∂tŨ (2)‖2L2H1 + ‖Ũ (1) − Ũ (2)‖2L2H2). (4.112)

We test (4.111) with ∂t(η(1) − η(2)) and get an analogous estimate
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‖(∇η(1) −∇η(2))(T )‖2L2 + ‖∂t(η(1) − η(2))‖2L2L2

≤ const(α, β, γ)‖∇η(1) −∇η(2)‖2L2L2 + const(f̃ , α, β, γ, ‖∇η(2)‖L∞L2 , ‖η(2)‖L∞L2)×
× (‖R̃(1) − R̃(2)‖2L∞(0,T ) + ‖∂tR̃(1) − ∂tR̃(2)‖2L2(0,T ) + ‖∂tŨ (1) − ∂tŨ (2)‖2L2H1

+ ‖Ũ (1) − Ũ (2)‖2L2H2)

and hence with (4.112) we get the estimate, confer (4.92),

‖(∇η(1) −∇η(2))(T )‖2L2 + ‖∂t(η(1) − η(2))‖2L2L2

≤ const(k, κ,K) exp(T const(k,K))(‖R̃(1) − R̃(2)‖2L∞(0,T ) + ‖∂tR̃(1) − ∂tR̃(2)‖2L2(0,T )

+ ‖∂tŨ (1) − ∂tŨ (2)‖2L2H1 + ‖Ũ (1) − Ũ (2)‖2L2H2). (4.113)

We use the last estimate to bound D2(η(1) − η(2)) and (4.83)

inf γ‖D2(η(1) − η(2))‖2L2L2

≤ ‖∂t(η(1) − η(2))‖2L2L2 + const(α,K)‖η(1) − η(2)‖2L2L2 + const(β,K)‖∇η(1) −∇η(2)‖2L2L2

+ const(f̃ , α, β, γ, ‖∇η(2)‖L∞L2 , ‖η(2)‖L∞L2)(‖R̃(1) − R̃(2)‖2L∞(0,T ) + ‖∂tR̃(1) − ∂tR̃(2)‖2L2(0,T )

+ ‖∂tŨ (1) − ∂tŨ (2)‖2L2H1 + ‖Ũ (1) − Ũ (2)‖2L2H2)
≤ const(k, κ,K) exp(T const(k,K))× (‖R̃(1) − R̃(2)‖2L∞(0,T ) + ‖∂tR̃(1) − ∂tR̃(2)‖2L2(0,T )

+ ‖∂tŨ (1) − ∂tŨ (2)‖2L2H1 + ‖Ũ (1) − Ũ (2)‖2L2H2). (4.114)

By exploiting R̃(1)
i (0) = R̃

(2)
i (0) and the Cauchy-Schwarz inequality we get a Poincaré inequality

for the radii

‖R̃(1)
i (t)− R̃(2)

i (t)‖L∞(0,T ) = ‖
∫ T

0
∂t(R̃(1)

i − R̃
(2)
i )‖L∞(0,T )

≤
√
T ‖∂tR̃(1)

i − ∂tR̃
(2)
i ‖L2(0,T ) ∀i ∈ {0} ∪N.

(4.115)

This yields

‖R̃(1) − R̃(2)‖2H1(ΩS(0)) ≤ T ‖R̃
(1) − R̃(2)‖2L∞(ΩS(0)) + ‖∂tR̃(1) − ∂tR̃(2)‖2L2(ΩS(0))

≤ (1 + T 2)‖∂tR(1) − ∂tR(2)‖2L2(ΩS(0)).

We combine our estimates (4.112), (4.113) and (4.114) with (4.107) and (4.110) get

‖η(1) − η(2)‖H1L2∩L∞H1 , ‖D2(η(1) − η(2))‖L2L2

≤ Const(k, κ,K) exp(T const(k,K))‖∂tR̃(1) − ∂tR̃(2)‖L2 .
(4.116)

In the following we will need the special case of the Cauchy-Schwarz inequality

∫ T
0
|f |2 ≤

√
T

√∫ T
0
|f |4 (4.117)

and the trace theorem (see [LSU88]),

‖f‖L4(0,T ;L2(∂ΩS(0))) ≤ C(‖f‖L∞(0,T ;L2(ΩS(0))) + ‖∇f‖L2((0,T )×ΩS(0))) (4.118)

97



Chapter 4. Existence and uniqueness for a class of models

or
‖∇g‖L4(0,T ;L2(∂ΩS(0))) ≤ C(‖∇g‖L∞(0,T ;L2(ΩS(0))) + ‖D2g‖L2((0,T )×ΩS(0))). (4.119)

Then for the radii components 1 ≤ i ≤ N 0,∫ T
0
|∂t(F(R̃(1), η(1), Ũ (1))i −F(R̃(2), η(2), Ũ (2))i)|2ds

≤ ε3
∫ T

0

1
|Ii(0)|2 |

∫
Ii(0)

 (DΦ(1))−T∇u(η(1))
X(r(1)

i ,−
∫
Ii(0) Ũ

(1) · ν)
− (DΦ(2))−T∇u(η(2))

X(r(2)
i ,−

∫
Ii(0) Ũ

(2) · ν)

 · ν dA|2ds
≤ const(ε, ri(0), k,X, u)

√
T (‖∇η(1) −∇η(2)‖2L4L2(Ii(0)) + ‖DΦ(1) −DΦ(2)‖2L∞L∞

+ |r(1)
i − r

(2)
i |

2 + ‖Ũ (1) − Ũ (2)‖2L4L2(Ii)) by (4.117), (4.119)

≤ const2(k, κ,K)
√
T (‖∇η(1) −∇η(2)‖2L∞L2(ΩS(0)) + ‖D2η(1) −D2η(2)‖2L2L2(ΩS(0))

+ ‖R̃(1) − R̃(2)‖2L∞ + ‖Ũ (1) − Ũ (2)‖2L∞L2(ΩS(0)) + ‖∇Ũ (1) −∇Ũ (2)‖2L2L2(ΩS(0)))
by (4.119), (4.118).

With the estimates (4.116), (4.107), (4.108) and Korn’s inequality we can bound∫ T
0
|∂t(F(R̃(1), η(1), Ũ (1))i −F(R̃(2), η(2), Ũ (2))i)|2ds (4.120)

≤ const3(k, κ,K)
√
T (1 + exp(T (const(k,K))))‖∂tR̃(1) − ∂tR̃(2)‖2L2 .

For small T we can estimate
√
T exp(T c4) ≤ c5

√
T with a constant c5 indep. of T , s.t. we get a

strict contraction for the components F1 to FN 0 .
We abbreviate FR̃ := (Fi)0≤i≤N 0 and FR := (Fi)1≤i≤N 0 . For the radius of the outer boundary
we get∫ T

0
|∂t(F(R̃(1), η(1), Ũ (1))0 −F(R̃(2), η(2), Ũ (2))0)|2ds

≤ const(Rbd(0))
∫ T

0

∫
∂Ω(0)

|(∂sF (1)
N 0+2 − ∂sF

(2)
N 0+2 − ((FN 0+2)(1)

·||· − (FN 0+2)(2)
·||· )×

×∇FRΦ(1)∂tFR(1) − (FN 0+2)(2)
·||· (∇FRΦ(1) −∇FRΦ(2))∂tFR(1)

− (FN 0+2)(2)
·||·∇FRΦ(2)(∂tFR(1) − ∂tFR(2))) · ν|2 dA ds

≤ const(k,K)
∫ T

0

∫
∂Ω(0)

(|∂sF (1)
N 0+2 · ν − ∂sF

(2)
N 0+2 · ν|

2 + ‖|(FN 0+2)(1)
·||· − (FN 0+2)(2)

·||· ‖|
2

+ ‖∇FRΦ(1) −∇FRΦ(2)‖2L∞ + |∂tFR(1) − ∂tFR(2)|2) dA ds

≤ const(k,K)(‖∂tF (1)
N 0+2 − ∂tF

(2)
N 0+2‖

2
L2H1 + ‖F (1)

N 0+2 −F
(2)
N 0+2‖

2
L∞H2

+ ‖FR̃(1) −FR̃(2)‖2L∞(0,T ) + ‖∂tFR(1) − ∂tFR(2)‖2L2(0,T ))

(4.121)

where the last step follows by means of the trace theorem. ‖| · ‖| emphasis here the corresponding
Euclidean norm for matrices. By inserting (4.109) and (4.108), where we replace Ũ by FN 0+2 and
R̃ by FR̃ we get∫ T

0
|∂t(F(R̃(1), η(1), Ũ (1))0 −F(R̃(2), η(2), Ũ (2))0)|2ds

≤ const(k, κ,K)(‖FR̃(1) −FR̃(2)‖2L∞(0,T ) + ‖∂tFR(1) − ∂tFR(2)‖2L2(0,T )). (4.122)
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Now we put (4.115), where we replace R̃ by FR̃, and (4.120) into (4.122) and find

‖∂tFR̃(1)
0 − ∂tFR̃

(2)
0 ‖

2
L2 ≤ const(k, κ,K)(T ‖∂tFR̃(1)

0 − ∂tFR̃
(2)
0 ‖

2
L2 +

√
T ‖∂tR(1) − ∂tR(2)‖2L2)

and for sufficiently small T this implies

‖∂tFR̃(1)
0 − ∂tFR̃

(2)
0 ‖

2
L2 ≤ const(k, κ,K)

√
T ‖∂tR̃(1) − ∂tR̃(2)‖2L2 .

With the strict contractions for the components Fi, 0 ≤ i ≤ N 0 and the estimate (4.113) the strict
contraction follows for the component FN 0+1.
We consider the last component. The regularity results given in Theorem 4.2, 3) and 4.3, 3) also
hold for the differences since we consider a linear PDE and we get, because the constants, which
appear, depend only on the geometry and can be bounded by k,

‖D2Ũ (1) −D2Ũ (2)‖C0 ≤ const(k,K)‖R̃(1) − R̃(2)‖L∞ (4.123)

and

‖∇ṽ(1) −∇ṽ(2)‖C0 ≤ const(k,K)(‖R̃(1) − R̃(2)‖L∞ + ‖∂tR̃(1) − ∂tR̃(2)‖L2). (4.124)

The last two equations yield the strict contractions for the component FN 0+2.
If we now choose T sufficiently small enough then F is strictly contractive inM.
Analogously we get for all i ∈ N∫ T

0
|∂tF(R̃, η, Ũ)i|2dt ≤ Ĉ(k, κ,K)

√
T‖∂tR̃‖2L2(0,T ) ≤ k

for sufficiently small T and finally by checking the other components we get that F mapsM into
itself. Thus we have shown, that κ and K can be bounded by k.
Hence we can indeed apply Banach’s fixed point theorem which gives a unique fixed point of the
evolution of the free boundaries inM and hence the existence of a unique solution (R̃, ñAs, Ũ) for
sufficiently small T .
Since Φ is smooth the estimates carry over to the problem on time-dependent domain and this
yields the existence and uniqueness of (R,nAs, U) in the corresponding spaces.

The upper bound K in the proof of Th. 4.7 is linked to O(h̃)k. For global existence we have to
bound k uniformly in T , which yields bounds on κ and K uniformly in T , which is done in the
next section by explicit construction of sub- and supersolutions.
We remark, that this iterative procedure, which we used for proving existence, at least locally, can
be used for numerically computing solutions of our problem. Since we worked with Banach’s fixed
point theorem, this would allow to give an explicit error and hence how fast a numerical iteration
converges to the solution.

Corollary 4.5 (Existence and uniqueness of classical solutions of Problem E). The local solution
of Problem E is a classical solution i.e. U ε ∈ C1C2, nεAs ∈ C1C2 and R̃ ∈ H1(0, T ).

Proof. Because we have established local existence of a generalised solution with R̃ ∈ H1(0, T ) and
vε ∈ L2C2 we get from the regularity result from Th. 4.5, 3) that ñεAs ∈ C2

1 (0, T ; ΩS(t)). Then we
get from Th. 4.6 and from Th. 4.2, 3), Th. 4.3, 3) and Th. 4.5, 3) immediately the local existence
of classical solutions R̃ ∈ C1(0, T ) and Ũ ε ∈ C1C2 , where T is sufficiently small. This carries over
on U, nAs, R̃ on time-dependent domain.
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Directly from the estimates (4.112) and (4.113) follows

Corollary 4.6 (Well-posedness of the nonlinear diffusion problem of the transformed Problem
E). Given two radii solutions R̃1 and R̃2 then the difference of the corresponding solutions ñ1

As −
ñ2
As depends continuously on the difference ‖R̃1 − R̃2‖. Furthermore the solution ñAs depends

continuously on the initial data and on the velocities.
This shows together with the Theorem 4.5 on the existence of a unique solution that our nonlinear
diffusion problem is well-posed.

Remark 4.4 (More regularity and Problem DCR). Let Ũf denote the solution of the full mechanical
BVP of Problem DCR after transformation on fixed domain. We recall that, the solution of the
mechanical BVP of the transformed Problem E is denoted by Ũ . The error Ẽ := Ũf − Ũ between
Ũf and Ũ solves the problem

σ̃·,jS ||j(∇Ẽ) = 3kSε9h∗′(ñAs)DΦ−T∇ñAs in ΩS(0), (4.125)
σ̃S(∇Ẽ)ν = 3kSε9h∗(ñAs)ν on ∂Ω(0), (4.126)

(σ̃S(∇Ẽ)− 3kL
ε3ri
−
∫
Ii(0)

(Ẽ · ν))ν = 3kSε9h∗(nint,iAs )ν on Ii(0) ∀i ∈ N, (4.127)

and can be estimated according to Theorem 4.2 for given ñAs ≈ ñ∗As(1 + O(h̃)), where ñ∗As is ñAs
without mechanical coupling on the r.h.s., by

‖Ẽ‖H1/RD ≤ ε9kSConst(h∗, h∗′)‖∇n∗As‖L2ΩS (1 +O(h̃)). (4.128)

The functions h∗ and h∗′ herein are of order O(h̃) and ‖∇n∗As‖ is bounded by k and the initial data.
If we could extend our fixed point argument to solutions of the diffusion BVP of Problem E i.e.
ñAs ∈ H1H1, then the approximation of Problem DCR by Problem E would be proved rigorously.
We might work without the change of the evolution equation of the outer boundary in Problem DCR,
(3.52), to the equation in Problem E (4.10) and prove rigorously local existence, if we include the
term (I +−

∫
Ω(0)(FN 0+2)·||·∂F0Φ)−1 in our fixed point argument in (4.121).

For the rest of our work we consider the diffusion problem (4.4) – (4.7) for the function u, since
this allows easily to compare our model with the well-known LSW theory, which is formulated in
terms of the chemical potential.

4.4. Global existence and uniqueness

Since we have proven that solutions (u, U, R̃) exist at least for arbitrary small time intervals (0, T ),
we construct super- and subsolutions and exploit the generalised Gibbs Thomson boundary con-
dition and the Stefan condition simultaneously in order to get a bound on the maximal speed of
interfaces, k, independent of T . The monopole approximation gives us a hint how to construct this
super- and subsolutions. We follow the reasoning in [Nie99], where such a bound on k is proven for
the standard heat-diffusion equation.

Lemma 4.3 (Construction of supersolutions and subsolutions locally around droplets). Let F̂
be the global supersolution and F be the global subsolution from Corollary 4.3, respectively. Let
v ∈ C0(0, T ;C1(ΩS(t))). If we assume ‖∇u0‖C0(Ii) < ε−3 k

2 then there exist K̂,K > 0 s.t. for ε
sufficiently small and where umax := F̂ + ε2(F̂ − F ) and umin := F − ε2(F̂ − F ):

ζ̂i(t, x) := umax − ε3ri(t)
umax − uint(ri(t))

|x−Xi|
+ K̂

2 [|x−Xi|2 − ε6r2
i (t)]
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is a supersolution on Σi, while

ζ
i
(t, x) := umin − ε3ri(t)

umin − uint(ri(t))
|x−Xi|

− K

2 [|x−Xi|2 − ε6r2
i (t)]

is a subsolution on Σi for each i ∈ N for some small time interval [0, T̃ ].
Furthermore the boundary condition on the interfaces matches exactly i.e. ζ̂i|Ii = ζ

i
|Ii = uint(ri).

Proof. Let d := mini∈N di, where di is defined as in 3.3. In this proof we choose k s.t. ε3ri ≤ 1
2R

i
ext

for all t ∈ (0, T ) and set Riext = εd3 .
We consider some arbitrary droplet i and check that ζ̂i is indeed a supersolution to u restricted on
Σi. On the boundaries

ζ̂i(t, x)|Ii = uint(ri(t)),

ζ̂i(t, x)|∂Σi\Ii = umax − 3ε2ri(t)
umax − uint(ri(t))

d
+ K̂

2 [19ε
2d2 − ε6r2

i (t)] ≥ F̂ ≥ u|∂Σi\Ii ,

where the last line holds on A := {t | maxi∈N ri < d
6ε2 } for every K̂ ≥ 0. Besides we exploited that

F̂ is a supersolution on the whole solid ΩS(t).
If we assumed that ε3‖∇u0‖C0(Ii) <

k
2 , then the Stefan condition at the initial time yields

|ṙi(t = 0)| ≤ k

2

and hence
|ṙi(t)| ≤ k(1

2 + T̃ ) ≤ k

for a time interval [0, T̃ ]. We estimate on [0, T̃ ] ∩A that

ε3(X (ζ̂i)(∂tζ̂i + v · ∇ζ̂i) +∇ · v Ξ(ζ̂i))−∆ζ̂i

= ε3X (ζ̂i)(−ε3ṙi
|umax − uint(ri)− ∂ruint(ri)ri|

|x−Xi|
− K̂ε6riṙi

+ v · (ε3ri
umax − uint(ri)
|x−Xi|2

+ K̂)(x−Xi)) + ε3∇ · v Ξ(ζ̂i) + 3K̂

≥ −ε3X (ζ̂i)k( |u
max − uint(ri)− ∂ruint(ri)ri|

|x−Xi|
+ K̂ε3ri)

− ε3‖v‖C0(ΩS(t))(ε3ri
|umax − uint(ri)|
|x−Xi|

+ K̂|x−Xi|)− ε3‖∇ · v‖C0(ΩS(t)) const(Ξ) + 3K̂

≥ −ε3X (ζ̂i)k(2 F̂ − F
rmin

+ |∂ruint(rmin)|+ ε
d

6K̂)

− ε3(‖v‖C0(ΩS(t))k(2(F̂ − F )− ‖∇ · v‖C0(ΩS(t)) const(Ξ)) + ε
d

6K̂) + 3K̂ ≥ 0

for

K̂ ≥ 4
3ε

3[k[2(F̂ − F )(maxX
rmin

+ ‖v‖C0(ΩS(t))) + |∂ruint(rmin)|] + ‖∇ · v‖C0(ΩS(t)) const(Ξ)]

and ε small enough e.g. ε4 < 18
kd . Now ζ̂i is a supersolution and we can apply the maximum

principle to deduce ζ̂i ≥ u on Ii × [0, T̃ ] ∩A. Analogously the claim about the local subsolution is
checked where e.g. K > 4

3ε
3[k(F̂ − F )(maxX

rmin
+ ‖v‖C0(ΩS(t))) + ‖∇ · v‖C0(ΩS(t)) const(Ξ)].
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Lemma 4.4 (Bound on radii and on growth of radii). Let for the initial radii hold −
∑
i r

0
i <∞ and

−
∑
i(r0

i )2 <∞. If v ∈ C0(0, T ;C1(ΩS(t))) and ‖∇u0‖C0(Ii) < ε−3 k
2 — as in the assumptions of the

last lemma —, then for sufficiently small ε > 0 there exists a constant K = K(Ω(0), u0), which is
independent of T , s.t. for any local solution of Problem E,

max
i∈N
‖ri‖L∞(0,T ) ≤ K + max

i∈N
‖r0
i ‖ (4.129)

and
−K |u

min − uint(ri)|
ri

≤ ṙi ≤ K
umax − uint(ri)

ri

and hence
k ≤ 2|F̂ − F |K

ri
(4.130)

for a.a. t ∈ (0, τi) where τi is the time when the i-th droplet vanishes as defined in (2.3).

Proof. The initial data is smooth, hence u and ∇u smooth up to t = τi. With the maximum
principle we prove with ζ̂i = uint(ri) on Ii and ζ̂i ≥ ũ in ΩS(t), which we showed in the last lemma
4.3, that

∇ũ · ν ≤ ∇ζ̂i · ν on Ii × [0, T̃ ] ∩A.

We calculate

ṙi(t) ≤ ε3∇ζ̂i(t, x) · ν|Ii = umax − uint(ri(t))
ri(t)

+ ε6K̂ri(t) in [0, T̃ ] ∩A.

That gives with our choice of K̂ = κ̂k from the last lemma and ε ≤ d
6ri small enough that

ṙi(t) ≤
umax − uint(ri(t))

ri(t)
1

1− ε6riκ̂
≤ Kumax − uint(ri(t))

ri(t)
in [0, T̃ ] ∩A

e.g. with K = 1
1−ε4 d6 κ̂

only depending on data. Analogously we get

ṙi(t) ≥ ε3∇ζ
i
(t, x) · ν|Ii = umin − uint(ri(t))

ri(t)
− ε6Kri(t) in [0, T̃ ] ∩A

and since K < K̂, where K is chosen as in the last lemma,

ṙi(t) ≥ K
umin − uint(ri(t))

ri(t)
in [0, T̃ ] ∩A.

We can iterate this procedure in [0, τ1] ∩A. By integrating up

r2
i (t) = (r0

i )2 + 2
∫ t

0
ṙi(s)ri(s)ds ≤ (r0

i )2 + 4K|F̂ − F |t, (4.131)

which yields [0, τ1] ⊂ A i.e. the choice of ε depends only on data, in particular on T̃ , which is finite,
and we get finally the bounds on ṙi in t ∈ [0, τ1]. ṙi is not necessarily smooth in τ1.
Finally we calculate

ri(t) ≤ r0
i + 2|F̂ − F |K

∫ t

0

1
ri(s)

ds ≤ r0
i + 2|F̂ − F | K

rmin
t. (4.132)
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We remark, that the constants K̂, K and K in the last two lemmas still depend on ε.
Corollary 4.7 (Estimates on moments of radii). Let for the initial radii hold −

∑
i r

0
i < ∞ and

−
∑
i(r0

i )3 < ∞. Under the same conditions as in the last lemma 4.4, for sufficiently small ε > 0
with same constant K = K(Ω(0), u0) as above, there holds for any local solution of Problem E,

−
∑

i∈N(t)
rqi (t)) ≤ Const(K, F̂ − F ,−

∑
i∈N(0)

r0
i ,−
∑

i∈N(0)
r3
i ) (4.133)

for any 1 ≤ q ≤ 3. In particular there holds

−
∑
i∈N

r3
i ≤ −

∑
i∈N

(r0
i )3 + 6|F̂ − F |KT −

∑
i∈N

r0
i + 12|F̂ − F |2 K

2

rmin
T 2. (4.134)

We have also an estimate on the zero-th moment,

−
∑
i∈N

1 = N (t)
N 0 ≤ 1. (4.135)

Proof. We have by using (4.130) the following estimate for the volume of the droplet i,

r3
i (t) = (r0

i )3 + 3
∫ t

0
ṙi(s)r2

i (s)ds ≤ (r0
i )3 + 6|F̂ − F |K

∫ t

0
ri(s)ds.

By inserting the estimate (4.132) for ri the estimate on volume change is

−
∑

i∈N(t)
r3
i (t) ≤ −

∑
i∈N(0)

(r0
i )3 + 6|F̂ − F |KT −

∑
i∈N(0)

r0
i + 12N (t)

N 0 |F̂ − F |
2 K

2

rmin
T 2.

All other moments −
∑
i r
q
i , 1 < q < 3 can be estimated by means of the interpolation inequality

(−
∑

i∈N(t)
rqi (t))

1/q ≤ (−
∑

i∈N(t)
1)Θ(−

∑
i∈N(t)

r3
i (t))(1−Θ)/3, Θ := 1

2(3
q
− 1)

or
−
∑

i∈N(t)
rqi (t)) ≤ (−

∑
i∈N(t)

1)
1
2 (3−q)(−

∑
i∈N(t)

r3
i (t))

1
2 (q−1). (4.136)

The estimate (4.135) of the zero-th moment follows by our assumption, that droplets can vanish,
but are not created.

Due to Lemma 4.4 we can extend our fixed point iteration up to arbitrary T ≤ mini∈N τi i.e. until
the first droplet vanishes, which is the second crucial point, which could prevent global existence,
if the new initial data at time τi+ is not “good” enough.
Remark 4.5 (Vanishing of droplets). We model the vanishing of the droplet i as in Assumption
2.6. We recall that rj , j 6= i are continuous and that, if ri = rmin at time τi, then we restart
with a new problem with initial time τi where we work with N − 1 droplets, new solid Ωε

S(τi+) :=
Ωε
S(τi−) ∪ Ωi

L(τi−) and we extend our new initial data on Ωi
L(τi−) s.t. the conservation of mass

and substance is fulfilled.
We already have given in (2.168) an extension s.t. the new initial data nAs(·, τi+) ∈ H1(ΩS(τi+))).
In particular we get since u(τi−) ∈ C1 in space as classical solution and

∇u(τi+, x) = u′(nAs(τi+, x))p+ 1
p+ 3p

( |x−Xi|
rmin

)p−1
[[nAs(τi−, ·)|Ii ]]SL ∀x ∈ Ωi

L(τi−) (4.137)
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Chapter 4. Existence and uniqueness for a class of models

with p independent of k that |∇u(τi+, ·)| ≤ Const with a constant independent of k.

Theorem 4.8 (Global existence and uniqueness for Problem E). For given T > 0 and ε > 0 small
enough, ε depending on the initial geometry R̃0 and if u0 ∈ H1(Ω0) uniformly in 1

ε3 , there exists a
unique solution (u, U, R̃) of Problem E (4.1) – (4.11) for all times t ∈ (0, T ).
The solution (u, U, R̃) has the following properties. There exist times 0 < τ1 < ... < τm ≤ T
s.t. (u, U, R̃) is a classical solution on ∪t∈(τk−1,τk){t} × ΩS(t) (i.e. u ∈ C1(τk−1, τk;C2(ΩS(t))),
U ∈ C1(τk−1, τk;C2(ΩS(t))) and R̃ ∈ C1(τk−1, τk)) and u is continuous in t in L2(ΩS(t)), U is
continuous in t in C2(ΩS(t)) and R̃ continuous in t.
Furthermore u ∈ L∞ ∩H1(0, T ;C2(ΩS(t))), U ∈ H1(0, T ;C2(ΩS(t))) and R̃ ∈ H1(0, T ).

Proof. Since we have shown in Lemma 4.4 that we can bound k independent of T , our local
existence result Th. 4.7 holds for T > 0. We can extend our local classical solution up to the time
mini∈N τi, when for the first time at least the radius of one droplet is rmin. Let j = argminj∈N(0)τi.

Remark 4.5 shows that in our model the new initial data is again in H1(ΩS(τj+)), since u(t, ·)→
u(τj , ·) in L2(ΩS(t)) as t to τj+, and furthermore ‖∇u(τi+, ·)‖L∞(ΩS(τj+)) ≤ ε−3 k

2 .

With our new initial data u(τi+) and R̃(τi+) we iterate our procedure for all times up to T .
We finally get a unique solution, which is piecewise smooth as described in the statement of the
theorem.

We remark, that we need that T <∞ is given s.t. we can choose ε sufficiently small, such that no
encounters occur until T .
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Rigorous Homogenisation

Now we want to pass rigorously to the limit of Problem E i.e. in regime (DC). We will see that
under some reasonable additional assumptions as e.g. Assumption 5.2 we find a mean field model
for the critical scaling. This mean field model is similar to the mean field model derived by formal
homogenisation in Chapter 3 for the dilute scaling.

5.1. Droplet distributions

We introduce now a suitable approximation νtε of a limit distribution νt. Furthermore we write
C := [C0

0 (Ω(0)×Jr)] := {φ(x, r) ∈ C0(Ω×Jr)|φ has compact support in x ∈ Ω(0) and in r ∈ Jr},
that is the space of test functions with compact support in the domain and in radii. Since we
consider the case, where droplet centres are fixed and do not collide with the outer boundary, it is
adequate to consider x ∈ Ω(0) and not x ∈ Ω(t).

Definition 5.1 (Distribution of droplets for fixed ε). Define a non-negative measure νtε ∈ C′ :=
[C0

0 (Ω(0)× Jr)]′ for t ∈ Jt by

−
∫

Ω(0)

∫ ∞
rmin

f(x, r, t)dνtε := −
∑
i∈Nε

f(Xi, ri, t) (5.1)

where f ∈ C, t ∈ Jt and −
∑
i∈Nε as defined in (3.19). This measure is a joint distribution of particle

centres and radii.

Due to our assumption (3.4) it suffices to consider the domain Ω(0) for the droplet centres Xi.
Since we will find a bound (5.10), that Ṙbd ∼ ε3, this is well-defined in the sense that no droplets
close to the boundary intersect ∂Ω(t).
The measure νtε is nothing else than

dνtε(x, r) = −
∑
i∈Nε

δri(t)(r)δXi(x)drdx.

Or in other words, if ω ⊂ Ω(0) and (r1, r2) ⊂ Jr then∫
ω

∫ r2

r1
dνt(x, r) = # of droplets with radius r ∈ (r1, r2) and center x ∈ ω at fixed time t ∈ Jt

# of droplets with radius r ∈ Jr and center x ∈ Ω at initial time t = 0 .

Note, that this measure νtε does not have a Lebesgue density.
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The measure νtε(t = 0) is normalised since

Eνtε(t=0)(1) := lim
rmax→∞

−
∫

Ω(0)

∫
Jr

Ir≤rmax(r)dνtε(x, r) = ε3
ε−3∑
i=1

1 = 1.

Hence for all δ > 0 there exists a rmax s.t. νtε(x, r) < δ for all r > rmax.
Note that since f(x, r, t) = 0 for r ≤ rmin, droplets which have vanished do not enter into the
distribution. The space C′ can be identified with the space of non-negative Borel measures on
Ω× Jr.

Definition 5.2 (Admissible initial distributions). We define C′0, the class of admissible initial
distributions as follows. ν0

ε ∈ C′0 iff for all ε > 0:
a) ν0

ε ∈ C′ = [C0
0 (Ω(0)× Jr)]′.

b) The initial distribution ν0
ε is normalised i.e.

Eν0
ε
(1) = −

ε−3∑
i=1

1 = 1 (Normalisation).

c) ν0
ε has a uniformly in ε bounded mean value RM of the radii

RM := Eν0
ε
(r) = −

ε−3∑
i=1

r0
i ∈ (rmin, R0

bd) (Finite mean radii),

d) ν0
ε has a uniformly in ε bounded 3rd moment i.e.

Eν0
ε
(r3) = −

ε−3∑
i=1

(r0
i )3 =: 3

4πVM ∈ (r3
min, (R0

bd)3] (Finite mean volume of droplets VM ),

e) For initial distances between droplets there holds

inf
1≤i<j≤ε−3

|Xi −Xj | > ε2 max
1≤i<j≤ε−3

(r0
i + r0

j ) (Droplets do not intersect each other),

f) For initial distances between a droplet and the outer boundary there holds

inf
1≤i≤ε−3

dist(Xi, ∂Ω(0)) > ε2 max
1≤i≤ε−3

r0
i (Droplets do not intersect outer boundary).

We remark, that by the definition of C′ condition a) implies b). We give two examples for such ν0
ε .

Example 5.1 (Discrete initial data). We consider a number of ε−3 droplets with a finite number
K > 1 of non necessarily different droplet radii

ν0
ε (r, x)dr = 1

K

K∑
i=1
−
ε−3∑
j=1

δr0
i
(r)δXj (x)drdx,

with equidistantly distributed droplets in some interval (r1, r2) ∈ Jr s.t. ri := r1 +(i−1) r2−r1K−1 . The
droplet centres sit on a lattice (ε(1

2 + k), ε(1
2 + l), ε(1

2 +m)), with k, l,m ∈ N, 0 ≤ k, l,m ≤ ε−1 − 1.
This means that the K radii appear periodically w.r.t. the lattice.
Since the densities for radii and centres are independent of each other we can consider only the
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marginal density w.r.t. radii i.e.

[νtε]rdr = 1
K

K∑
i=1

δri(t)(r)dr

in order to get information about the radii.

We check that ν0
ε is normalised and RM = 1

2(r1 + r2) and 3
4πVM = 1

4((r2
1 + r2

2) + (r1−r2)2

K−1 ))(r1 + r2).
The distances between neighbouring droplets are ε and the minimal distance to the outer boundary
is ε

2 .

For typical data we expect RM = R0 = 10−9m, 3
4πVM = 10−27m3 and |Xi −Xj | = 10−6m for all

1 ≤ i < j ≤ N0. We remark that the periodicity of this example is not necessary for an admissible
initial distribution.
It might be motivated to consider discrete initial data, by the fact that, droplets can grow by
gaining atoms or shrink by loosing atoms and the number of atoms is a discrete variable. To
each number of atoms corresponds a certain radius, which means that only certain values of radii
make physically sense. But this argumentation is not mandatory, since we assume that ri changes
continuously on the other hand.

Example 5.2 (Smooth initial data). Now we assume

ν0
ε (x, r)dr = 1∫ r2

r1
ν(r)drε

3
ε−3∑
i=1

ν(r)δXi(x)drdx,

with a smooth function ν which has compact support in (r1, r2) ∈ Jr e.g. an LSW-like distribution,
see [LS61]. Again the droplet centres sit on a fixed lattice ( ε2 ,

ε
2 ,

ε
2) + (εZ)3, where Z denotes only

here the integer numbers.
Since the densities are again independent of each other one could consider the marginal density
w.r.t. radii directly

[νtε]rdr = ν(r)dr.

By definition ν0
ε is normalised and the integrals RM and VM exist. As in the last example the

conditions e) and f) of Definition 5.2 are fulfilled.

We want to fulfil the conditions of Def. 5.2 for all times t up to T . The last two conditions can
always be fulfilled by considering only ε which are sufficiently small:

Lemma 5.1 (No “encounters”). For sufficiently small ε, depending on T , eq. (3.4) is fulfilled i.e.
the droplets Ωi

L are pairwise disjoint for all t ∈ Jt and do not intersect ∂Ω.

Proof. Due to bounded change of volume (4.134) there holds for ε small enough and for given T

ε3ri ≤ ε2(−
∑
i∈Nε

r3
i )1/3 ≤ ε2((−

∑
i∈Nε

(r0
i )3)1/3 + const(k)T )) = ε2(V1/3

M + const(k)T ) < ε

2 = D2 .

Definition 5.3 (Distribution of radii growth). We define the distribution for the growth speed of
radii by

−
∫

Ω(0)

∫
Jr
a(x)
ν (r, t)dνtε

(5.1)= −
∑
i∈Nε

a(Xi)
ν (ri, t) := −

∑
i∈Nε

ṙi(t).
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5.2. Uniform estimates for the displacement and the velocity

We need estimates uniformly in ε on U ε, uε and on moments of the radii distribution νtε in order to
derive rigorously effective equations, which will turn out in particular cases to give the mean field
model. There are two possible ways to derive such uniform estimates.
First we could use our approximation formulas from Subsections 3.3.1 and 3.3.2 and the correspond-
ing corrector results, but here we have to consider also the liquid. Furthermore the approximation
formulas are stated in the other i.e. the dilute scaling. The second approach is by testing the PDE
directly. We follow the second approach in this section in order to get estimates on the displacement
U and on the chemical potential u in Problem E, which are uniformly in the scaling parameter ε.
We extend the displacement and the Cauchy stress on Ωε

L and the total chemical potential and the
arsenic mole density on Ωε

L in order to get uniform estimates.

Definition 5.4 (Extension of the solutions onto the liquid). The Cauchy stress is extended into
the liquid as in (2.80) and U εL is introduced as in (2.15).
Formally we extend uε on ΩL by uεL, which is constant in space and then uε continuous on Ii. We
extend nεAs by nAsL on Ωε

L.
We remark, that it is not possible to extend the diffusion equation for uε into the liquid, only the
local conservation of AsL could be used.

First we examine the dependence of several constants, which depend on the geometry, on ε.

Lemma 5.2 (Dependence of the constants of trace embeddings on ε). Let f ε ∈ H1(Ωε
S) be arbitrary.

1) The constant C of the trace theorem H1(Σε
i ) ↪→ L2(Iεi ), i ∈ N ,

‖f ε‖L2(Iεi ) ≤ C(Iεi ,Σε
i )‖f ε‖L2(Σεi )

scales with ε3/2 for our geometry.
2) The constant C of the trace theorem H1(Σε

0) ↪→ L2(∂Ω)

‖f ε‖L2(∂Ω) ≤ C(∂Ω,Σε
0)‖f ε‖L2(Σε0)

scales with ε0 for our geometry.

Proof. We prove part 1). The statement 2) follows analogously.
Let for some fixed ε = 1 and a not on ε depending function f

‖f‖2L2(I1
i ) ≤ C(1)‖f‖2H1(Σ1

i )
= C(1)(‖f‖2L2(Σ1

i )
+ ‖∇f‖2L2(Σ1

i )
), (5.2)

where C(1) is independent of ε. We scale coordinates x → εx and radii as ri → ε3ri and define
f ε(x) := f(εx). The estimate (5.2) also holds for arbitrary ε with a constant C(ε)

‖f ε‖2L2(Iεi ) ≤ C(ε)(‖f ε‖2L2(Σεi )
+ ‖∇f ε‖2L2(Σ1

i )
). (5.3)

By scaling (5.2) we find

ε−6‖f ε‖2L2(Iεi ) ≤ C(1)(ε−3‖f ε‖L2(Σεi ) + ‖∇f ε‖L2(Σεi ))
2

and hence C(ε) ≤ C(1) ε3.
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If we sum up over all ε−3 interfaces Iεi and ∂Ω, then we have H1(Ωε
S) → L2(∂Ωε

S) with a trace
constant independent of ε. We remark that this a special case of a more general result from Bonder,
Orive and Rossi [BOR07], which states that in our case, where we scale radii with ε3 compared to
Ω, the best Sobolev trace constant in domains with holes is in the limit ε→ 0 independent of ε.

Lemma 5.3 (Dependence of Korn’s constant on ε). Let U ∈ H1(ΩS ; R3)/RD or U ∈ H1
0 (ΩS ; R3).

For sufficiently small ε > 0 Korn’s constant K, which appears in Korn’s inequality ‖∇U‖2L2(Ω) ≤
K(Ω)‖e(∇U)‖2L2(ΩS), is for our geometry i.e. an open bounded domain Ω with small holes and
compact closure, independent of ε.

Proof. We see this as follows: We cover ΩS with sets Sj ⊂ ΩS , which are either spherical shells
around the liquid droplets or are either spheres and convex smooth domains without holes, which
cover the parts of ΩS , which remain. Since Ω is compact we can assume that each point of ΩS is
covered by a fixed number Z of sets Sj , where Z depends on the geometry of the droplet centres
Xi, but is independent of ε.
Korn’s constant for spheres, convex domains and spherical shells, which have interior radii which
are sufficiently smaller than the radius of the outer sphere, is bounded by 2 + d (see [ADP88]), in
our case the dimension is d = 3.
For each set Sj , 1 ≤ j ≤ Const ε−3 we have the estimate

‖∇U‖2L2(Sj) ≤ K(S)‖e(∇U)‖2L2(Sj) ≤ 5‖e(∇U)‖2L2(Sj).

By adding up over all sets Sj we get

‖∇U‖2L2(ΩS) ≤
Const ε−3∑

j=1
K(Sj)‖e(∇U)‖2L2(Sj) ≤ 5

Const ε−3∑
j=1

‖e(∇U)‖2L2(Sj) ≤ 5Z‖e(∇U)‖2L2(ΩS).

Theorem 5.1 (Uniform estimates on U and v). We have, that the non-zero data of the displacement
problem g0 ∈ L2(∂Ω) and gi ∈ L2(Ii), i ∈ N is uniformly bounded in ε. If R̃ ∈ H1(0, T ) and the
assumptions (3.4) on our geometry hold, then U ∈ L2H1 uniformly in ε.

If k is uniformly bounded in ε then the non-zero data of the velocity problem g
(v)
i = ∂rig

iṙi, i ∈ N is
uniformly bounded in ε in L2(Ii) and v ∈ L2H1 uniformly in ε. In particular ‖v‖L2H1 ≤ Constε3k,
with a constant independent of ε.

Proof.
1) Displacement
We test the mechanical problem (4.1) – (4.3) with (4.15) – (4.17), extended into the liquid according
to Def. 4.1, with U ε ∫

Ω
σS : ∇U =

∫
∂Ω
σSUν −−

N∑
i=1

ε3
∫
Ii

[[σSU ]] · ν,

and plug in the constitutive laws for the Cauchy stress in solid and in the liquid, (2.77) and (2.80),
and the boundary conditions on the free boundaries (4.2) and (4.3)

∫
ΩS
−p tr(∇U) + λS [tr(∇U)]2 + 2µS∇U : ∇U +−

N∑
i=1

ε6
∫

ΩiL
−(p+ 3kLh∗L)tr(∇UL) + kL[tr(∇UL)]2

= −
∫
∂Ω
p0U · ν − 2σ −

N∑
i=1

ε3
∫
Ii

1
ri
U · ν +−

N∑
i=1

ε6
∫
Ii

pLδ
Rri
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where we used the relation e(∇U) : e(∇U) = ∇U : ∇U . With (2.111) we have UL = aεLr =

(
−
∫
Ii
U ·ν

ε3ri
− δR)r and we apply Gauss’ theorem (tr(∇UL) = div(UL)) twice,

∫
ΩS

(λS [tr(∇U)]2 + 2µS∇U : ∇U)− ε6 −
N∑
i=1

pL

∫
ΩiL

div(UL)

=
∫
∂Ω

(p− p0)U · ν −−
N∑
i=1

ε6
∫
Ii

(2σ
ri

+ p)U(+) · ν + ε6 −
N∑
i=1

∫
Ii

pLδ
Rri.

Thus ∫
ΩS

(λS [tr(∇U)]2 + 2µS∇U : ∇U) + 3kL −
N∑
i=1

4πriε3(−
∫
Ii

U(+) · ν)2

=
∫
∂Ω

(p− p0)U · ν +−
N∑
i=1

ε6
∫
Ii

(−2σ
ri

+ 3kL(δR + 3kLh∗L))U(+) · ν.

Since p is constant we get by integration by parts and exploiting to have spherical droplets

∫
ΩS

(λS [tr(∇U)]2 + 2µS∇U : ∇U) + 3kL −
N∑
i=1

4πriε3(−
∫
Ii

U(+) · ν)2

=
∫
∂Ω

(p− p0)U · ν +−
N∑
i=1

ε3
∫
Ii

(2σ
ri

+ ε33kLh∗L)U(+) · ν.

or with (4.15) – (4.17)

∫
ΩS
λS [tr(∇U)]2 + 2µS∇U : ∇U + 3kL −

N∑
i=1

∫
Ii

(−
∫
Ii
U · ν)2

ri
= −

∫
∂Ω
g0U · ν +−

N∑
i=1

ε3
∫
Ii

giU(+) · ν.

For the moment we omit the nonnegative first and third term (kL > 0, λS > 0) and estimate

2µ
K
‖U‖2H1 ≤ (‖g0‖L2 +−

N∑
i=1

ε3‖gi‖L2)‖U‖L2 .

Clearly ‖U‖L2(ΩS) ≤ ‖U‖H1(ΩS). The constant of the trace theorem scales with ε3 corresponding
to Lemma 5.2, 1). Due to Lemma 5.3 Korn’s constant K > 0 is uniformly bounded in ε. Hence
with the embedding L2(∂ΩS)→ H1(ΩS) together with Lemma 5.2, 2), we have

‖U‖2H1 ≤ KC̃(‖g0‖L2 + ε6 −
N∑
i=1
‖gi‖L2)‖U‖H1

where the C̃ is independent of ε. Hence

‖U‖H1 ≤ C({‖gi‖L2}i∈N∪{0})

where the constant C is independent of ε.
Besides this shows that the terms which we have neglected on the l.h.s.

∫
ΩS λS(tr(∇U))2 and

−
∑N
i=1−
∫
Ii

[U · ν]2 are bounded as well uniformly in ε, where we use µS > 0.
We still have to consider what happens if a droplet vanishes at time τi. If a droplet vanishes, then
in general U is not continuous in time, but the jump Ji := ‖U‖2H1(Ω(τi+)) − ‖U‖2H1(Ω(τi−)) is
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bounded by
|
∫

Ω
|∇U(·, τi+)|2 −

∫
Ω
|∇U(·, τi+)|2| ≤ KC̃ε3‖gi‖2L2)

since the difference solves a mechanical problem with same boundary data on the outer boundary
and on the interfaces Ij , j 6= i. Since the number of jumps is bounded by ε3 we can sum over all
times t ∈ (0, T ), yielding the estimate on U .
By integrating over t from 0 to T we get ‖U‖L2H1 and ‖U‖C0H1 uniformly in ε.
2) Velocity
Analogously we consider the velocity, where have a similar dependence of the data on ε, if k is
uniformly bounded in ε.

Since we use in the following our ansatz for a formal solution of the mechanical BVP, we give this
ansatz (3.59), which was stated for the dilute scaling regime, now for the critical scaling. We have
to replace the power 3r− 3 of ε, which is 9 for the dilute scaling with 6 for the critical scaling. For
the displacement we have

W (x) = −
∑
i∈N

((a+ ci)(x−Xi) + biε
6r3
i

x−Xi

|x−Xi|3
), (5.4)

while for the velocity (5.5) translates into

∂tW (x) = −
∑
i∈N

(∂t(a+ ci)|x−Xi|+ ε6(∂tbiri + 3biṙi)
r2
i

|x−Xi|2
)eri . (5.5)

where the coefficients are defined as in Appendix C.1.1.
With the last Th. 5.1 we justify the approximation of U by W in H1 as ε→ 0.
Lemma 5.4 (Corrector result of the monopole approximation for the mechanical problem).
We make the same assumptions as in the last theorem. Let U be the exact solution of the mechanical
problem (4.1) – (4.3) and W the approximation defined by (5.4), where we change the scaling
from the dilute scaling to the critical scaling, which we consider now. Furthermore we neglect h∗
completely corresponding to Problem E. Then the corrector Z := U −W vanishes as ε → 0 in the
sense that ‖Z‖H1(Ω(t)) → 0.

Proof. The corrector Z solves the problem

div σ̌S(∇Z) = 0 in ΩS(t),
σ̌S(∇Z)ν = (p− p0 − 3kS −

∑
i∈N

ai − 2GS −
∑
i∈N

bi×

× ε9r3
i

|x−Xi|3
(1− 3(x−Xi)⊗ (x−Xi)

|x−Xi|2
))ν on ∂Ω(t),

and

(σ̌S(∇Z)− 3kL
ε3rj

−
∫
Ij

(Z · erj ))erj

= (2σ
rj
− 3kL(δR + h∗L(ri))− 3kS −

∑
i∈N

ai + 4GSbj − 2GS −
∑
i 6=j

bi
ε6r3

i

|x−Xi|3
(1− 3(x−Xi)⊗ (x−Xi)

|x−Xi|2
)

+ 3kL(aj + bj) + 3kL −
∑
i 6=j

(ai +−
∫
Ij

(biε6 r3
i

|x−Xi|3
(x−Xi) · (x−Xj)

r2
j

)))erj on Ij(t) ∀j ∈ N(t).
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By choice of ai and bi as the corresponding coefficients of the totally radial symmetric single droplet
problem this simplifies to

div σ̌S(∇Z) = 0 in ΩS(t),

σ̌S(∇Z)ν = −2GS −
∑
i∈N

bi
ε6r3

i

|x−Xi|3
(1− 3(x−Xi)⊗ (x−Xi)

|x−Xi|2
))ν on ∂Ω(t),

(σ̌S(∇Z)−
3kL
ε3rj

−
∫
Ij

(Z · erj ))erj = (−2GS −
∑
i 6=j

bi
ε6r3

i

|x−Xi|3
(1− 3(x−Xi)⊗ (x−Xi)

|x−Xi|2
)+

+ 3kL −
∑
i 6=j
−
∫
Ij

(biε6 r3
i

|x−Xi|3
(x−Xi) · (x−Xj)

r2
j

))erj on Ij(t) ∀j ∈ N.

Since we assume (3.4) we have

div σ̌S(∇Z) = 0 in ΩS(t), (5.6)
σ̌S(∇Z)ν = O(ε3)ν on ∂Ω(t), (5.7)

(σ̌S(∇Z)− 3kL
ε3rj

−
∫
Ij

(Z · erj ))erj = O(ε3)erj on Ij(t) ∀j ∈ N. (5.8)

In the liquid ΩL we have

pL = pjL(W ) + pjL(Z) = p− 3kL( 1
ε3rj

(−
∫
Ij

((W + Z) · erj )− δR − h∗L(rj)) in Ωj
L(t) ∀j ∈ N, (5.9)

where

pjL(W ) := p− 3kL(bj − δR − h∗L(rj) +−
∑
i∈N

ai) in Ωj
L(t) ∀j ∈ N,

pjL(Z) := 3kL −
∑
i 6=j

biε
6 −
∫
Ij

( r3
i

|x−Xi|3
(x−Xi) · (x−Xj)

r2
j

) = O(ε3) in Ωj
L(t) ∀j ∈ N.

We can apply Th. 5.1 to the problem (5.6) – (5.8) and (5.9), which is solved by Z, and get the
estimate

‖Z‖H1(ΩS ;R3) ≤ Const ε3,

where the constant is independent of ε.
This yields U −W → 0 in H1(ΩS) as ε→ 0 for given radii evolution.

This justifies the approximation of v by ∂tW in H1(ΩS), too.
Furthermore this implies with (4.10) and for a transformation Φ of the form as stated in Appendix
B.1 that

|Ṙbd| ≤ const (1 + h̃) |∂tW |∂Ω(t)| ≤ Const h̃ ε3, (5.10)

where the constants are independent of ε, if k is uniformly bounded in ε.
Unfortunately we cannot prove so far an estimate on ∇ · v in C0 or L∞, which is uniformly in ε,
since we do not know so far, how the constants which appear in the embeddings depend exactly on
the geometry and on ε.
We have to make the following

Assumption 5.1 (Scaling of constants in embeddings from Sobolev to Hölder spaces).
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5.3. Uniform estimates for the radii distribution

We assume that the geometry of Ωε
S allows that there exists a constant cE s.t.

‖v‖C1(ΩεS) ≤ cE‖v‖W 5/2,2(ΩεS)

which is used in Th. 4.1, 3) and cE scales with O(ε0) and is uniformly bounded in t.
We make an analogous assumption for

‖U‖C2(ΩεS) ≤ cE‖U‖W 7/2,2(ΩεS).

This assumption implies

Assumption 5.2 (Further uniform estimates on the displacement and the velocity). We assume
that we can estimate

‖U‖C0C2 ≤ c1ε
0

and, if additionally k is uniformly bounded in ε, we have

‖v‖C0C1 ≤ c2ε
0,

where the constants c1 and c2 are independent of ε and of k. This assumption seems to be plausible,
if we think of our formally homogenised function W (see (5.4)) or, if k is uniformly in ε, of our
formally homogenised ∂tW (see (5.5)).

5.3. Uniform estimates for the radii distribution

In this section we derive estimates on moments of the radii distribution, which are uniformly in the
scaling parameter ε, under the Assumption 5.2.
We make a further assumption on the explicit form of nεAs(uε), which is stronger than Assumption
4.2, 1) and 2).

Assumption 5.3 (Explicit form of nεAs(uε)). We assume, that

nεAs(uε) = nAs(1 + ε9c1(exp(c2u
ε)− 1)),

where c1 and c2 are independent of ε. This holds for our original problem by (A.21) and (A.17).

Lemma 5.5 (Uniform estimates for new initial data after vanishing of a droplet). For the “new
initial data” after the vanishing of a droplet holds

‖uε(τi)‖2H1(ΩS(τi+)) ≤ ‖u
0,ε‖2L2(ΩS(0))Const ε

2. (5.11)

Proof. Let j = argmin τi. After droplet j has vanished i.e. at time τj+ we have as new initial data
uε(τj+) corresponding to the definition of nεAs(τj+) in Assumption 2.6 or the definition of uε(τj+)
in Remark 4.5. Due to (2.169) and (2.170) we find

|uε(τj+)| ≤ Const(p)uintAs (rmin)

with a positive constant independent of ε. We estimate

‖uε‖2L2(ΩiL(τj−)) ≤
4π
3 ε9r3

min Const(p)

where p can be chosen independent of ε, see (4.137). Analogously we get a uniform bound on the
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square of the L2 norm of the gradient from (4.137),

‖∇uε‖2L2(ΩiL(τj−)) ≤
4π
3 ε9r3

min Const2(p) ln(1
ε

).

Both the L2 norm and the L2 norm of the gradient converge to 0 as ε→ 0.

We recall, that uint(ri) is bounded uniformly in ε due to its definition and to our scaling.
While in the formal homogenisation we have bounded k directly by uint(ri) in (3.70), we have here
to prove, since v depends on k, that the terms of the diffusion equation including v or ∇· v, can be
neglected. We proceed as in Section 4.4 where we have constructed super- and subsolutions, which
yield bounds on k = maxi∈N |ṙi|. We show that the constant K of Lemma 4.4 yields a uniform
bound on k for all ε.

Theorem 5.2 (Uniform estimate on k and on v). We assume that the initial data is uniformly
bounded, s.t. F̂ or F as defined in (4.75) is bounded uniformly in ε. Let Assumption 5.2 hold.
Then k and ‖v‖C0C1 are uniformly bounded in ε.

Proof. We start with time interval (0, τi−), where we assume that droplet i is the first to vanish.
According to the estimate (4.130), we have

k(ε) ≤ 2(F̂ − F )K(ε)
rmin

where we emphasise by our notation the dependence of all quantities on ε. Lemma 4.3 yields as
possible choice of K(ε)

K(ε) = 1
1− ε4 d

6 κ̂(ε)

where ε4 < min{( d
6ri )

4; 18
k(ε)d} and

κ̂(ε) = 4
3ε

3[[2(F̂ − F )(maxX
rmin

+ ‖v‖C0(ΩS(t))) + ∂ruint(rmin)] + 1
k(ε)‖∇ · v‖C0(ΩS(t)) const(Ξ)].

W.l.o.g. F̂ − F 6= 0, otherwise we would have finished our proof. We introduce the abbreviations

Z1 := 4(F̂ − F )
rmin

, Z2 := d

9 · 4(F̂ − F )(maxX
rmin

+ ∂ruint(rmin)),

Z3 := d

9 · 4(F̂ − F ), Z4 := 2d9 const(Ξ),

which are all strictly positive. Combining this yields

k(ε) ≤ Z1

1− ε7[Z2 + Z3‖v‖C0(ΩS(t))] + ε3

k(ε)Z4‖∇ · v‖C0(ΩS(t))
, (5.12)

which we estimate with ε4 < 18
k(ε)d

k(ε) ≤ Z1

1− ε3

k(ε)(18
d [Z2 + Z3‖v‖C0(ΩS(t))] + Z4‖∇ · v‖C0(ΩS(t)))

. (5.13)

According to Theorem 5.1 combined with Assumption 5.1 we can estimate ‖v‖C0C1 ≤ Const(v) k,
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where the constant is independent of k and ε, s.t.

k(ε) ≤ Z1

1− ε3

k(ε)(18
d Z2 + 18

d (Z3 + Z4)Const(v)k(ε))
≤ Z1

1− ε3

k(ε)
(5.14)

for sufficiently small ε.
Finally we proof our theorem by contradiction. Let k(ε) → ∞ as ε → 0, while ε4 < 18

k(ε)d . Then
the l.h.s. goes to +∞, while the r.h.s. is bounded. Hence k(ε) is uniformly bounded in ε and by
Theorem 5.1 this holds for ‖v‖L2H1 , too. By Assumption 5.1 this holds for ‖v‖C0C1 .
From the last Lemma 5.5 follows, that new initial data at time τi+ is again uniformly bounded in
ε.

Corollary 5.1 (Uniform maximum principle). Since v is uniformly in ε bounded in C0C1, the
maximum principle, Coroll. 4.2, holds for all ε and implies uε and nεAs uniformly bounded in
L∞L∞.

Lemma 5.6 (Uniform estimates on moments of the distribution of droplets). We have
a)

−
∫

Ω(0)

∫
Jr

1dνtε ≤ 1, (5.15)

b)
−
∫

Ω(0)

∫
Jr
rdνtε ≤ −

∫
Ω(0)

∫
Jr
rdν0

ε + Const(F̂ , F ,K)t = RM + Const(F̂ , F ,K)t, (5.16)

c)
−
∫

Ω(0)

∫
Jr
r2dνtε ≤ −

∫
Ω(0)

∫
Jr
r2dν0

ε + Const(F̂ , F ,K, rmin)t, (5.17)

d)

−
∫

Ω(0)

∫
Jr
r3dνtε ≤ −

∫
Ω(0)

∫
Jr
r3dν0

ε + Const(F̂ , F ,K)(RM + Const(F̂ , F ,K, rmin)t)

≤ 3
4πVM + Const(F̂ , F ,K, rmin,RM )t.

(5.18)

Proof. k is bounded uniformly in ε due to Th. 5.2. By definition of (5.1), Corollary 4.7 and Lemma
5.5 the estimates a) – d) follow.

We consider spherical shells Σε
i = BεRiext

(Xi) \Bε3ri(t)(Xi), i ∈ {1, ...,N 0
ε } around each droplet.

Definition 5.5 (Capacity potentials). We define capacity potentials φ(ε)
i , i ∈ {1, ...,N 0

ε } as the
unique solutions of the following problems

∆φi = 0 in Σε
i (5.19)

φi = 0 on ∂BεRext(Xi) (5.20)
φi = 1 on ∂Bε3ri(Xi) (5.21)

which can be explicitly solved,

φi(x, t) = − ε2ri(t)
Riext(t)− ε2ri(t)

+ ε3Riext(t)ri(t)
Riext(t)− ε2ri(t)

1
|x−Xi|

∀x ∈ Σε
i (t) ∀t ∈ (0, T ),
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which we extend by zero on the outside

φi(x, t) = 0 ∀x ∈ R3 \BεRiext(Xi) ∀t ∈ (0, T ). (5.22)

Into the interior we extend φi by

φi(x, t) = 1 ∀x ∈ Bε3ri(t)(Xi) ∀t ∈ (0, T ). (5.23)

For all i ∈ N(0) we set Riext(t) = Rext = 1
2 , which is independent of time. We emphasise that this

choice on Rext is made s.t.

ε3 max
i∈N

ri(t) < εRext ≤
1
2 min{ min

i 6=j,i,j∈N
|Xi −Xj |,min

i∈N
dist (Xi, ∂Ω)}

for sufficiently small ε and given T . For this particular Riext we can write φi as,

φi(x, t) := 2ε2ri(t)
1− 2ε2ri(t)

(ε2
1

|x−Xi|
− 1). (5.24)

This yields
‖φi‖2L2(Σεi )

=
∫

Σεi
|φi|2dz = 2π

3 ε4ri(1− 2ε2ri) ≤
2π
3 ε4ri (5.25)

and
‖∇φi‖2L2(Σεi )

= 4π ε3ri
1− 2ε2ri

≤ 2πε3ri, (5.26)

where the upper bounds hold for sufficiently small ε > 0.

Lemma 5.7 (A further control on growth of radii). If k is bounded uniformly in ε, then we have
the following control uniformly in ε

−
∑
i

r3
i |ṙi|2 ≤ const. (5.27)

Proof. That the estimate is uniformly in ε follows directly from the uniform estimate on −
∑
i∈N r

3
i

proved in Lemma 5.6 under our assumptions on admissible initial distributions ν0
ε . In particular

ν0
ε has compact support in r for all ε.

The condition on k i.e. the uniform estimate on ṙi is fulfilled as proved in Theorem 5.2. The control
(5.27) translates into the following estimate for the distribution νtε, uniform in ε.

Corollary 5.2 (Uniform estimates on moments of the distribution of radii velocities for finite ε).
Under the same assumptions as in the last lemma

−
∫

Ω(0)

∫
Jr
r3aν(r, t)2dνtε ≤ const, (5.28)

where the constant is independent of ε.

Now we rewrite the Stefan condition (4.8) for (DC) in terms of νtε.

Lemma 5.8 (Stefan conditions for (DC) for the distribution of droplets for fixed ε). Eq. (4.8),
the Stefan condition for regime (DC), reads in terms of νtε

∂tν
t
ε(x, r) = −∂r(ε3

−
∫
∂Bε3r(x)∇uε(x, t) · ν(x, t)dA(x, t)

X(r,−
∫
∂Bε3r(x) U

ε(x, t) · ν) νtε(x, r)). (5.29)
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which holds in sense of distributions i.e. in [C∞(0, T )× C]′.
The initial condition (4.9) reads now

νtε(t = 0)(x, r) = ν0
ε (x, r) := −

ε−3∑
i=1

δXi(x)δr0
i
(r).

Proof. By (5.1) we have

0 =
∫ ∞

0
∂t −
∑
i∈Nε

β(t)ζ(Xi, ri) =
∫ ∞

0
−
∑
i∈Nε

(∂tβ(t)ζ(Xi, ri) + β(t)∂rζ(Xi, ri)aν(ri, t))

=
∫ ∞

0
(∂tβ(t)−

∫
Ω(0)

∫
Jr
ζ(x, r)νtε(x, r)dxdr + β(t)−

∫
Ω(0)

∫
Jr
∂rζ(x, r)aν(r, t)νtε(x, r)dxdr)dt

(5.30)

for all test functions β ∈ C∞(0, T ) and ζ ∈ C. Then we integrate further by parts and find the
statement about the Stefan condition. The initial condition is obtained directly from (5.1).

5.4. Uniform estimates for the chemical potential

Theorem 5.3 (Uniform a posteriori estimates on uε or nεAs). If Assumption 5.2 holds, if the
assumptions of Th. 5.1 hold, if Assumption 5.3 holds and if

0 < X ′(uε) ≤ εpY max
x∈ΩS

uε (5.31)

for sufficiently small ε, then uε ∈ L∞L∞ ∩ L2H1 and nεAs ∈ L∞L∞ ∩ L2H1 uniformly in ε.

A posteriori estimate means that we can use the Stefan condition (4.8) and the boundary condition
(4.6) simultaneously since we have already demonstrated existence of such a solution in Chapter 4.
The assumption (5.31) is fulfilled for typical data, see (A.20).

Proof. For better readability we drop the indices “ε” in this proof. First we consider only times
t < infi τi, since we have to be careful if a droplet vanishes.
We recall that ‖u‖L∞L∞ is uniformly bounded in ε due to Corollary 5.1. We test the diffusion
equation (4.4) on ΩS with u

X (u) and get with the homogeneous Neumann b.c. on ∂Ω, (4.5),

∫
ΩS(t)

ε3(∂tu+ v · ∇u)u+ ε3∇ · v Ξ(u)
X (u)u+∇u · ∇ u

X (u) dx+ 4πε3 −
∑
i∈N

r2
i −
∫
Ii

∂νu
u

X (u) dA = 0.

With the boundary condition (4.6) and the Stefan condition (4.8) we have∫
ΩS(t)

ε3

2 ∂t|u|
2 + ε3v · ∇u u+ ε3∇ · v Ξ(u)

X (u)u+ (1− X
′(u)
X (u) u) 1

X (u) |∇u|
2 dx

+4π −
∑
i∈N

r2
i ṙi

X(ri, U iM )
X (uint(ri))

uint(ri) = 0.

Due to the maximum principle (Corollary 5.1), eq. (5.31) and Assumption 4.2, 1) we have X ′(u)u ≤
Const ε9 with a constant independent of ε and get the estimate∫

ΩS(t)

ε3

2 ∂t|u|
2 + ε3

2 v · ∇|u|
2 + ε3∇ · v Ξ(u)

X (u)u+ 1
2X (u) |∇u|

2 dx+ 4π −
∑
i∈N

r2
i ṙi

X(ri, U iM )
X (uint(ri))

uint(ri) ≤ 0
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for sufficiently small ε. We apply Reynolds’ transport theorem

ε3

2 ∂t
∫

ΩS(t)
|u|2 dx− ε3

2

∫
∂Ω(t)

|u|2Ṙbd dA+
∫

ΩS(t)
ε3v · ∇u u+ ε3∇ · v Ξ(u)

X (u)u dx

+
∫

ΩS(t)

1
2X (u) |∇u|

2 dx+ 4π −
∑
i∈N

(ε
6

2 + X(ri, U iM )
X (uint(ri))uint(ri)

)uint(ri)2ṙir
2
i ≤ 0.

According to Assumptions 4.2 – 4.4 we can split up

ε6

2 uint(ri)
2 +

X(ri,−
∫
Ii
U · ν)

X (uint(ri))
uint(ri) = A1 − A2(ri,−

∫
Ii

U · ν),

where A1 is a strictly positive constant and A2 is a strictly positive bounded function, such that
we get

ε3

2 ∂t
∫

ΩS(t)
|u|2 dx+

∫
ΩS(t)

1
2X (u) |∇u|

2 dx+ 4πA1 −
∑
i∈N

ṙir
2
i

≤ ε3

2

∫
∂Ω(t)

|u|2Ṙbd dA− ε3
∫

ΩS(t)
(v · ∇u+∇ · v Ξ(u)

X (u)) u dx+ 4π −
∑
i∈N

A2(ri, U iM )ṙir2
i .

We integrate over the time interval (0, t), use again Assumption 4.2, 1) and estimate with |Ṙbd| ≤
ε3k, |ṙi| ≤ k and the monotonicity of uint,

ε3

2

∫
ΩS(t)

|u|2 dx+ 1
2 maxX

∫ t

0

∫
ΩS(s)

|∇u|2 dx ds+ 4π
3 A1 −

∑
i∈N(t)

ri(t)3

≤ ε3

2

∫
ΩS(0)

|u0|2 dx+ 4π
3 A1 −

∑
i∈N(0)

(r0
i )3 + ε6

2 k const(∂Ω(0), k)‖u‖2L∞L∞

+ ε3‖v‖L∞L∞(
∫ t

0

∫
ΩS(s)

|u|2 dx ds)1/2 (
∫ t

0

∫
ΩS(s)

|∇u|2 dx ds)1/2

+ ε3‖∇ · v‖L2L2‖u‖L2L2
max Ξ
minX + 2π

∫ t

0
−
∑
i∈N

r2
i ds const(X ,X, uint(rmin), r0

i )k.

Let τj = inf i τi. Because the last estimate holds for all t ∈ (0, τj) we get with Young’s inequality
and the maximum principle

ε3

2 sup
t∈(0,τj)

∫
ΩS(t)

|u|2 dx+ 1
2( 1

maxX (u) − ε
3‖v‖L∞L∞)

∫ τj

0

∫
ΩS(s)

|∇u|2 dx ds

+ 4π
3 A1 sup

t∈(0,τj)
−
∑

i∈N(t)
ri(t)3

≤ ε3

2

∫
ΩS(0)

|u0|2 dx+ 4π
3 A1 −

∑
i∈N(0)

(r0
i )3 + ε3

2 (ε3k const(∂Ω(0), k) + (‖v‖L∞L∞ + max Ξ
minX )×

× const(Ω(0), k))‖u‖2L∞L∞ + ε3

2
max Ξ
minX ‖∇ · v‖

2
L2L2 + 2π

∫ t

0
−
∑
i∈N

r2
i ds const(X ,X, uint(rmin), r0

i )k.

The L2-norm of the new initial data u0(τj) is bounded by ε3Const(k), where the constant is
independent of ε, see Lemma 5.5, and the radii of the surviving droplets, i.e. of the droplets
N(τj+), are continuous. This yields for all t ∈ (0, T ), since we extend u by the constant uL into
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ΩL, for sufficiently small ε the estimate∫ τj

0

∫
Ω(s)
|∇u|2 dx ds

≤ 4 maxX (u)

4π
3 A1 −

∑
i∈N(0)

(r0
i )3 + ε3Const(‖u0‖L2 , ‖v‖L∞L∞ , ‖∇ · v‖L2L2 , k,Ξ,X )

+2πτj const (−
∑

i∈N(0)
(r0
i )2,−

∑
i∈N(0)

r0
i , k, uint,X ,X)

 ,
(5.32)

which is uniform in ε. From Assumption 5.3 we find the estimates for nAs as described.
We remark that, we could choose A1 = 0 in order to proof the theorem. But introducing A1 > 0
yields a further estimate on the 3rd moment of the radii distribution and shows the correspondance
with the estimate given in the study of Niethammer ([Nie99], lemma 16).

We remark, that ‖∇uε‖2L2(ΩT ) corresponds to the difference of availability A(0) − A(t) in regime
(DC), see Appendix A.7, eq. (A.32).
We prove now a uniform estimate on ∂tuε on time-dependent domain.

Theorem 5.4 (Uniform a posteriori estimates on ∂tu
ε and ∆uε). Let uε ∈ C2

1 (0, T ; ΩS) and
uε|ΩiL = uint(ri). We assume (5.10). If Assumption 5.2, if Assumption 5.3 and the assumptions
of Th. 5.1 hold, then for sufficiently small ε and sufficiently small h̃ we have ∂tuε ∈ L2(ΩT ) and
∆uε ∈ L2(ΩT ) with a uniform estimate in ε. Then we have ∂tnAs(uε) ∈ L2(ΩT ), uniformly in ε.

Proof. Again we drop within this proof the index “ε”. First we consider also times t ∈ (0, t̃),
t̃ < mini τi. We test Problem E with ∂tu−∆u and integrate the ∆u ∂tu-term by parts, where we
use (4.5):∫

ΩS(t)
ε3X (u)|∂tu|2 + (ε3(X (u)v · ∇u) + ε3∇ · v Ξ(u))(∂tu−∆u) +∇u · ∇(∂tu) + |∆u|2 dx

+4πε3 −
∑
i∈N

r2
i −
∫
Ii(t)

∂νu ∂tu = 0.

Since we have classical solutions u ∈ C2
1 (0, T ; ΩS) for each fixed ε > 0 we have ∇∂tu = ∂t∇u and

∂tu|Ii = u′int(ri)ṙi, which yields with (4.8)∫
ΩS(t)

ε3X (u)|∂tu|2 + |∆u|2 + (ε3X (u)v · ∇u+ ε3∇ · v Ξ(u))(∂tu−∆u) + 1
2∂t|∇u|

2 dx

+4π −
∑
i∈N

r2
i |ṙi|2X(ri, U iM )u′int(ri) = 0.

We apply Reynolds’ transport theorem to the term with ∂t|∇u|2 and using Assumption 4.2, 1) we
estimate

ε3minX
∫

ΩS(t)
|∂tu|2 dx+

∫
ΩS(t)

|∆u|2 dx+ ε3
∫

ΩS(t)
X (u)v · ∇u(∂tu−∆u) dx

+ ε3
∫

ΩS(t)
∇ · v Ξ(u)(∂tu−∆u) dx+ 1

2∂t
∫

ΩS(t)
|∇u|2 dx

−
∫
∂ΩS(t)

|∇u|2Ṙbd dA+ 4π −
∑
i∈N

(ε3r2
i ṙi −
∫
Ii(t)
|∇u|2dA+ 1

3 |∂tr
3
i |2X(ri, U iM )u′int(ri)) ≤ 0.
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We estimate the third and forth term by the Cauchy-Schwarz inequality and use for the fifth and
sixth term the trace theorem, where for the dependence of the embedding constants we refer to
Lemma 5.2,

ε3minX‖∂tu‖2L2(ΩS(t)) + ‖∆u‖2L2(ΩS(t)) + 1
2∂t‖∇u‖

2
L2(ΩS(t)) + 4π

3 −
∑
i∈N
|∂tr3

i |2X(ri, U iM )u′int(ri)

≤ ε3maxX‖v‖L∞(ΩS(t))‖∇u‖L2(ΩS(t))(‖∂tu‖L2(ΩS(t)) + ‖∆u‖L2(ΩS(t))) + ε3 max Ξ‖∇ · v‖L2(ΩS(t))×
× (‖∂tu‖L2(ΩS(t)) + ‖∆u‖L2(ΩS(t))) + C(∂Ω(t))|Ṙbd|(‖∇u‖2L2(ΩS(t)) + ‖D2u‖2L2(ΩS(t)))

+ ε6 −
∑
i∈N

C(Ii(t)))k(‖∇u‖2L2(ΩS(t)) + ‖D2u‖2L2(ΩS(t))),

where the constants are independent of ε. Then we estimate with the bound (5.10), |Ṙbd| ≤ ε3h̃k,

C(∂Ω(t))|Ṙbd|+ ε9 −
∑
i∈N

C(Ii(t))k ≤ ε3(h̃+ ε3)Ctr,

with a constant Ctr(ΩS(0), k) independent of ε and h̃. We use the bound (4.83) on D2u, we
integrate over the time interval (0, t), we use again Assumption 4.2, 1) and we estimate with
Young’s inequality the first and second term of the r.h.s.

ε3minX‖∂tu‖2L2L2 + ‖∆u‖2L2L2 + 1
2‖∇u(t)‖2L2(ΩS(t))

≤ 1
2‖∇u

0‖2L2(ΩS(0)) + ε3

2 ( 2
minX + 2)(maxX )2‖v‖2L∞L∞‖∇u‖2L2L2 + ε3

2 minX‖∂tu‖2L2L2

+ ε3

2 ‖∆u‖
2
L2L2 + ε3( 2

minX + 2)(max Ξ)2‖∇ · v‖2L2L2

+ 4π
3 max X |u′int(rmin)|

∫ t

0
−
∑
i∈N
|∂t(r3

i )|2 + ε3(h̃+ ε3) Ctr‖∇u‖2L2L2 + (h̃+ ε3) Ctr‖∆u‖2L2L2 .

We compensate the ε3‖∂tu‖L2L2 and ‖∆u‖L2L2 terms of the r.h.s. and for sufficiently small ε and
for h̃Ctr ≤ 1/4 we can estimate the last two terms of the last equation by the other terms on the
r.h.s.:

ε3 minX
2 ‖∂tu‖2L2L2 + 1

2‖∆u‖
2
L2L2 + 1

2‖∇u(t)‖2L2(ΩS(t))

≤ ‖∇u0‖2L2(ΩS(0)) + ε3(Ctr + (2 + 2
minX ) maxX 2‖v‖2L∞L∞)‖∇u‖2L2L2

+ ε3(2 + 2
minX ) max Ξ2‖∇ · v‖2L2L2 + 4π

3 max X |u′int(rmin)|
∫ t

0
−
∑
i∈N
|∂t(r3

i )|2.

We multiply by two and apply the lemma of Gronwall to the terms with ‖∇u‖2L2(ΩS(t)) and get

ε3 minX‖∂tu‖2L2L2 + ‖∆u‖2L2L2 + ‖∇u‖2L2(ΩS(t))

≤ exp(2ε3 (Ctr + (2 + 2
minX ) maxX 2‖v‖2L∞L∞)t)(‖∇u0‖2L2(ΩS(0))

+ ε3 (2 + 2
minX ) maxX 2‖∇ · v‖2L2L2 + 8π

3 max X |u′int(rmin)|
∫ t

0
−
∑
i∈N
|∂t(r3

i )|2).

W.l.o.g. τj = infi τi. The last inequality holds for all t ∈ (0, τj). Furthermore we use |ṙi| ≤ k and
our assumptions and find
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ε3 minX‖∂tu‖2L2L2 + ‖∆u‖2L2L2 + sup
t∈(0,τj)

‖∇u(t)‖2L2(ΩS(t))

≤ exp(ε3 Const(X ,Ξ, ‖v‖2L∞L∞ ,ΩS(0), k)τj) const(‖∇u0‖2L2(ΩS(t)), ε
3‖∇ · v‖2L2L2 , I(0), k6),

(5.33)

where the first constant is independent of ε due to Assumption 5.2 and the assumption on the
initial data. The last estimate is extended into the liquid since |∂tuL| = |u′int(ri)ṙi| ≤ const k and
∇uL = 0,

ε3 minX‖∂tu‖2L2(Ωτj ) + ‖∆u‖2L2(Ωτj ) + sup
t∈(0,τj)

‖∇u(t)‖2L2(Ω(0)) ≤ exp(ε3 cI(τj)τj) cII(t),

where the constants, in which norms enter up to a time t, are

cI(t) := cI(X ,Ξ, ‖v‖2L∞(Ωt),ΩS(0), k), cII(t) := cII(‖∇u0‖2L2(Ω(0)), ε
3‖∇ · v‖2L2(Ωt), I(0), k6).

Since the sum over all jumps [‖∇u‖L2(ΩS(t))]τi−τi+ at times τi, i ∈ N(0), when droplets vanish, are
uniformly bounded in ε, see Lemma 5.5, we extend the estimate (5.33) for all times t ∈ (0, T )
and finally get the estimates on ∂tu and ∆u in L2(ΩT ) and ∇u in L∞(0, T ;L2(Ω(t))), which are
uniform in ε,

ε3 minX‖∂tu‖2L2(ΩT ) + ‖∆u‖2L2(ΩT ) + ‖∇u(t)‖2L∞(0,T ;L2(Ω(t))) ≤ exp(ε3 cI(T )) cII(T ).

Finally this translates into the corresponding estimate on ∂tnAs(u).

We remark that, the proof relies on having in our specific situation a factor ε3 on the l.h.s. of the
diffusion equation, Ṙbd ∼ h̃ε3 and ri ∼ ε3, otherwise we could not compensate the boundary terms
which enter by applying the transport theorem.

5.5. Existence of the homogenisation limits

We recall that we have uniform estimates on uε, U ε and estimates on the distribution of droplets
νtε from Sections 5.4, 5.2, and 5.3, which allow to conclude the existence of a limit distribution νt
and limits u∞ and U∞.

Theorem 5.5 (Existence of homogenisation limits). For all t ∈ Jt = (0, T ):
1) There exists a subsequence, again denoted by νtε and a weakly continuous map Jt → C′, t 7→ νt

s.t. as ε→ 0

−
∫

Ω(0)

∫
Jr
fdνtε → −

∫
Ω(0)

∫
Jr
fdνt locally uniformly in t ∀f ∈ C. (5.34)

The limit measure ν could be defective, but

−
∫

Ω(0)

∫
Jr
rdνt ≤ 1.

For the volume of the liquid we have

−
∫

Ω(0)

∫
Jr
r3dνtε ≤ −

∫
Ω(0)

∫
Jr
r3dνt0 + const(νt0, u0). (5.35)

The limit νt is better than ν in the sense, that it has a Lebesgue density w.r.t. x for all t, if
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the distribution of initially given centres Xi is regular.
2) We have strongly Rbd → Rbd(0) in L∞(0, T ) and IΩε → IΩ(0)(x) strongly in L∞((0, T × R3),

where IS(0) denotes the characteristic function of a set S.
3) There exists a measurable map Jt → H1(Ω(0)), t 7→ u∞(t) s.t. uε → u∞ strongly in L2L2

and weakly in L∞H1.
4) There exists a measurable map Jt → C2(Ω(0)), t 7→ U∞(t) and a measurable map Jt →

C2(Ω(t)), t 7→ v∞(t) s.t. U ε → U∞ and vε → v∞ strongly in L2L2 and weakly in L2H1.

Proof.
1) (Limit distribution of radii)
Here our proofs follow [Nie04a].
Step A: Weak Hölder regularity of the family {νtε}t in time.
Let f ∈ C. With (5.30) and the Cauchy-Schwarz inequality follows

| −
∫

Ω(0)

∫
Jr
fdνt1ε −−

∫
Ω(0)

∫
Jr
fdνt2ε | = |

∫ t2

t1

d

dt
(−
∫

Ω(0)

∫
Jr
fdνεt dt| = |

∫ t2

t1
(−
∫

Ω(0)

∫
Jr
∂rfaνdν

ε
t dt|

≤ |t1 − t2|1/2(
∫ t2

t1

∫ ∞
0

∫
Jr
r3aν(r, t)2dνtε)1/2 sup

r∈Jr
|∂rf |r−3/2

≤ |t1 − t2|1/2
Const(f, k)

minr,X X(r,−
∫
Br(X) U

ε · ν)

which is due to the fact that (5.15) and (5.28) are uniformly bounded in ε.
Step B: Convergence of {νtε}t, locally uniform in time.
From (5.15) and step A we get by the theorem of Arzelà-Ascoli existence of a weakly continuous
family {νt}t s.t. for a subsequence the equation (5.34) holds for f in a countable subset of C ∩
C∞(Ω(0)× Jr). By means of (5.15) we see that we can enlarge the result to all f ∈ C.
Step C: Tightness of νtε w.r.t. radii.
We show that for given δ > 0, T̃ > 0, there exists rT̃ s.t.

sup
t∈(0,T̃ )

∫
r>rT̃

r3dνtε < δ. (5.36)

Let η be a smooth cut-off function, s.t. η = 1 for all r > rT̃ and η = 0 for all r < 1
2rT̃ . We calculate

d

dt

∫ ∞
0

ηr3dνεt ≤ | −
N ε∑
i=1

(η′(ri)r3
i + 2ηr2

i )ṙi| by (5.1)

≤ (−
N ε∑
i=1
|ṙi|2r3

i )1/2(−
N ε∑
i=1

(|η′(ri)2|r3
i + η2))1/2 by Cauchy-Schwarz (5.37)

We estimate the second factor

−
N ε∑
i=1

(|η′(ri)2|r3
i + η2) ≤ −

N ε∑
i=1

(
C2
η

r2
T̃
|η′(ri)2|r3

i + 1
r3
T̃
−
N ε∑
i=1

r3
i ) by the def. of η. (5.38)
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5.5. Existence of the homogenisation limits

We put (5.38) into (5.37) and get

d

dt

∫ ∞
0

ηr3dνεt ≤ (−
∑
i∈Nε

|ṙi|2r3
i )1/2Const1

r
3/2
T̃

by Lemma 5.6 b) & c).

By integrating up over t ∈ (0, t̃), t̃ ∈ (0, T̃ ) together with rT̃ |T =0 = supi∈N(0) r
0
i we get

∫ ∞
0

ηr3dνεt̃ ≤
Const2T̃
r

3/2
T̃

by Def. 5.2, d) and by (5.27).

By taking the supremum over all t̃ ∈ (0, T ) and choosing rT̃ ≥ (Const2Tδ )2/3 we have proved (5.36).
Together with Corollary 4.7 and Def. 5.2, d) we get −

∫
Ω(0)

∫
Jr r

3dνtε ≤ −
∫

Ω(0)
∫
Jr r

3dνt0 + const(νt0, u0).

From (5.15) we get −
∫

Ω(0)
∫
Jr dν

t ≤ 1 for all t ∈ Jt.

Step D: First we want to show that the marginal of νt w.r.t. x has a bounded Lebesgue density
i.e. there exists a constant cL s.t.

−
∫

Ω

∫
Jr
ζ dνt ≤ cL −

∫
Ω
ζ dx

for all nonnegative ζ ∈ C0(Ω(0)) and all t ∈ [0,∞).
We consider a fixed ζ ∈ C1(Ω(0)). We estimate for all i ∈ N

ζ(Xi) ≤ const1

∫
Bε3ri

(Xi) ζ dx

|Bε3ri(Xi)|
≤ const2

ε3ri

∫
Bε3ri

(Xi)
ζ dx.

This implies

−
∫

Ω(0)
ζ dνtε = ε3 ∑

i∈Nε

ζ(Xi) ≤
const2
rmin

∑
i∈Nε

∫
Bε3ri

(Xi)
ζ dx ≤ const2

rmin

∫
Ω(0)

ζ dx,

since ε is sufficiently small enough to avoid collisions. The result for general ζ follows by approxi-
mation.
2) (Limit domain)
The bound (5.10) yields Ṙ∞bd := limε→0 Ṙbd = 0 i.e. limε→0Rbd = Rbd(0) and in particular Ω∞ =
Ω(0), i.e. IΩε(·)→ IΩ(0)(·) strongly in L∞((0, T × R3).
3) (Limit of the chemical potential)
Since ∇uε is uniformly bounded in L2L2, see Th. 5.3, we get the existence of a suitable subsequence
which converges in L2L2. By the Rellich-Kondrachov theorem, see the book of Alt ([Alt99], A 6.4),
we get strong convergence of uε in L2L2. Hence uε ⇀ u∞ in L2H1. That in the limit we have Ω(0)
as domain follows from 2).
We remark, that our estimate from Th. 5.3 relies on T <∞ so the convergence in time cannot be
extended to infinite times.
4) (Limit of the mechanical displacement and velocity)
Analogously to 3) we find from Th. 5.1 that U ε ⇀ U∞ in L2H1 for a suitable subsequence. We
recall that we fix the representant in the class of equivalence RD. And from Th. 5.1 together
with Th. 5.2 we get vε ⇀ v∞ in L2H1, where we deal with a fixed representant in the class of
equivalence RDt.
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Chapter 5. Rigorous Homogenisation

5.6. Homogenised problem with kinetic equation

We derive the corresponding limit problems for regime (DC), which are solved by u∞, U∞ and νt.
We can determine the solution only of the mechanical part of this coupled limit problems and find
so a good approximation to our original mechanical problems with fixed ε. Thus we consider the
homogenisation of the mechanical boundary value problem at first.

Theorem 5.6 (Homogenised mechanical BVP). Let νtε and νt∞ from Theorem 5.5 be given and t
be fixed. Then the limit U∞ solves the following limit problem,

−∇ · (λStr(U∞)I3 + 2µSe(∇U∞)) = 0 ∀x ∈ Ω(0), (5.39)
(λStr(∇U∞)I3 + 2µSe(∇U∞))ν = (p− p0)ν ∀x ∈ ∂Ω(0). (5.40)

We find U∞ = (p−p0)x and σS(U∞) = p−p0
3kS )I3 where this solution is unique up to all infinitesimal

rigid displacements RD as defined in Def. 2.1.
The homogenised velocity BVP is

−∇ · (λStr(v∞)I3 + 2µSe(∇v∞)) = 0 ∀x ∈ Ω(0), (5.41)
(λStr(v∞)I3 + 2µSe(∇v∞))ν = 0 ∀x ∈ ∂Ω(0), (5.42)

which has the solution v∞ = 0.
The limit problems hold in sense of distributions i.e. for all test functions in C∞(Ω∞; R3).
Since the limit problem for U∞ is uniquely solvable for fixed representatives in the class of equiv-
alence RD and for v∞ uniquely solvable in the class of equivalence RDt, this yields not only
convergence of a subsequence, but strong convergence of U ε → U∞ in L2H1 and strong convergence
of vε → v∞ in L2H1.
We see that v∞ = ∂tU

∞, i.e. the homogenisation limit and the time derivative commute, what
cannot be expected in general. Furthermore for boundary values on the interfaces we have r−1

i U ε|Ii ·
ν → a† + b†(ri) strongly in L2.

Proof. We recall, that the time-dependent domain Ωε(t) enters in the mechanical BVP only as
parameter. We test the mechanical BVP with an arbitrary function Φ ∈ C∞(Ωε; R3) and integrate
by parts

0 =
∫

Ωε
∇ · (λStr(∇U ε)I3 + 2µSe(∇U ε))Φdx

= −
∫

Ωε
(λStr(∇U ε)I3 + 2µSe(∇U ε)) · ∇Φdx

−
∫
∂Ωε

(p− p0)ΦdA+−
∑
i∈Nε

∫
Ii

(3kL(−ε3(δR + h∗L(ri) + U ε · ν
ri

) + ε3 2σ
ri

+ pL)ΦdA

= −
∫

Ωε
(λStr(∇U ε)I3 + 2µSe(∇U ε)) · ∇Φdx

−
∫
∂Ωε

(p− p0)ΦdA+ ε3 −
∑
i∈Nε

∫
Ii

(−p+ 2σ
ri

)ΦdA.

As ε→ 0 this converges with the uniform bound on U ε ∈ H1 and since σS is linear in ∇U ε, to

0 = −
∫

Ω∞
(λStr(∇U∞)I3 + 2µSe(∇U∞)) · ∇Φ−

∫
∂Ω∞

(p− p0)ΦdA

and by integrating by parts back we find the homogenised mechanical BVP. Analogously the result
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5.6. Homogenised problem with kinetic equation

for the velocity problem follows.
We get by the corrector result of the mechanical monopole approximation, see Lemma 5.4, that

lim
ε→0
−
∫
Ii

U ε

ε3ri
→ a† + b†(r),

where a† as in (3.61) and b† as in (3.63).

Lemma 5.9 (Convergence of the nonlinearities). From Th. 5.5 follows
1) The function X , which is nonlinear in uε, converges strongly to a constant X∞ as uε to u∞

strongly in L2.
2) The function X, which can depend nonlinear on −

∫
Ii U

ε · ν, converges to a function X∞, which
depends only on ri. This holds for arbitrary ri ∈ Jr, hence we can consider X∞ as function
of r ∈ Jr.

3) The function Ξ converges strongly to a constant Ξ∞ as uε to u∞ strongly in L2.

Proof. We note, that in general nonlinear functions are not continuous w.r.t. weak convergence.
But here we have:

1) According to Assumption 5.31 we have X (uε) = Const(1 + ε9Y y(uε)) and y is continuous.
We use, that the maximum principle is uniformly in ε (see Corollary 5.1) and estimate

‖X (uε)‖L∞ ≤ Const(1 + ε9Y const|uε|L∞) ≤ Const(1 + const2ε) (5.43)

with constants independent of ε. Thus ‖X (uε)− Const‖L∞ → 0 as ε→ 0.
2) Due to Th. 5.6 together with Assumption 5.2 we have strong convergence of r−1

i U ε|Ii →
a† + b†(ri). Inserting this into X yields X∞(ri) = X(ri, a† + b†(ri)) for every ri.

3) Follows analogously as 1).

Theorem 5.7 (Problem EH for the homogenised functions in regime (DC)). Let for the data hold
u0
ε → u0

∞ in L2, ν0
ε → ν0 in [C]′ as ε→ 0 then the limits u∞, U∞ and νt∞ from Theorem 5.5 solve

the following limit problems, which we refer to as the Problem EH.
The homogenised diffusion problem is

−∆u∞ + 4π
∫
Jr
r(u∞ − uint(r))dνt = 0 ∀x ∈ Ω(0) ∀t ∈ Jt, (5.44)

∇u∞ · ν = 0 ∀x ∈ ∂Ω(0) ∀t ∈ Jt, (5.45)
u∞(·, t = 0) = u0

∞ ∀x ∈ Ω(0), (5.46)

where u∞ depends on time and varies in space as νt. The Stefan condition translates into an
evolution equation for the density, a so-called kinetic equation,

∂tν
t + ∂r(νt

u∞ − uint(r)
rX∞(r) ) = 0 ∀x ∈ Ω(0) ∀t ∈ Jt, (5.47)

νt|t=0 = ν0 ∀x ∈ Ω(0). (5.48)

The limit diffusion equation (5.44) holds for all test functions ζ ∈ H1 and for a.e. t ∈ Jt i.e.∫
Ω(0)
∇u∞ · ∇ζ dx = 4π −

∫
Ω(0)

∫
Jr
r(u∞ − uint(r)) dνt.
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Chapter 5. Rigorous Homogenisation

The kinetic equation (5.47) holds in the following weak sense

d

dt
−
∫

Ω(0)

∫
Jr
ξ dνt = −

∫
Ω(0)

∫
Jr
∂rξ

u∞ − uint(r)
rX∞(r) dνt

distributionally in t ∈ Jt for all test functions ξ ∈ C∞(Ω∞; R).
The homogenised mechanical BVP and the homogenised velocity problem, as derived in Th. 5.6,
have the explicit solution

U∞ = (p− p0)x ∀x ∈ Ω(0) ∀t ∈ Jt, (5.49)
v∞ = 0 ∀x ∈ Ω(0) ∀t ∈ Jt. (5.50)

and enter as parameters.

By the homogenisation procedure our Problem E has simplified to a limit problem (5.44) – (5.48)
for u∞ and νt, which is a inhomogeneous Laplace equation for u∞ coupled to the kinetic equation
for νt.

Proof. From Th. 5.5 we have the strong convergence of uε in L2 and weak convergence of uε in H1

to the limit u∞.
We consider again capacity potentials φi of Bε3ri(Xi) with respect to Bε/2(Xi) for all i ∈ {1, ...,N 0}
as defined in Def. 5.5. With the help of these capacity potentials we can test the diffusion problem
in a neighbourhood of the droplets, i.e. in Σε

i and examine what happens when droplets “shrink”
to points in the limit ε→ 0.
Step 1: Boundary conditions on the interface
Let ζ ∈ C∞0 (Jr) and Φ ∈ C. We show

−
∫
Jt
ζ −
∑
i∈Nε

Φ(Xi, ri)
∫
Ii

uε∇φi · ν dt→ 4π
∫
Jt
ζ

∫
Jr

Φru∞dνtdt. (5.51)

W.l.o.g. Riext = 1
2 . Additionally to the capacity potentials we define other test functions ψi for all

i ∈ {1, ...,N 0
ε } on BεRiext(Xi) by

ψi(x, t) := 4ri(ε2(Riext)2 − |x−Xi|2) = ri(ε2 − 4|x−Xi|2),

which we extend with zero outside of BεRiext(Xi). We see

|ψ| ≤ ε2ri. (5.52)

We find ∂|x−Xi|ψi = −8ri|x−Xi| and hence ψi has the following properties:

∂νψi = −4εri = 4r2
i (1− 2ε2ri)∂νφ ∀x ∈ ∂Σε

i \ Iεi ,
‖∇ψi‖L∞(B

εRi
ext

(Xi)) ≤ 4εri, (5.53)

∆ψi = 2
|x−Xi|

∂|x−Xi|ψi + ∂2
|x−Xi|ψi = −24ri.

Furthermore

Dtψi = ṙi(ε2 − 4|x−Xi|2)− 8rivε · (x−Xi), (5.54)
|Dtψi| ≤ ε(kε(1− 4ε4r2

i ) + 4ri‖vε‖L∞) ≤ const ε (5.55)
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5.6. Homogenised problem with kinetic equation

with a constant independent of ε.
We test the diffusion equation with −ψi in Σε

i and integrate by parts,

−
∫

Σεi
(ε3DtnAs(uε) + ε3nAs(uε)∇ · v)ψi = −

∫
Σεi

∆uεψi

=
∫

Σεi
∇ · (uε∇ψi)− uε∆ψi =

∫
∂Σεi \I

ε
i

uε∂νψi + 24ri
∫

Σεi
uε −

∫
Ii

uε∂νψi. (5.56)

On Ωi,ε
L we use Def. 5.4 for uε|Ωi,εL and add a creative zero

0 = −
∫

Ωi,εL
∆uεψi =

∫
Ωi,εL
∇ · (uε∇ψi)− uε∆ψi =

∫
Iεi

uε∂νψi + 24ri
∫

Ωi,εL
uε

and get together with (5.56)

−
∫

Σεi
(ε3DtnAs(uε) + ε3nAs(uε)∇ · v)ψi =

∫
∂Σi\Ii

uε∂νψi + 24ri
∫
B
εRi
ext

(Xi)
uε.

We integrate over time (τi /∈ (t1, t2) ∀i ∈ N ε), add up and get the following estimate∣∣∣∣∣∣
∫ t2

t1
−
∑
i∈Nε

Φ(Xi, ri)


∫
∂Σεi \I

ε
i

uε∂νψi + 24ri
∫
B
εRi
ext

(Xi)
uε


∣∣∣∣∣∣

≤ −
∑
i∈Nε

Φ(Xi, ri)

∣∣∣∣∣∣
[∫

Σεi
nAs(uε)

]t2
t1

∣∣∣∣∣∣max
i
|ψεi |+

∣∣∣∣∣
∫ t2

t1

∫
Σεi
nAs(u)Dtψi

∣∣∣∣∣


≤ ‖Φ‖C0(R3×Jr)

(
‖nAs(uε)‖L∞(ΩεS) max

i
‖ψi‖C0(ΩεT ) + ε3‖nAs(uε)‖L∞(ΩεS,T ) max

i
‖Dtψi‖C0(ΩεT )

)
.

We use (5.52), (5.53) and that, nAs is uniformly bounded. Let t1 = 0, t2 = T . Then we have

∫ T
0
−
∑
i∈Nε

Φ(Xi, ri)


∫
∂Σi\Ii

uε∂νψi + 24ri
∫
B
Ri
ext

(Xi)
uε

 ≤ C ε2

with a constant C independent of ε.
We define now

Ψε(x, t) := 24−
∑
i∈Nε

ri(t)Φ(Xi, ri(t))IB
εRi
ext

(Xi)(x),

and see with
lim
ε→0

( 1
ε3

∫
B
εRi
ext

(Xi)
Ψεζ) = 4π

3 · 23 24ri ζ(Xi)

for arbitrary ζ ∈ C∞0 (R3) that∫
Jt

∫
Ωε

Ψεξdxdt→ 4π
∫
Jt
−
∫

Ω(0)

∫
Jr
rξdνtdt

as ε→ 0 for arbitrary test functions ξ ∈ C∞0 (Ω× Jt).
We want to pass to the limit in the term∫ T

0

∫
Ωε

Ψεuεdxdt, (5.57)
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where both sequences are only weakly convergent, but IΩε → IΩ(0) strongly.
Now we can apply the theorem of compensated compactness as stated in [CD99], Th. 13.10, to
(5.57), where we exploit, that uε is “good” in x, while Ψε is “good” in t. Therefore we write
Ψεuε as scalar product of W ε = (Ψε, 1, 1, 1)T and V ε = (uε, 0, 0, 0) and consider for the mo-
ment as coordinates (t, x1, x2, x3). div W ε is bounded in L2((0,∞) × Z) by ∂tΨε and the em-
bedding L2(Z) ↪→ H−1(Z) is compact. curl V ε is antisymmetric, with the only non-zero entries
(curl V ε)1,2 = −(curl V ε)2,1 = ∂x1u

ε, (curl V ε)1,3 = −(curl V ε)3,1 = ∂x2u
ε and (curl V ε)1,4 =

−(curl V ε)4,1 = ∂x3u
ε. curl V ε is bounded in [L2((0,∞)×Z)]4×4 by 2

∫∞
0
∫
Z |∇uε|2. Hence we find∫ T

0

∫
Ωε

Ψεuε =
∫ T

0

∫
Ωε
W ε · V ε →

∫ T
0

∫
Ωε
W∞ · V∞ = 4π

∫
Jt
−
∫

Ω(0)

∫
Jr
ru∞dνtdt

and have demonstrated (5.51).
Step 2: The kinetic equation
By suitably inserting the capacity potential φi and by integration by parts we get∫

Iεi

∇uε · ν =
∫
Iεi

∇uε · νφi = −
∫

Σεi
∇uε · ∇φi −∆uεφi

=
∫

Σεi
uε∆φi −

∫
Σεi

∆uεφi −
∫
∂Σεi \I

ε
i

uε∇φi · ν +
∫
Iεi

uint(ri)∇φi · ν

= −
∫

Σεi
ε3(X (uε)(∂tuε + vε · ∇uε) +∇ · vε Ξ(uε))φi −

∫
∂Σεi \I

ε
i

uε∇φi · ν

− 4πε3

1− 2ε2ri
riuint(ri), (5.58)

where in the last step we use (5.19). Let Φ ∈ C. We differentiate the discrete distribution w.r.t.
time,

d

dt
−
∑
i∈Nε

Φ(Xi, ri)

= −
∑
i∈Nε

∂rΦ(Xi, ri)ṙi = −
∑
i∈Nε

∂rΦ(Xi, ri)
ε3

4πε6r2
iX(ri,−

∫
Iεi
U ε · ν)

∫
Iεi

∇uε · ν dA

= −−
∑
i∈Nε

∂rΦ(Xi, ri)
1

4πε3r2
iX(ri,−

∫
Iεi
U ε · ν)

∫
∂Σεi \I

ε
i

uε∇φi · ν dA by (5.58)

−−
∑
i∈Nε

∂rΦ(Xi, ri)
uint(ri)

riX(ri,−
∫
Iεi
U ε · ν)

1
1− 2ε2ri

−−
∑
i∈Nε

∂rΦ(Xi, ri)
1

4πr2
iX(ri,−

∫
Iεi
U ε · ν)

∫
Σεi

(X (uε)(∂tuε + v · ∇uε) +∇ · v Ξ(uε))φi dx. (5.59)

We estimate the term

−
∑
i∈Nε

∂rΦ(Xi, ri)
1

4πr2
iX(ri,−

∫
Iεi
U ε · ν)

∫
Σεi

(X (uε)(∂tuε + v · ∇uε) +∇ · v Ξ(uε))φi dx

≤
‖∂rΦ‖C0(Ω(0))

4πr3/2
min min X

√
2πε

3

3 sup
i

(maxX (‖∂tuε‖L2(Σεi ) + ‖vε‖L∞(Σεi )‖∇u
ε‖L2(Σεi )) + max Ξ ‖vε‖L2(Σεi )),

where we use (5.25). Hence this volume integral vanishes as ε→ 0. With step 1 and with Lemma
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5.9, 2) for the convergence of X the equation (5.59) converges with Th. 5.2 and Th. 5.4 to

∂t

∫
Jr

Φ(Xi, ri)dνt =
∫
Jr
∂rΦ(Xi, ri)

u∞ − uint(r)
rX∞(r) dνt

forall Φ ∈ C and hence the given kinetic equation holds in sense of distributions i.e. in C′.
Step 3: The diffusion equation
Let again ζ ∈ C∞0 (Jt), Φ ∈ C. We test the diffusion equation with ζΦ and integrate the third term
by parts:

0 =
∫
Jt

∫
ΩεS

(ε3DtnAs(uε) + ε3nAs(uε)∇ · vε −∆uε)ζΦ dx dt

=
∫
Jt
ζ{
∫

ΩεS
ε3(DtnAs(uε) + ε3nAs(uε)∇ · vε)Φ +∇uε · ∇Φdx+ ε3 −

∑
i∈Nε

∫
Ii

∇uε · νΦ dA}dt.

We choose Φ s.t. Φ|Ii = const(i) and get by (5.58)

0 =
∫
Jt
ζ

{∫
ΩεS
ε3(X (uε)(∂tuε +∇uε · vε) +∇ · vε Ξ(uε))Φ +∇uε · ∇Φ dx

+−
∑
i∈Nε

(∫
Iεi

uint(ri)∂rφiΦ dA−
∫
∂Σεi \I

ε
i

uε∂rφi dA Φ|Ii

)}
dt.

(5.60)

Since uε in L2H1 and IΩεS → IΩ(0) strongly and since ∂tuε is uniformly bounded according to Th.
5.4 this converges with step 1 to

0 =
∫
Jt
ζ

∫
Ω(0)
∇uε · ∇Φ dx dt− 4π

∫
Jt
ζ −
∫

Ω(0)

∫
Jr

(u∞ − uint(r))rΦ dνt dx dt, (5.61)

from where we get

−∆u∞ + 4π
∫
Jr
r(u∞ − uint(r))dνt = 0 ∀x ∈ Ω(0) ∀t ∈ Jt,

∂νu
∞ = 0 ∀x ∈ ∂Ω(0) ∀t ∈ Jt.

This yields that u∞(t) does depend on x and t.

Corollary 5.3 (Conservation of mass and substance). We have nAs → n∞As(1 − 3a†), nGa →
n∞Ga(1− 3a†) and ρS → ρ∞S (1− 3a†) strongly in L∞L∞ as ε→ 0. The conservation of As, Ga and
mass is preserved under the limit i.e.

|Ω(0)| n∞As(1−
p− p0
kS

) = NR
0 X0, (5.62)

|Ω(0)| n∞Ga(1−
p− p0
kS

) = NR
0 (1−X0), (5.63)

|Ω(0)| ρ∞S (1− p− p0
kS

) = NR
0 M(X0). (5.64)

Proof. We see immediately that the global conservation for As, Ga and mass hold for all ε due to
(2.38) and (2.40) or due to (3.71) and (3.72). Note that since Y ∼ ε9 the reference values nAs, nGa
and ρS depend on ε, too.
This yields |

∫
Ω nAsdx − NR

0 X0| → 0 in L1 as ε → 0. We know from Assumption 5.3 that nAs →
n∞As(1−3tr(∇U∞)) strongly since uε is bounded uniformly by the maximum principle (Coroll. 5.1)
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and since U∞ exists. Furthermore ∇U∞ = 3a†. In particular nAsL is bounded and we have (5.35).
By the dominated convergence theorem |Ω|nAs = NR

0 X0 follows. The other estimates are shown
analogously.

Assumption 5.4 (The homogenised problem in the dilute scaling regime). For the dilute scaling
regime we expect to find the following problem.
Let for the data hold u0

ε → u0
∞ in L2, ν0

ε → ν0 in [C]′ as ε→ 0 then there exist limits u∞ ∈W 1,∞,
U∞ and νt∞ as in Theorem 5.5 of the critical regime. They solve the following limit problems.
The homogenised diffusion problem is

∆u∞ = 0 ∀x ∈ Ω(0) ∀t ∈ Jt, (5.65)
∇u∞ · ν = 0 ∀x ∈ ∂Ω(0) ∀t ∈ Jt, (5.66)

i.e. u∞ is constant in space and depends only on time and is determined by the next order equation

X∞∂tu∞ + 4π
∫
Jr
r(u∞ − uint(r))dνt = 0 ∀x ∈ Ω(0) ∀t ∈ Jt, (5.67)

u∞(·, t = 0) = u0
∞ ∀x ∈ Ω(0). (5.68)

The Stefan condition translates into an evolution equation for the density, a so-called kinetic
equation,

∂tν
t + ∂r(νt

u∞ − uint(r)
rX∞(r) ) = 0 ∀x ∈ Ω(0) ∀t ∈ Jt, (5.69)

νt|t=0 = ν0 ∀x ∈ Ω(0). (5.70)

The homogenised mechanical BVP and the homogenised velocity problem, are identical as derived
in Th. 5.6 for the critical scaling, and have the explicit solution

U∞ = (p− p0)x ∀x ∈ Ω(0) ∀t ∈ Jt, (5.71)
v∞ = 0 ∀x ∈ Ω(0) ∀t ∈ Jt. (5.72)

5.7. Analysis of the homogenised problem

We do not consider existence and uniqueness for the full problem (5.44) – (5.48) in this study, but
examine a special case later in Chapter 6. A result in a situation similar to this problem is the
result of Niethammer and Velázquez [NV04]. Under suitable assumptions we can prove a partial
result.
We rewrite the kinetic equation (5.47) in the form

∂tν
t + ∂raνtν

t + aνt∂rν
t = 0. (5.73)

Theorem 5.8 (Existence and uniqueness of solutions νt of the kinetic equation). Given initial
data ν0 ∈ C1(Jr) and if u∞ is uniformly continuous in t then exists a unique solution νt of (5.73)
in C2(Jr × Jt).

Proof. The kinetic equation (5.73) is linear in νt = νt(r), ∂tνt and ∂rνt, whereas the coefficients
in front of ∂rνt or νt, namely aνt or ∂raνt , are weakly nonlinear, because these coefficients depend
still on non-local terms of the type

∫
Jr ν

tdr,
∫
Jr r

3νtdr.
Such a first-order PDE with weakly nonlinear coefficient in front of ∂rνt (where in our situation
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the dependence of aνt on νt is the same for all r for fixed t), has as ODE for its characteristic rr0

emanating from r0, where r0 ∈ J arbitrary,

ṙr0(t) = aνt(rr0(t)), (5.74)
rr0(0) = r0, (5.75)

like in case of linear first-order PDE. The coefficient in front of ∂tνt is 1, which implies that we
have always noncharacteristic boundary conditions and hence guarantees, that we can continue the
characteristics of this ODE for all times t ∈ Jt.
The local existence theorem as proved in the book of Evans [Eva02], p.107, Th.2 and its application
to the linear case in [Eva02], p.110, 3.2.5.a corresponds exactly to our situation.
According to the theorem of Picard-Lindelöf (since aνt is smooth and in particular Lipschitz-
continuous in rr0 and uniformly continuous in t) the characteristic equations (5.74) and (5.75) have
a unique solution for all times t ∈ Jt.
Characteristics also cannot cross (i.e. for finite times), because this would contradict the uniqueness
of the characteristics.

5.8. Special initial data for the homogenised problem

At first we consider the critical scaling regime in the case of the discrete initial data from Example
5.1. By our homogenisation we have passed from Problem E, which is a modification of Problem
DCR in regime (DC), with a finite number of droplets at initial time N 0

ε , to an infinite-dimensional
system in the limit N 0 →∞.

Lemma 5.10 (Discrete initial data and the mean field model in the critical scaling regime).
If we have discrete initial data

ν0(r) = 1
K

K∑
i=1

δr0
i
(r), (5.76)

then the infinite-dimensional dynamical system i.e. the kinetic equation (5.47) and the homogenised
mean field equation (5.44) reduce to a mean field model for regime (DC) in the critical scaling, but
with a different equation for the mean field than (3.78) in the dilute regime. This mean field model
is

∆u∞ = 4π 1
K

K∑
i=1

ri(u∞ − uint(ri)) ∀x ∈ Ω(0), (5.77)

∂νu
∞ = 0 ∀x ∈ ∂Ω(0), (5.78)

ṙj = u∞ − uint(rj)
rjX∞(rj)

∀j ∈ {1, ...,K}, rj(t) > rmin, ∀x ∈ Ω(0), (5.79)

for all t ∈ (0, T ) together with the initial conditions (3.51) and (5.46).

Proof. We insert (5.76) into (5.47) and test with rη, η a smooth cut-off function s.t. η = 1 for
r ∈ (rmin + δ,maxi r0

i + δ) and η = 0 for r ≤ rmin and r ≥ maxi r0
i + 2δ, where δ > 0 is arbitrary.

By intergration by parts we get for sufficiently small times t ≤ tδ

∂tri(t)−
u∞(t)− uint(ri(t))
ri(t)X∞(ri(t))

= 0

for all i, ri > rmin. Thus the distribution is of the form νt(r) = 1
K

∑K
i=1 δri(t)(r) for t ∈ [0, tδ] and
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by iteration of this form for all times t ∈ [0, T ). (5.44) reads now

−∆u∞ + 4π 1
K

K∑
i=1

ri(u∞ − uint(ri)) = 0.

We now consider the dilute scaling. Our result will be, that we can identify u∞ with the u in our
mean field model in case of discrete initial data, as introduced in Example 5.1, and if we set h∗ = 0
in our “ad-hoc” mean field model from Subsection 3.3.5.

Lemma 5.11 (Discrete initial data and the mean field model in the dilute scaling regime).
If we have discrete initial data (5.76) then the kinetic equation (5.69) and the homogenised mean
field equation (5.65) reduce to the mean field model for regime (DC), (3.70) and (3.78).

Proof. We proceed as in the last lemma and we get for all i with ri(t) > rmin

∂tri(t)−
u∞(t)− uint(ri(t))
ri(t)X∞(ri(t))

) = 0.

Thus the distribution is of the form νt(r) = 1
K

∑K
i=1 δri(t)(r) for all times t ∈ (0, T ). (5.65) reads

now

X∞∂tu∞(t) + 4π 1
K

K∑
i=1

ri(u∞(t)− uint(ri)) = 0.

If we identify u∞ with our heuristically derived mean field u of the mean field model for regime (DC)
from Subsection 3.3.5 and further identify X∞ with X and X∞ with X , then the infinite-dimensional
system reduces to the mean field model for regime (DC).

We emphasise, that u∞ depends on t and x.
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Analysis of mean field models

Despite our coupled PDEs could be solved numerically by the approximation scheme, which we
used in Section 4.3 to prove existence and uniqueness, this procedure is quite slow and we are
interested in simulations of several thousand droplets, which is a realistic number in experiments,
see Section 3.5. As we considered in Chapter 3 we can exploit the scaling behaviour of our system
and look, what happens if we make the scaling parameter ε arbitrarily small. This leads to so
called mean field models, which are first order approximations in ε of the full Problems D and DI.
We recall that the mean field models on one hand are received from our Problems D or DI by
formal homogenisation for the dilute scaling regime in Sections 3.3 and 3.4. On the other hand,
in case of regime (DC) in the critical scaling, mean field models from Problem E are obtained by
inserting special initial data into the kinetic equation, which we rigorously derived in Chapter 5,
for ε0, see Section 5.8.
In this chapter we consider the full mean field model including terms with h∗ derived by formal
homogenisation from the full Problems D or DI in the dilute scaling regime. We consider numerical
simulations for fixed ε = ε0 = 10−1.
According to our discussion in Section 3.5 we would have to consider N 0 = N0

0 ε
−3
0 ≈ 4200 pre-

cipitates (see also Table 3.1) and K different droplet radii, if we assume an initial distribution of
radii of the type of Example 5.1. Since it turns out, that we can only run simulations in reason-
able time for small numbers of K we consider only the case of K ≤ 20 and assume that these K
droplets are periodically distributed. By abuse of notation we write in the following N 0 = K and
N(t) = {i ∈ {1, ...,K}|ri(t) > rmin}.
In the following we demonstrate, that these mean field models, which are macroscopic models, can
not only be simulated much easier and faster, but the analysis of these models gives also some
insight on the macroscopic behaviour of the system e.g. equilibria and its stability. We consider
the mean field models with variables ri and u i.e. (3.70) and (3.78) for regime (DC) as well as
(2.163) and (3.85) for regime (IC).

6.1. The mean field problems

The systems of ODEs (3.70) and (3.78) as well as (2.164) and (3.85) are autonomous. Our models
lead hence to the analysis of dynamical systems, which we call the mean field problems.
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Chapter 6. Analysis of mean field models

Definition 6.1 (Mean field problems).

ṙi(t) = H(ri(t), u(t)) ∀i ∈ {1, ...,N (t)} ∀t ∈ (0, T ), (6.1)
u̇(t) = G({ri(t)}1≤i≤N , u(t)) ∀t ∈ (0, T ), (6.2)

where in the regime (DC)

H := u− uint(ri)
riX(ri)

,

G := −4π−
∑
i∈N ri(u− uint(ri))
X (u)|ΩS({ri(t)}, u)|

,

while in the regime (IC)

H := u− uL(u, ri)
Z(u, ri)

G := −4π
−
∑
i∈N r

2
i (u− uL(u, ri)) Z(ri)

X(ri)

X (u)|ΩS({ri(t)}, u)|
,

together with the initial conditions

ri(t = 0) = r0
i , ∀i ∈ {1, ...,N 0}, u(t = 0) = u0. (6.3)

is called the mean field problem.

All other quantities e.g. Rbd are determined in this model by explicit formula.

Remark 6.1 (Discussion of small volume fraction for fixed ε0). The reason for considering |ΩS |
instead of |Ω| in the denominator of the mean field problems i.e. we do not neglect the terms
ε9 −
∑
i∈N r

3
i , is that stable radii exist, which are of order D (see Fig. 6.2), and which have non-

vanishing volume fraction. This means, that terms ε9 −
∑
i∈N r

3
i yield a significant correction for the

particular choice of ε0, while other terms are of higher order.

In the following we consider everything in unscaled dimensionful quantities, unless otherwise stated.
The ODEs (6.2) for regime (DC) and regime (IC) have jumping coefficients if and only if a droplet
vanishes i.e. the right hand side is not Lipschitz continuous in ri and u for all times. Hence we
cannot apply the theorem of Picard-Lindelöf directly, in order to conclude existence and uniqueness
of a solution u for all times directly. But we get

Lemma 6.1 (Existence and uniqueness for the mean field problem). There exists a unique smooth
solution (u, ri) of the dynamical system (6.1) – (6.3) for all t ∈ (0, T ) \ ∪i∈N(0)τi which is at least
continuous for all t ∈ (0, T ).

Proof. We check that the r.h.s. is Lipschitz continuous in ri and u as long as no droplet vanishes.
If we reach t = τi for some i ∈ N(0) we start at time τi+ again with new initial data and
N(τi+) := N(τ−i ) \ {i} and get again a smooth solution. Hence the global solution is smooth for
all times t 6= τi, i ∈ N(0) and at least continuous in τi, i ∈ N(0).

We assume for the rest of this chapter that for regime (IC) we can approximate

u− uL(u, ri) ≈ u− uint(ri). (6.4)
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This can be motivated by the approximation (3.88), if we assume Hµ̃/Hm̃ = 1 and inserting therein
the approximation (2.167) for XA

L . The approximation (6.4) allows in particular to treat the two
regimes (DC) and (IC) simultaneously in this chapter.
In order to compare the mean field u with radii ri we rewrite u in terms of a radius:
Definition 6.2 (Mean field radius). We define the mean field radius as

r(t) :=


rmin ; u(t) ∈ [uint(rmin),+∞),
u−1
int(u(t)); u(t) ∈ (limr→+∞ uint(r), uint(rmin)),

+∞ ; u(t) ∈ (−∞, limr→+∞ uint(r)].
(6.5)

Since uint : r ∈ Jr → (limr→+∞ uint(r), uint(rmin)) is continuous and strictly monotone the mean
field radius r is well-defined.

This allows to rewrite (6.2) and our dynamical system can now be formulated as

ṙi(t) = H2(ri(t), r(t)) ∀i ∈ {1, ...,N (t)} ∀t ∈ (0, T ), (6.6)
ṙ(t) = G2({ri(t)}1≤i≤N , r(t)) ∀t ∈ (0, T ), (6.7)

where we define for regime (DC)

H2 = uint(r)− uint(ri)
riX(ri)

, G2 = u−1
int
′(uint(r))G = 4π

|u′int(r)|
−
∑
i∈N ri(uint(r)− uint(ri))
X (r)|ΩS({ri(t)}, r)|

where we use u′int(r) < 0 or for (IC)

H2 = uint(r)− uint(ri)
Z(u, ri)

, G2 = 4π
|u′int(r)|

−
∑
i∈N r

2
i (u− uint(ri))

X(r,ri)
Z(r,ri)

X (r)|ΩS({ri(t)}, r)|
,

with initial conditions

ri(t = 0) = r0
i , ∀i ∈ {1, ...,N 0}, r(t = 0) = r0 := u−1

int(u
0). (6.8)

We do not change notation of X (for (IC)), Z, X and |ΩS |, though they are now functions in r
instead of u.
There holds a maximum principle for u or for the “critical” radius of the dynamical system, which
is r. We prove the maximum principle in Lemma 6.4.
Remark 6.2 (Mean field problem with approximation of uint). In Appendix C.1.2 we show, that
our strictly monotone functions yint or uint can be approximated for small mechanical terms. By
(C.38) we approximate yint(ri) ≈ 1 + c̃1 + c̃2

ri
with strictly positive constants e.g. c̃1 ≈ 0.05 and

c̃2 ≈ 2σ
RTnRG

≈ 0.55 and together with (A.17) we find uint(ri) ≈ 1+µ̃
µ̃ (c̃1 + c̃2

ri
) ≈ c1 + c2

ri
with c1 ≈ 0.1

and c2 ≈ 1.1. This approximation allows later to compare our results with the results of classical
LSW theory. If we assume

uint(r) = c1 + c2
r
, (6.9)

i.e. c1 := limr→+∞ uint(r), then r = c2
u−c1 . Furthermore we approximate X(ri) ≈ X(1) =: Xc since

this functions depends “weakly” on its arguments. Then the ODEs read for regime (DC)

ṙi = c2

1
r −

1
ri

riX(ri)
= c2

ri − r
r2
i rXc

∀i ∈ {1, ...,N (t)} ∀t ∈ (0, T ), (6.10)

ṙ = 4π r −
∑
i∈N (ri − r)

X (r)|ΩS({ri}, r)|
∀t ∈ (0, T ) (6.11)
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and c1 drops out completely.
For (IC) our approximations are with Z(u, ri) ≈ Z(uint(1), 1) =: Zc

ṙi = c2

1
r −

1
ri

Zc
= c2

ri − r
rirZc

∀i ∈ {1, ...,N (t)} ∀t ∈ (0, T ) (6.12)

ṙ = 4π
r −
∑
i∈N ri(ri − r)Xc

Zc
X (r)|ΩS({ri}, r)|

∀t ∈ (0, T ) (6.13)

First we examine the system of coupled ODEs (6.6) – (6.8) analytically.

6.2. Available free energy for mean field models

In this section we work with scales and with dimensions.
For the approximation of the availability by the mean field models holds

Lemma 6.2 (Availability for mean field model).
1) The availability for the mean field model, which we get by plugging in the approximation of u by
uA, of U by W and the corresponding approximations of the Stefan condition, is for both regimes
(DC) and (IC) non-increasing with time.
2) We have as explicit formula for the availability for the mean field model in the regimes (DC)

Aε = |Ω|(Rbd)[p0 − p+ (µchemGaS
(1−XS) + µchemAsS

XS)(u)(3− YV )nRG(1− p0 − p
kS

)]

+ 4π
3 ε9 −

∑
i∈N

r3
i (µchemGaS

− µchemAsS
)(u)(XS(u)−Xi

L)(3− Y V )nRG

+ 4πε9 −
∑
i∈N

r2
i (1−

2
3
ρL
ρS

)σR,

(6.14)

while in regime (IC)

Aε = |Ω|(Rbd)[p0 − p+ (µchemGaS
(1−XS) + µchemAsS

XS)(u)(3− YV )nRG(1− p0 − p
kS

)]

+ 4π
3 ε9 −

∑
i∈N

r3
i [(µchemGaS

− µchemAsS
)(u)(XS(u)−Xi

L)

+ (vνGaL(ṙi)(1−Xi
L) + vνAsL(ṙi)Xi

L − ṙi)](3− Y V )nRG

+ 4πε9 −
∑
i∈N

r2
i (1−

2
3
ρL
ρS

)σR.

(6.15)

Proof.
1) Follows directly from (A.32) which reads for our mean field problems for regime (DC)

d

dt
Aε = −

∫
ΩS
|∇uA|2 ≤ 0.

For the regime (IC) this reads

d

dt
Aε = −4π −

∑
i∈N

r2
i (([[µAs]](uA, ri) + 4GSbi

1
ρS

)2 + ([[µGa]](uA, ri) + 4GSbi
µ̃

ρS
)2) ≤ 0.
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2) First consider the regime (DC). With the mean field model the availability (A.35) simplifies to

Aε = |Ω|(Rbd)[p0 − p+ (µchemGaS
YGa + µchemAsS

YAs)(u)nRG(1− 3a)]

+ 4π
3 ε9 −

∑
i∈N

r3
i [−(µchemGaS

YGa + µchemAsS
YAs)(u)nRG(1− 3a)

+ ((µchemGaS
(u)(1−Xi

L) + µchemAsS
(u)Xi

L)nRG(3− Y V )(1− 3(aiL − δR − h∗L(ri)))

+ 3kL(δR + h∗L(ri)−
ρL
ρS

(a+ bi)))]

+ 4πε9 −
∑
i∈N

r2
i (1−

2
3
ρL
ρS

)σR

(6.16)

and with the definition of XS this can be rewritten as

Aε = |Ω|(Rbd)[p0 − p+ (µchemGaS
(1−XS) + µchemAsS

XS)(u)(3− YV )nRG]

+ 4π
3 ε9 −

∑
i∈N

r3
i [(µchemGaS

− µchemAsS
)(u)(XS(u)3− YV (u)

3− Y V
(1− 3a)−Xi

L(1− 3(aiL − δR − h∗L(ri))))

+ r3
i [µchemGaS

(u)3(a− aiL + δR + h∗L(ri))](3− Y V )nRG + 3kL(δR + h∗L(ri)−
ρL
ρS

(aiL − δR))]

+ 4πε9 −
∑
i∈N

r2
i (1−

2
3
ρL
ρS

)σR

By neglecting higher order terms in h̃ and ε we receive (6.14).
For regime (IC) we have

Aε = |Ω|(Rbd)(p0 − p) + (|Ω|(Rbd)−
4π
3 ε9 −

∑
i∈N

r3
i )(µchemGaS

YGa + µchemAsS
YAs)(u)nRG(1− 3a)

+ 4π
3 ε9 −

∑
i∈N

r3
i ((µchemGaS

(1−Xi
L) + µchemAsS

Xi
L)(3− Y V )nRG(1− 3(a+ bi) + 3h∗L(ri)))

+ (vGaL(ṙi) · ν(1−Xi
L) + vAsL(ṙi) · νXi

L − ṙi)(3− Y V )nRG(1− 3(aiL + δR − h∗L
i))

+ 3kL(δR + h∗L(ri)−
ρL
ρS

(a+ bi)))]

+ 4πε9 −
∑
i∈N

r2
i (1−

2
3
ρL
ρS

)σR

and in our approximation this yields finally (6.15).

The explicit formulas for the availability (6.14) and (6.15) allows in principle to determine stable
and unstable equilibria as maxima, minima and saddle points of the availability.

6.3. Stability and instability of a finite number of liquid droplets

A natural question to ask is how the dynamical system deduced from the mean field model evolves
with time. Here we consider the case of a finite number of liquid droplets N 0 at initial time. In
this section we classify stationary solutions or equivalently referred to as equilibrium of the mean
field model and discuss their stability. Finally we determine the long-time behaviour of the system.

Definition 6.3 (Stationary solution or equilibrium). We define as stationary solution a time-
independent radii distribution {r∞i }1≤i≤N∞ , r∞i ∈ Jr, a fixed mean field u, a fixed domain Ω∞ and
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Figure 6.1.: Availability [in 10−27 N m] versus radii [in 10−9 m] for the mean field model of a system
with N 0 = 2 and here NR

0 = 2.39·10−14mol, p0 = 105Nm−2. The equilibrium (r1 = r2
crit, r2 = r2

crit)
is unstable, (r1 = r1

crit, r2 = 0), (r1 = 0, r2 = r1
crit) and (r1 = r2

stab, r2 = r2
stab) are metastable saddle

points and (r1 = r1
stab, r2 = 0), (r1 = 0, r2 = r2

stab) are stable equilibria.

a fixed number of particles N∞ such that

0 = H(r∞i , u∞) ∀i ∈ {1, ...,N∞},
0 = G({r∞i }1≤i≤N∞ , u∞),

i.e. we require
ṙi(t) = 0, u̇(t) = 0, d

dt
|Ω(t)| = 0, N = const. (6.17)

We abbreviate the fraction of droplets, which exist at time t or in an equilibrium, w.r.t. the number
of droplets at initial time t = 0 by η(t) := N (t)

N (0) or η∞ := N∞
N (0) .

We can calculate explicitly equilibria {r∞i }1≤i≤N∞ , u∞, Ω∞ and N∞.

Lemma 6.3 (Necessary and sufficient conditions on equilibria). For both regimes (DC) and (IC)
there holds:
1) We have equilibria i.e. the conditions (6.17) hold with N∞ ∈ {1, ...,N 0} droplets, iff

r∞i = u−1
int(u

∞) =: rstat ∀i ∈ N(t), (6.18)

u∞ = X−1
S (

X0 − 4π
3 η
∞r3

statXL(rstat)nL(rstat)
NR

0

1− 4π
3 η
∞r3

stat
nL(rstat)
NR

0

), (6.19)

|ΩR,∞ | = |Ω
∞|
N 0 = 1

ρAS (u∞)
[MR

0 −
4π
3 η∞r3

statρL(rstat)] + 4π
3 η∞r3

stat. (6.20)

Therefore we do not make any assumption on the shape of Ω∞. If Ω0 = BRbd(0) then (6.20) is
equivalent to

R∞bd = 3

√
3

4π |Ω
∞| = 3

√
N 0( 1

ρAS (u∞)
[ 3
4πM

R
0 − η∞r3

statρL(rstat)] + η∞r3
stat).
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6.3. Stability and instability of a finite number of liquid droplets

2) If we assume that u∞ is concave as function of rstat, if we assume that uint is convex in rstat and
if limr→∞XS(uint(r)) < X0, then the condition (6.18) has two solutions for the stationary radius
rstat for sufficiently large NR

0 ,
rstat ∈ {r(N∞)

crit , r
(N∞)
stab }.

3) In the special case N∞ = 0 we have equilibria iff

u∞ = X−1
S (X0), (6.21)

|ΩR,∞| = |Ω
∞|
N 0 = MR

0
ρAS (u∞)

. (6.22)

Proof.
1) We have due to the Stefan condition (2.153)

u = uint(r∞i ) ∀i ∈ {1, ...,N∞}

and because uint is continuous and strictly monotone in the radius this holds iff all stationary radii
are identical.
Plugging this into (3.73) and (3.74) together with (3.78) and (3.76) yields the other two conditions.
2) The conservation of As (3.71) simplifies by plugging in (6.18) to

NR
0 X0 = (NR

0 −
4π
3 r3

statnL(rstat))XS(u∞) + 4π
3 η∞r3

statnL(rstat)XL(rstat),

that can be expressed, since XS is continuous and strictly monotone, as

XS(u∞(rstat)) =
X0N

R
0 − 4π

3 η
∞r3

statnL(rstat)XL(rstat)
NR

0 − 4π
3 η
∞r3

statnL(rstat)
. (6.23)

The possible values of rstat can be determined as intersections ofXS(u∞(rstat)) withXS(uint(rstat)).
XS(u∞) is concave and strictly monotone decreasing in rstat, while XS(uint(rstat)) is convex and
strictly monotone decreasing in rstat, see Fig. 6.2 and Fig. 6.3. Therewith the difference Ψ∆ :=
XS(u∞)−XS(uint) is concave with Ψ∆(rstat = 0) = X0−XS(uint(0)) < 0 and Ψ∆(rstat = rmax) =
−XS(uint(rmax)) < 0. The equation Ψ∆ = 0 has hence either exactly 0, 1 or 2 solutions depending
on the sign of Ψ∆(rd) where

rd := max
rstat∈(rmin,rmax)

rstat

We consider the family of concave curves Ψ∆(rstat; c∆) which are continuously differentiable in the
parameter c∆ := η∞

NR
0

and have the common point Ψ∆(rstat = 0; c∆) = X0 −XS(uint(0)) < 0. If we
derive Ψ∆ w.r.t. the parameter c∆ we find for fixed rstat

∂c∆Ψ∆(rstat) = 4π
3 r3

statnL(rstat)
X0 −XL(rstat)

(1− 4π
3 η
∞r3

stat
nL(rstat)
NR

0
)2
< 0

since XL ≥ XL according to Lemma 2.4 and XL > X0. We have Ψ∆(rstat; 0) = X0 − XS(uint)
which gets positive for a rstat < u−1

int(X
−1
S (X0)) = rmax where we use our assumption X0 >

limr→∞XS(uint(r)). By the intermediate value theorem there exists c∗∆ s.t. Ψ∆(rstat; c∗∆) > 0 for a
points rstat. Hence for c∆ < c∗∆ and since the curves are concave we can find two intersection points
i.e. solutions of (6.18), which we denominate with rcrit and rstab where 0 < rcrit < rstab < rmax.
By some asymptotics or numerically we see that for η∞

NR
0
< 1

NR
0
, NR

0 sufficiently large, which is a
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Chapter 6. Analysis of mean field models

Figure 6.2.: XS(uint(rstat)) and XS(u∞(rstat))
(red/green line). The equilibria for N∞ = 1
for the total number of atoms N0 = 20 NR

0 i.e.
N 0 = 20, are given as intersections.

Figure 6.3.: Zoom of Fig. 6.2 for small radii,
the intersection gives the critical radius rcrit.
In both figures radii are measured in units of
R0 = 10−9m.

reasonable assumption in our model, Ψ∆ > 0, see Fig. 6.4. We note that, we see from Fig. 6.4 that
we cannot assume vanishing liquid volume fraction in the formulas for Ω(t) and u(t), as pointed
out in Remark 6.1.

Figure 6.4.: The equilibria rcrit and rstab [in 10−9 m] depend on N0 [in units of 1] for N∞ = 1.

We remark, that the reason, why we abbreviate the smaller equilibrium radius rN∞crit as “critical”
radius, is that, that for a single droplet i.e. N∞ = 1 these droplets are critical in the sense that, if
we disturb rcrit a little bit, the system goes away from this radius, see the plot of ṙ1 against r1 in
Fig. 6.5.
Precisely this instability is due to change of sign from − to + in the Stefan condition at rcrit, while
for rstab the change of sign is from + to −, hence rstab is stable for N∞ = 1.
3) Is a special case of 1) and 2) where (6.18) is no condition since N(t) = ∅ and η∞ = 0.
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6.3. Stability and instability of a finite number of liquid droplets

Figure 6.5.: Plot of a typical Stefan condition of regime (DC) for N (t) = 1 i.e.
ṙi in units of [1 nm (10−6 s)−1] as function of ri in [1 nm] in case of N0 =
2.39 · 10−14mol.

Remark: If there exists no intersection at all, then ṙi < 0 i.e. the system reduces the number
of droplets until at least one intersection exists or until N∞ = 0. If there exists exactly one
intersection i.e. rstat = rcrit = rstab then the Stefan condition has no change of sign and hence rstat
is unstable, a “saddle”.
Note that this cannot be enlarged at once for N∞ > 1. But for many droplets we will prove in the
following rigorously that rcrit stays critical. For the moment this can be motivated numerically by
the fact that rcrit is almost independent of N∞, but what can we say about stability of rstab?
We use in the next theorem the definitions of instability, asymptotic stability and stability as
defined by Walter [Wal00].

Theorem 6.1 (Stability of equilibria of the mean field problems). We consider N∞ droplets and
work in this theorem with typical material data as given in Appendix D and with the stated approx-
imations of X, Z and X .
Critical radii (rcrit ≈ 0.2 · 10−10m) are always unstable.
Other stationary radii are unstable for N∞ > 1 and asymptotically stable for N∞ = 1.
For N∞ = 0 the system is stable, but not asymptotically stable.

We emphasise that this result holds for both regimes (DC) or (IC). Hence we cannot decide from
the equilibria if we are in regime (DC) or (IC) or a combination of both i.e. regime (DC & IC).

Proof. We want to apply the theorem of Poincaré-Lyapunov (see [Wal00], S. 278/9, Sätze VII +
VIII ) i.e. we examine the stability of the dynamical system {G,H} by linearisation around the
stationary radii rstat.
We introduce the abbreviations

di := ri − rstat ∀i ∈ N, d := r − rstat.

Furthermore we write
ω({ri}i∈N , r(t)) = 1

4πX|ΩS({ri}, r)|.
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Chapter 6. Analysis of mean field models

In this new variables {di}i∈N , d the linearised system is for (DC)

ḋi = u′int(rstat)(d− di)
rstatX(rstat)

+ o(d2
i , d

2
, did) ∀i ∈ N, (6.24)

ḋ = 1
u′int(rstat)

u̇ = − rstat
ω(rstat)

(η∞d− 1
N 0

∑
i∈N

di) + o(d2
i , d

2
, did), (6.25)

where we use u∞ = uint(rstat). ω(rstat) here is just short for ω({ri = rstat}i∈N , r = rstat).
The system (6.24) and (6.25) can be written in the form

Ḋ = AD

with A an (N∞ + 1) × (N∞ + 1) matrix which represents the coupling of the liquid droplets via
the solid matrix mean field. The entries of the N∞ + 1 vector D are the N∞ distances of the
equilibrium to the radii ri and to the mean field radius r. More precisely

(D)i := di ∀i ∈ N, (D)N∞+1 := d,

(A)i,j := δijA1 ∀i, j ∈ N, (A)i,N∞+1 := −A1 ∀i ∈ N,

(A)N∞+1,j := 1
N 0A2 ∀j ∈ N, (A)N∞+1,N∞+1 := −η∞A2,

where
A1 := − u′int(rstat)

rstatX(rstat)
, A2 := rstat

ω(rstat)
. (6.26)

For (IC) we can argue as for regime (DC), but we have instead of (6.24) and (6.25)

ḋi = u′int(rstat)(d− di)
Z(uint(rstat), rstat)

+ o(d2
i , d

2
, did) ∀i ∈ N,

ḋ = 1
u′int(rstat)

u̇ = − rstat
ω(rstat)

X(uint(rstat), rstat)
Z(uint(rstat), rstat)

(η∞d− 1
N 0

∑
i∈N

di)2 + o(d2
i , d

2
, did).

and instead of (6.26)

A1 := − u′int(rstat)(d− di)
Z(uint(rstat), rstat)

, A2 := rstat
ω(rstat)

X(uint(rstat), rstat)
Z(uint(rstat), rstat)

.

Due to the special structure of the matrix A we can prove by induction over N∞, for N∞ ≥ 1

det(A− λIN+1) = λ(λ+ η∞A2 −A1)(A1 − λ)N∞−1.

For N∞ = 0 the only eigenvalue is 0.
Hence the spectrum of A consists of eigenvalues 0, A1 − η∞A2 and N∞ − 1 times the eigenvalue
A1. Since uint is monotone decreasing A1 > 0 and since

ω(rstat) = 1− ν̃
4π [MR

0 −
4π
3 η∞r3

statρL(rstat)]P ′(uint(rstat)) ≥ 0

together with our assumptions on X for (DC) or on X and Z for (IC) we have A2 > 0.
Due to definition of η∞ we have

A1 > A1 − η∞A2 > A1 −A2.
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6.3. Stability and instability of a finite number of liquid droplets

We have sign(A1 − η∞A2) = sign(−u′int(rstat)ω(rstat) − η∞r2
statX(rstat, uint(rstat)) for example

for (DC). By plugging in concrete values for rstat we see that A1 − A2 > 0 for rstat = rcrit and
A1 − η∞A2 < 0 for rstat = rstab for typical material data in case of both regimes.
We conclude that A has at least one strictly positive eigenvalue λ = A1 unless N = 0, 1. Hence
rstab is unstable if N∞ > 2, and rcrit is always unstable.
The theorem of Poincaré-Lyapunov gives us no information about stability if maxλRe(λ) = 0. But
for N∞ = 1 we already know that rstab is asymptotically stable and for N∞ = 0 the system is also
stable, since droplets cannot appear in our model and hence u = const, but not asymptotically
stable.
Critical droplets are maxima of the availability, other stationary radii (N > 1) are saddles and in
the special case of N = 1 or N = 0 we have minima of the energy. The case of no droplet is a
absolute minimum, but it is not clear if the system can go to the global minimum, since it would
have to pass a “barrier of critical radii” which has relatively high energy. This depends on the
initial energy.

We remark, that the choice of considering the mean field problem (6.6)-(6.8) with an “artificially”
introduced ODE for the mean field radius enabled this form of the proof. Otherwise it is in general
difficult to calculate the eigenvalues.

Remark 6.3 (Availability of equilibria). Alternatively we could prove the last theorem by deter-
mining maxima, minima and saddle points of the Lyapunov function A.
The initially given value of the availability A(0) allows to determine which equilibria are possible,
i.e. these are equilibria with available free energy Aeq ≤ A(t) ≤ A(0).
We emphasise that we work here contrary to Section 6.2 in a notation without ε. For equilibria the
equations (6.14) and (6.15) simplify by using in particular (6.20) in our approximation as

A = M(X0)
M(XS)N

R
0

[
p0 − p

(3− Y V )nRG
+ (µchemGaS

(1−XS) + µchemAsS
XS)(uint(rstat))

]

+ 4π
3 η∞r3

stat[(1−
ρL
ρS

)(p0 − p)

+ ((µchemGaS
(uint(rstat))(1−XL(rstat)) + µchemAsS

(uint(rstat))XL(rstat))

− ρL
ρS

(µchemGaS
(1−XS) + µchemAsS

XS)(uint(rstat)))(3− Y V ))nRG]

+ 4πη∞r2
stat(1−

2
3
ρL
ρS

)σR.

Another representation of this formula is more suitabel to compare with the result in [DD08]. By
starting from (6.16) together with (2.56) and (2.57) and with the further approximation ρL

ρS
≈ 1 we

get

A = |ΩS |(Rbd, {ri}i∈N )(µGaSYGa + µAsSYAs)(u)nRG(1− 3a)

+ 4π
3 −
∑
i∈N

r3
i ((µGaL(u)(1−Xi

L) + µAsL(u)Xi
L)nRL(1− 3(aiL − h∗L(ri)))

+ 4π
3 −
∑
i∈N

r3
i ν · σ

<·,·>
S ν|Ii + 4π

3 −
∑
i∈N

r2
i σ

R

where A corresponds to the formula stated in [DD08], eq. (8.13).
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Chapter 6. Analysis of mean field models

6.4. Convergence to equilibria

Unfortunately we do not have in general some monotonicity of the mean field in time, but we can
state some positivity result for u.

Lemma 6.4 (Maximum principle and monotonicity result for the mean field). Assume N ≥ 1.
1) If u ≤ minJr(uint) then u̇ > 0. In particular u0 > minJr(uint) implies u > minJr(uint) for

all times t ∈ (0, T ).
2) If u ≥ maxJr(uint) then u̇ < 0. In particular u0 < maxJr(uint) implies u < maxJr(uint) for

all times t ∈ (0, T ).

Proof. We start from (6.1) which we rewrite as

u̇(t) = s(t)
ω(t) ,

where ω(t) = X (u(t))|ΩS(t)|, s(t) := −
∑
i∈N νi(t, u(t))(u(t)−uint(ri(t)) with strictly positive weights

νi. For regime (DC) we have νi = 4πri and for regime (IC) we have νi = 4πr2
i

X(u,ri)
Z(u,ri)

. The
denominator ω is strictly positive for fixed T due to estimate (5.18) for the 3rd moment of the radii
distribution. We examine the sign of s.
If u ≤ minJr(uint) all summands are nonpositive and hence u̇ > 0 until u > mini∈N(t)(uint) by
continuity of u. Analogously, if u ≥ maxJr(uint) all summands are nonnegative and hence u̇ < 0
until u > maxi∈N(t)(uint).

Hence we can assume w.l.o.g. u ∈ (minJr(uint),maxJr(uint)).

Lemma 6.5 (Intersection of characteristics). We interpret the mean field radius r(t) = rr0 as
a characteristic for the ODE (6.7) emanating from r(0) = r0. Consider ri(t) = rr0

i
(t) as the

characteristics of the ODEs (6.6) with starting point r0
i respectively.

1) Two characteristics of radii, ri and rj, i 6= j do not cross unless r0
i = r0

j . In the last case the
characteristics coincide.

2) We consider the approximation uint(r) = c1 + c2/r. If there is only one droplet left, w.l.o.g.
droplet 1 and droplet 2 has vanished at time τ2 and r(τ2+) = r1(τ2+), then the characteristic of
the mean field radius r(t) approaches the characteristic r1(t) in infinite time or r1(t) vanishes
in finite time.

Proof. Part 1) follows as for the infinite-dimensional case. We show 2). We work with (6.10) and
(6.11) for (DC) and (6.12) and (6.13) for (IC) i.e. in our situation of only one remaining droplet
the ODE system is for (DC)

ṙ1 = c2
r1 − r
r2

1rXc
, ṙ = 4π r(r1 − r)

X (r)|ΩS(r1, r)|

or for (IC)

ṙ1 = c2
r1 − r
r1rZc

, ṙ = 4π
rr1(r1 − r)Xc

Zc
X (r)|ΩS(r1, r)|

.

This yields for (DC) and (IC) the same relation between radius r1 and mean field radius
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6.5. Typical time-lags, within droplets vanish

ṙ1 = c2
4π
X (r)|ΩS(r1, r)|

r2
1r

2Xc
ṙ.

We abbreviate fd := c2
4π
X (r)|ΩS(r1,r)|

r2
1r

2Xc
. We consider d1 = r1 − r and get for both regimes

ḋ1 = (fd − 1)ṙ = 1
fd

(fd − 1)ṙ1. (6.27)

Let d1 > 0 then ṙ > 0 and ṙ1 > 0 by the Stefan condition (6.10) or (6.12). For sufficiently large r
and r1 we get that fd → 0 and hence ḋ1 < 0 and finally r1 − r → 0.
Otherwise let d1 < 0 then ṙ < 0 and ṙ1 < 0. For sufficiently small r and r1 we get fd > 1 and d1
gets smaller until r1 = r unless r1 has vanished before.

W.l.o.g. we can assume r0
1 ≥ ... ≥ r0

i ≥ ... ≥ r0
N 0 ∀i ∈ N . Due to the last lemma 6.5 characteristics

do not cross and the ranking of droplets is preserved with time i.e. r1 ≥ ... ≥ ri ≥ ... ≥ rN ∀i ∈
N ∀t ∈ Jt where droplets with the highest indices vanish next, which is practical for a numerical
algorithm.

Remark 6.4 (Convergence to equilibria). The last results suggest that we have the following qual-
itative behaviour of the droplet evolution. Droplets with r0

i < r0 vanish at first. If there are only
droplets with r0

i < r0 all droplets vanish. If there exist droplets with r0
j > r0 then the mean field

radius is changing faster than the radii (see Remark 6.6) and is expected to run to a radius close
to a new “metastable” equilibrium

r = u−1
int

(−∑i uint(ri)ri
−
∑
i ri

)
≈ −
∑
i

ri by (6.9) (6.28)

for (DC) or

r = u−1
int

−
∑
i uint(ri)r2

i
X(uint(r),ri)

Z(u,ri)

−
∑
i r

2
i

X(uint(r),ri)
Z(u,ri)

 ≈ −∑i ri
−
∑
i r

2
i

for (IC), where the last approximations is corresponding to Remark 6.2.
The droplets which are crossed by the mean field from below shrink. This succession starts again
after a droplet has vanished, until only one droplet is left, unless we get stuck in a metastable state
e.g. run “occasionally” into a critical radius. Then the mean field goes into the stable equilibrium
r = r1. Our numerical simulations, which are documented in the next section, exhibit the behaviour,
which is described in this remark.

Remark 6.5 (Self-similarity of the mean field problem and stable radii). If we assume X and Z to
be constant in the mean field models, then the candidate for the re-scaling for self-similar behaviour
would be t ∼ ε2

∗ and ri ∼ ε∗ for regime (DC) or t ∼ ε∗ and ri ∼ ε∗ for regime (IC).
But due to the existence of stable radii we cannot expect to find self-similar solutions which hold for
all times. However, we emphasise that the existence of a stable radius is only ensured for N 0 <∞.

6.5. Typical time-lags, within droplets vanish

For given diffusion coefficient D or bulk mobilities BD and BI we found for our original system
in Section 3.5 as time scale of Problem D, for the regime (DC), τ0 = 10−6 s or as time scale of
Problem DI, for the regime (IC), τ I0 = 10−12 s.
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Chapter 6. Analysis of mean field models

Remark 6.6 (Time scales of the mean field problems). For regime (DC) the typical time scales in
the mean field model in the equations (6.10) are

Ti := Xc

c2

rr2
i

|ri − r|
1
R2 τ0 ∀i ∈ N,

while for (6.11) we find as typical time scale

Tm := Y
1

c2| −
∑
i∈N (ri − r)|

R3
bd

R2 τ0.

For regime (IC) we have as approximation for the time scales of (6.12)

TI
i := Zc

c2

rri
|ri − r|

1
R
τ I0 ∀i ∈ N

or for the time scales of (6.13)

TI
m := 1

c2| −
∑
i∈N ri(ri − r)Xc

Zc
|
R3
bd

R
τ I0 .

From (3.79) we find approximately as time scale for the change of volume i.e. for the change of
Rbd for regime (DC) or (IC)

Tbd ∝ ε−9Ti or TI
bd ∝ ε−9TI

i ,

that shows again, that in both regimes the change of the outer boundary takes place on a time scale
which is of order ε9 slower. This allows for the rest of this section to approximate Rbd ≈ Rbd(0) =
103.

For regime (DC) we consider a droplet rj which is going to vanish i.e. rj < r and assume that
the mean field radius is close to the initial mean value of radii, r ≈ RM and that all of the other
droplets are not about to vanish or vanish much slower, −

∑
i∈N ri ≈ RM . Then the radius rj changes

within times of Xc
c2

RM
RM−rj

r2
j

R2
M
τ0, while the mean field varies within times of Y 1

c2
N

RM−rj
109

R2
M
τ0. We

see that the mean field is by a factor Y
XcRM

N
r2
j
≈ 105 N

RMr2
j
slower.

This allows a rough estimate for τj i.e. for the time until first droplets vanish. We approximate
ṙj ≈ − c2

Xc
RM−rj
RMr2

j
. We consider droplets with RM = 1. We solve the approximated ODE for the

initial condition rj(0) = r0
j ≈ 0.9RM = 0.9.

We cannot solve this ODE analytically, but a solution of this ODE has to fulfil

F (rj(t))− F (rj(0)) = c2

Xc
t, F (r) := RM (1

2r
2 +RMr +R2

M ln(RM − r))

which yields

τj = (F (rmin − F (r0
j )))

Xc

c2
τ0 = −RM (1

2((r0
j )2 − rmin)2 +RM (r0

j − rmin) +R2
M ln(

RM − r0
j

RM − rmin
))

≈ 9.944 · 10−1 [10−6 s],
(6.29)

if we assume c2
Xc ≈ 1. If RM = 100 then we have τj = 9.976 ·105 [10−6 s]. We recall that these times

are measured in units of τ0 = 10−6 s.
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6.5. Typical time-lags, within droplets vanish

Analogously for regime (IC) a vanishing droplet changes within times of Zc
c2

RM
RM−rj

rj
RM τ0, while the

mean field changes on the time scale 1
c2

N
(RM−rj) Xc

Zc

109

RM τ0 and we get for a solution of the ODE

ṙj ≈ − c2
Zc
RM−rj
RMrj

G(rj(t))−G(rj(0)) = c2

Zc
t, G(r) := RM (r +RM ln(RM − r))

and thus

τj = (G(rmin)−G(r0
j ))

Zc
c2

= −RM (r0
j − rmin +RM ln(

RM − r0
j

RM − rmin
))

≈ 1.379 [10−12 s]
(6.30)

if we assume c2
Zc
≈ 1. For RM = 100 we find τj = 1.402 · 104 [10−12 s].

We see that, in the (IC) regime it takes longer until droplets vanish, if we had the same time scale
i.e. τ0 = τ I0 , see also Fig. 6.6 for different RM around 1. For larger RM the regime (DC) yields a
longer time-lag τj .

Figure 6.6.: Time-lag τj of a droplet with initial radius r0
j = 0.9R(M) versus initial mean radius

R(M) for regime (DC) and (IC). For smaller R(M) we have larger time-lags for (IC), for larger R(M)
for (DC).

But if we take the time scales as calculated in Section 3.5 than clearly the (IC) regime is important
for smaller times around 10−12s, while the (DC) regime is dominant for larger times 10−6 s.
In experiments larger times τj are observed. Steinegger [Ste01] considers exposure times of the
wafer under heat treatment between 600s = 10min and 7200min = 5d and in this span of time
droplets of radii size of about 10−7m are observed to vanish. The reason to consider droplets, which
are a factor 100 larger, is due to the fact that it is not clear if too small droplets can be detected
at all in experiments.
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If we considered regime (DC) for D = 10−16m2s−1 then we would get τ0 = 10−2s and according to
(6.29) that τj = 9.976 · 103s ≈ 2h57min for r0

j = 100.

For regime (IC) we conclude that for r0
j = 100 we get τj = 1.402 · 104s ≈ 1d14h39min if τ I0 = 1s or

BI = 9.8 · 10−24mol nm−2s−1.
We recall that the scale R0 is fixed by the critical radius and the minimal radius, which are about
1nm.
We consider the behaviour of vanishing droplets by numerical simulations of the mean field mod-
els in the next Section 6.6 for D = 10−12m2s−1 as before, while for (IC) we consider BI =
10−23mol nm−2s−1 which is a factor 109 larger than the interface mobility computed from (3.93),
since the latter value gives a time scale far away from times in experiments.
An ansatz of a quasi-stationary mean field radius i.e. assuming

r = −
∑
i∈N

ri,

approximates the situation TI
i � T(I)

m well, but not the situation T(I)
i � T(I)

m . This shows that
we cannot work with a quasi-stationary version of the mean field equation (6.2) neither in regime
(DC) nor in regime (IC).

6.6. Numerical simulations of mean field models

We analyse the system of coupled ODE (6.6) – (6.8) for regimes (DC) and (IC) numerically in order
to get more insight into the qualitative behaviour of our effective equations with time. Analogously
we could simulate numerically the system of coupled ODE (6.6) with initial conditions (6.8), where
the mean field radius is determined by (3.71) or alternatively the system (6.6) – (6.8) and (3.74).
The mean field model is an approximation for the full problem. We consider typical material data
as given for T = 1100 K in Appendix D for our numerical simulations of the evolution of radii ri(t)
and the critical mean field radius r(t) and keep track of the outer boundary Rbd(t), too.
An aim of our simulations is to compare the regimes (DC) vs. (IC) and to decide by the typical
values for times τj , when droplets vanish, whether the physical processes are in the regime (DC)
or (IC).
Data which has large influence on the simulations are NR

0 , which yields with other parameters the
initial value r0, further the mobilities BD or BI and the surface tension σ. Furthermore we see a
large influence of the shape of the initial radii r0

i , i ∈ N(0) on the evolution.
The next simulations are due to an implementation in MATLAB. The following numerical simu-
lations, see Fig. 6.7 – Fig. 6.9 examine the influence of the regimes on the times τj , where we
have taken NR

0 = 1.267 · 10−10mol, in order to be able to consider larger stable droplets, and initial
radii between 350 · 10−9m and 390 · 10−9m for (IC) N 0 = 3 and (DC) or between 350 · 10−9m and
390 · 10−9m for (IC) and N 0 = 20, equidistantly distributed with a slight stochastic perturbation.
Surface tension and other material data are chosen as given in Appendix D. For (DC) we have
simulated with bulk mobility B = 3.7 · 10−8mol m−1s−1 (which corresponds to D = 10−12m2s−1).
For (IC) we have taken BI = 10−23mol nm−2s−1 instead of the value from (3.93).

Remark 6.7 (Criterion for (DC) or (IC)). One notices a difference in the behaviour of the mean
field radius between regime (DC) and regime (IC). For the first regime r shrinks, while a droplet is
about to vanish and for the second regime r grows in this case, which is probably due to the different
powers ri in the mean field ODEs (3.78) and (3.85). This gives another criteria to decide, which
of the two regimes corresponds to experiments.
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6.6. Numerical simulations of mean field models

Figure 6.7.: Simulation for regime (DC) with N0 = 3 and NR
0 = 1.27 · 10−10mol.

Figure 6.8.: Simulation for regime (DC) with N0 = 20, NR
0 = 1.27 · 10−10mol.

Figure 6.9.: Simul. f. reg. (IC) with N 0 = 3 and N 0 = 20, NR
0 = 1.27 · 10−10mol.
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Chapter 6. Analysis of mean field models

Since the database is insufficient, see Remark 3.4, we cannot exclude one of the regimes by the
time-lags τj. But in principle, if a value for D or BI is known within a smaller range, it might be
possible to decide, in which regime the experiments take place.

For the influence of the initial distribution see Fig. 6.10. If the variance of the initial distribution
ν0 is small, the resulting times τi are larger.
If NR

0 is large enough or the initial radii are small (e.g. around 0.25 · 10−10 m) all droplets can
vanish, which is not possible with a quasi-stationary version of a mean field problem u̇ = 0, see an
example in Fig. 6.11, where we remind that 0.2 · 10−9m is the minimal radius.

Figure 6.10.: Simulation for regime (DC)
with N0 = 20 and NR

0 = 1.27 · 10−10mol,
initial droplets concentrated around 135±
1 nm.

Figure 6.11.: Simulation for regime (DC)
with N0 = 20 and NR

0 = 1.27 · 10−10mol.
All droplets vanish. At 0.2 nm is the min-
imal radius rmin.

For the relation of time scaling and radii scaling in the mean field model for regime (IC) see Fig.
6.12.

Figure 6.12.: Simulation for regime (IC) with N0 = 20 and NR
0 =

1.27 · 10−10mol, plot of τi against droplet number i on a log-log scale.
All but one droplet vanish.

A simulation with MAPLE 11 with close up of the “swinging-in process” of a mean field within
shorter times than vanishing of a droplets is shown in Fig. 6.13. The initial data consists of
N 0 = 20 equidistantly distributed droplet radii, which are bigger than the mean field radius of the
system r0 := u−1

int(u0) at initial time. The mean field radius is critical in the sense, that radii which
are smaller at time t shrink at time t, while bigger radii grow. Droplets r0

i which are smaller than
r0 would vanish almost immediately.
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6.6. Numerical simulations of mean field models

Figure 6.13.: Evolution of radii ri[10−9m] and mean field radius r[10−9m] (inverse mean field) by
time t [10−6 s] for initial number of droplets N 0 = 20, NR

0 = 2.39 ·10−14mol and B = 22nm−1µs−1.
Left hand side: At the beginning the mean field goes into a meta stable state. Right hand side: At
larger times droplets smaller than r vanish, while bigger droplets grow until a droplet disappears.
If a droplet vanishes the mean field and equivalently ṙ has a jump.

Our numerics suggest that our dynamical system exhibits two different time scales, a short and
a long time behaviour, see the discussion at the beginning of Section 6.5. Our simulations are in
agreement with equilibria as determined in Lemma 6.3. Furthermore our simulations are consistent
with the stability result Theorem 6.1, with Lemma 6.4, with Lemma 6.5 and with the Remark 6.4.

Remark 6.8 (Numerical implementation of the algorithm). Our algorithm implemented in MAPLE
11.0 (Release Feb 2007) runs relatively “slowly”, although some improvised adaptivity was used. Our
implementation in MATLAB 7.6.0 (R2008a) which uses odesolve45 as solver for the coupled ODE
system is faster.
The speed of the algorithms could be improved by amelioration of the algorithm e.g. by exploit-
ing further adaptive controls of time steps or by implementation in a more suitable programming
language e.g. C or FORTRAN.
We emphasise that the focus of this work is not the numerical treatment but the analysis of the
problem of precipitation in solid crystals. Numerics are only used in order to check the relevance of
our model, where we compare main features like qualitative behaviour with time, values for equilibria
and the stability of equilibria.
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Chapter 7.

Conclusion

In this thesis we have derived a free boundary problem from a thermodynamically consistent model
for precipitation in crystalline gallium arsenide, which consists of PDEs and ODEs with a small
scaling parameter ε — a nonlinear parabolic problem, an elliptic mechanical problem and ODEs
for the free boundaries. This problem corresponds to the diffusion-controlled regime of interface
motion. Furthermore there is another regime, the interface-controlled regime of interface motion,
which consists of coupled ODEs. We have shown that for both regimes there are different interesting
scaling regimes and we have examined the dilute and the critical scaling regime.
For sufficiently small ε we proved global existence and uniqueness of the coupled problem in the
diffusion-controlled regime for the critical scaling. Under suitable assumptions on the dependence
of the geometry on ε we homogenised the coupled problem and obtained for discrete initial data
the mean field model, a system of coupled ODEs.
For the dilute scaling we derived for both regimes of interface motion a mean field model by formal
homogenisation. The analysis of the mean field model, which we considered in the dilute scaling,
allows further insight into the evolution of the liquid droplets. We have given necessary criteria for
equilibria and discussed stability issues. An important result is that stable states of the mean field
model are only possible for one or no droplet.
We remark, that the assumption of working on a spherical domain Ω is no restriction, since by
using suitable mappings our results can be transformed to any other smooth and simply-connected
domain.
At first we compare our result with known classical models, which are presented in Section 1.2, like
the Mullins-Sekerka model, the Lifshitz-Slyozov-Wagner model and thermodynamically-consistent
generalisations of these models. Then we interpret our results in the experimental context in Section
7.2.

7.1. Relation to classical results

7.1.1. Comparison with classical sharp-interface models

The availabilities of the sharp-interface limits (1.8) or (1.9) look similar to the available free energy
(2.43) in our situation. We recall that the derivation of the equations (2.173) – (2.183) in this work
relies on the available free energy (2.43), which is, expressed in our unknowns u, U , {ri} and Rbd,
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of the form

A(u, U, {ri}, Rbd) =
∫

ΩS({ri},Rbd)
ρS(U(x))ψS(u(x), U(x)) dx

+
∑
i∈N

∫
ΩiL(ri)

ρL(UL(x))ψL(UL(x), ri) dx+
∑
i∈N

∫
Ii(ri)

σ dx+ p0|Ω(Rbd)|

with ρS = ρS(1− tr(∇U)) and ρL = ρL(1− tr(∇UL)).
Our model for fixed ε can be considered as a generalisation of the Mullins-Sekerka model in the
following sense. The (MS) model is the sharp-interface limit of the Cahn-Hilliard equation, while
our model is a sharp-interface model, which is derived from a thermodynamically consistent free
energy and additionally includes bulk stresses in case of pressure control. One can expect that our
model can be derived from a phase-field model similar to the Cahn-Larché equation, see (1.9).
We recall, that the availability (2.43), which has been used in our model, is deduced from first
principles [DD08]. In this study we put the model of Dreyer and Duderstadt in a mathematical
form, including in particular the introduction of a suitable total chemical potential u in (2.91) so
that we could prove existence and uniqueness of Problem E.
The main differences of our model to (MS) are, that in the classical model there exists no minimal
droplet radius rmin, the outer boundary is fixed and the volume of droplets is conserved. Fur-
thermore we deal with a more general boundary condition on the interfaces (2.177) instead of the
Gibbs-Thomson law (1.5).

7.1.2. Comparison with classical Lifshitz-Slyozov-Wagner model

We compare our mean field model for (DC), which is the homogenised model (5.44) – (5.48) in
the case of specific initial data (5.76), with (LSW). Unlike (LSW) our model is derived from a
thermodynamically consistent sharp interface model and for the situation of constant external
pressure and not for constant total volume. Our Stefan condition has an additional factor X in the
denominator, which can be approximated by a constant only for relatively large radii, ri � rmin.
The incorporation of mechanical stresses in our model, while in classical LSW theory only surface
tension is considered, has influence on X and hence on the dynamics and the stability of the system
of differential equations. The fact that the outer boundary is a free boundary has no influence on
the homogenised model, since Ṙbd → 0 as ε→ 0.
By neglecting mechanical bulk stresses, i.e. setting U = (0, 0, 0)T everywhere and setting [[ρ]]Ii = 1,
which corresponds to consider only one substance and not two substances as in our case, we find the
(MS) model, where we extend u by uL into the liquid. In the limit of vanishing scaling parameter
and considering the quasi-stationary version of the ODE (6.2) for regime (DC) we find the formulas
of the classical (LSW) theory.
We point out the differences and similarities of our scaling to the classical limit (MS) to (LSW) as
considered for the dilute scaling in [Nie99] and [Nie00]. In these articles one scales uint(ri) = r−1

i ∼
1
ε4 and σ ≡ 1 and later rescales u. This is due to the fact that in the classical Mullins-Sekerka
model there exists no minimal radius rmin, but in our model the chemical potential on the interface
uint does not explode for r → rmin. If we re-examine our results with neglecting the mechanics we
find, as expected, agreement with her results [Nie99].
Later Niethammer and Otto derived the limit (MS) → (LSW) for the critical scaling elegantly
by exploiting the gradient flow structure of the classical (MS) model [NO01]. However, for our
situation it is not clear, whether the homogenisation can also be proved by means of a gradient
flow.

154



7.2. Consequences for experiments

7.2. Consequences for experiments

We emphasise that the applicability of our analysis to experimental situations relies on the assump-
tion that the length of the wafer L0, typical particle distances D0 and typical radii R0 are related
to each other as

L0 ≈ ε−1
0 D0 ≈ ε−3

0 R0 or L0 ≈ ε−1
0 D0 ≈ ε−4

0 R0 (7.1)

for some ε0 � 1. We remark that our scaling of radii ri ∼ ε4 is the dilute scaling i.e. we find
∆u∞ = 0 in the homogenisation limit and the boundary values of the radii enter in the next order
equation for ∂tu∞. The critical scaling is ri ∼ ε3 and yields an inhomogeneous Laplace equation
for u∞ in the limit.
We recall, that we have considered the dilute regime in our numerical simulations, which seems to
fit well to experiments. From the exact determination of the length scales one could decide, if one
is in a critical or dilute or another scaling regime.

7.2.1. Regime (DC) or regime (IC)

We recall that it is unclear from experiments, if the evolution of our droplets takes place in a
diffusion-controlled regime of interface motion (DC) or in an interface-controlled regime of interface
motion (IC) or a combination of both, regime (DC & IC). Our theoretical considerations led to
macroscopic equations, which we have simulated numerically.
Let us assume that (7.1) is fulfilled for our original experimental problem. A criterion to decide
between (DC) and (IC) is given in Remark 6.7: We see that the evolution of the mean field u and
the corresponding r with time has a qualitatively different behaviour as seen in Fig. 6.7 and Fig.
6.8 of simulations for a (DC) regime compared with Fig. 6.9 of a simulation in the (IC) regime.
This might be possible to decide by measurements.
If we believe in the value for the diffusion constant given by Steinegger, see (3.91), the too small
vanishing times τi of droplets suggest that the (DC) regime has to be excluded. This means that
diffusion-controlled motion happens on a faster time-scale than experiments and only the (IC)
regime remains as a possibility.
Another model for precipitation in crystalline solids is a model of Becker-Döring type, as derived
in [DD06] and analysed mathematically in [HNN06]. But comparison of the time scales on which
droplets vanish in a Becker-Döring model, suggests that diffusion models are more appropriate to
describe the precipitation in GaAs observed in experiments.

7.2.2. How to enforce droplets to disappear?

The results of Chapter 6 suggest that for T large enough at most one droplet remains, depending
on the initial data, but in practice the necessary T might be too large.
The model considered in this study suggests that the main “adjustment screw” for experiments
might be the outer pressure p0 and the temperature T , at which the heat treatment takes place.
Almost all material parameters depend significantly on T . However, the influence of p0 is marginal
since it enters only at O(h̃) in the resulting dynamical system (6.1) and (6.2) for regime (IC). So it
remains the possibility to find a suitable T s.t. the time scale for the evolution of droplets Ti gets
as short as possible or that, in light of equation (2.62), BI becomes maximal.
The idea of limiting the precipitation to a homogeneous droplet distribution, in order to get a
better GaAs waver, seems not be promising on a long-time scale, since only one or no droplet is
stable.
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However, if one knows, how to enforce droplets to disappear, then the mechanical properties of the
produced galliumarsenide waver might be ameliorated.

7.3. Outlook

In this section we compile some open tasks and further ideas.

7.3.1. Generalisation on precipitation in other crystalline solids

One can hope to generalise the models in this paper to other semiconductors or semi-insulators, in
particular compounds of the group III and V of the table of elements e.g. AlAs, InP and compounds
of GaAs and AlAs.
We would like to consider the more general case of precipitation in an arbitrary crystalline solid
and ask under which assumptions our mathematical model of coupled PDEs and ODEs, which was
derived so far for GaAs, could describe this situation as well.
Therefore we recall the main assumptions, which hold for GaAs:

* We assume constant temperature, which seems to be always appropriate to the experimental
situation of a relatively thin wafer.

* The cubic anisotropy of the crystal is negligible.
* In the Freiberg model Ga atoms appear only on one sublattice. In the crystal each sublattice

has the same number of lattice sites, confer (2.4).
* For the mobilities of vacancies the inequalities BV � B and Bi

V � Bi
As, B

i
Ga both hold. Thus

vacancies are in quasi-stationary equilibrium.
* The chemical potentials {µAsa}a∈aS , µGaα , µAsL , µGaL have some monotone behaviour w.r.t.

their arguments, see Appendix A.3.
* The mean value X0 is prescribed in order to guarantee semi-insulating behaviour.
* Displacement gradients are sufficiently small such that we can work with the theory of linear

elasticity.
The other main assumptions of our model are:

* We assume a misfit situation with (2.109), nL < nS , and that an argument, which is similar
to the Eshelby argument, like (2.112) holds.

* We restricted our analysis to the case of spherical droplets.
We recall that in Assumption 2.4 we restricted us to consider arsenic-rich liquid droplets. From
the production of stoichiometric GaAs crystals out of a gallium-rich melt, it is suggested that it
would be interesting to consider also gallium rich liquid inclusions in our framework, see Kießling
et al. [KAI+08].
However, the question, whether there is another semi-insulating crystal with two different sub-
stances for which these assumptions are fulfilled, remains open.

7.3.2. Different modelling of the surrounding gaseous phase

Our approach allows us to consider inhomogeneous distributions of droplets. For example in ex-
periments more droplets are initially present at the upper part of the crystal, where it is in contact
with a gas atmosphere, than in the rest of the crystal.
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In this study we have assumed that on its outer boundary the GaAs crystal is only in contact with
an inert gas. If we assume that there is a net exchange between the crystal and the surrounding gas,
then it is necessary to drop the global conservation of mass and substance. Then the homogeneous
Neumann boundary condition (2.178) on the outer boundary is replaced by

u = uout(t) on ∂Ω(t) ∀t ∈ (0, T ),

where uout is a given time-dependent function. This allows a control of the system by choice of a
suitable uout.

7.3.3. Further analysis

Since the homogenisation for the interface-controlled motion of free boundaries i.e. for regime
(IC) is not proved rigorously, this remains an open task, but we expect, that the proof could be
developed along the lines of the proof given in this thesis for (DC).
In this thesis we refer several times to results from regularity theory for elliptic and parabolic
equations. Unfortunately there do not seem to be any existing regularity results, which fit well to
this special case of coupled elliptic equations for the displacement (4.1) and a nonlinear parabolic
equation for the chemical potential (4.4), where the time derivative of the displacement enters
into the parabolic equation as a convective term. Application of stronger results would allow a
generalisation of the obtained results and the avoidance of the Assumption 5.1.
In order to model the vanishing of a liquid droplet in the solid crystal we have introduced a
minimal radius of the droplets, see Subsection 2.6.7. In experiments the external pressure, the
surface tension and the minimal radius are usually of such a size that displacement gradients are
small enough in order to work with linear elasticity. It might be interesting for the future and for
still higher precision or for more general situations to also allow large displacement gradients. This
requires the theory of nonlinear elasticity. Since similar results as in linear elasticity exist [Cia98],
we expect that some of the results given in this thesis may be extended to the nonlinear case.
The concept of Kohn-Otto bounds [KO02] is that, if certain inequalities and differential inequalities
for an energy and a generalised length scale hold, then exists a fastest possible decay rate of the
energy with time. This is applied to the classical LSW model and an LSW model with degenerated
mobility. An interesting question is, whether for our more complex available free energy A and for
a suitable generalised length scale their result could be applied to our mean field model.
The homogenised model for smooth initial data is an infinite-dimensional dynamical system includ-
ing mechanical stresses. Further analysis of the full dynamical system (5.44) – (5.48) for smooth
initial data is consequently important to understand. The convergence to equilibria and the depen-
dence of the long time behaviour on the initial data for the infinite-dimensional system is another
open task. The hope is that this can be done by means of the thermodynamically consistent Lya-
punov function A rewritten for the homogenised model. For the LSW model, rigorous results in
this direction have been obtained by Niethammer and Pego [NP99], [NP01].
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Further details of the modelling

In this appendix we give auxiliary calculations for the modelling explicitly and we check that some
assumptions of Chapter 2 are fulfilled for the reduced Freiberg model by plugging in material data.

A.1. Global conservation laws

Lemma A.1 (Global conservation laws and side conditions). The side conditions (2.29) – (2.31),
(2.35) – (2.37) and the local conservation laws (2.17) – (2.20) imply the global conservation laws
(2.38) – (2.40).

Proof. Calculation of the conservation of total mass yields by applying the transport theorem

d

dt

∫
Ω(t)

ρ =
∫

Ω(t)
∂tρ+

∫
∂Ω(t)

ρw −
∫
I(t)

[[ρ]]w · ν

=
∫
∂Ω(t)

ρ(w − v) · ν −
∫
I(t)

([[ρ]]w − [[ρv]]) · ν by (2.20) (A.1)

Analogously checking of conservation of As gives

d

dt

∫
Ω(t)

nAs =
∫

Ω(t)
∂tnAs +

∫
∂Ω(t)

nAsw −
∫
I(t)

[[nAs]]w · ν

=
∫

Ω(t)
−∇ · j +

∫
∂Ω(t)

nAs(w − v) · ν −
∫
I(t)

([[nAs]]w − [[nAsv]]) · ν by (2.17)

=
∫
∂Ω(t)

(−j + nAs(w − v)) · ν −
∫
I(t)

(−[[j]] + [[nAs]]w − [[nAsv]]) · ν by Gauss’ th. (A.2)

We see that (A.1) and (A.2) are zero if we assume (2.37), (2.31), (2.35) and (2.29).

Remark, for a radial symmetric single droplet problem and with Fick’s law we find

Ṙbd = v|∂Ω(t) · ν, ∂νu|∂Ω = 0. (A.3)

A.2. Reduction of concentrations by chemical equilibrium

We prove Lemma 2.2, which we state here again:
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Lemma A.2. For y ∈ Jy := (0, ζ), where ζ := min{(y ∈ (0, 1
Y

)|(1 − C1)C2
2 − (C1(1 + C3 −

2C2) + 3C2)C2Y y − (C1(1 − C2)(C3 − C2) − 3C2
2 )(Y y)2 − C2

2 (Y y)3), 1
Y
} we can express uniquely

ya, a ∈ aS \{Asγ} as rational functions in y which are well defined i.e. ya ∈ (0, 1
Y a

), a ∈ aS \{Asγ}.

For typical experimental data we have the estimate ζ ≤ 1
3Y .

Proof. Written for relative lattice occupancies the equations (2.96) – (2.98) give together with
(2.82)

yVαyVβyVγ = 1,
yAsβ
yVβ

= yAsα
yVα

,
yAsβ
yVβ

= y

yVγ
.

Since we do not know exactly Y a for all a ∈ aS, we can also exploit (2.96) – (2.98) to get some
estimates between this constants, which rely on our model. We point out that the modelling is
built up on the reduced Freiberg model, where as mentioned above α is the gallium-rich sublattice,
β is predominantly occupied by As, while γ is almost empty i.e. YVα , YAsα � YGaα , YVβ � YAsβ ,
Y � YVγ . Since we have

C1 = Y VαY Vβ (1− Y ),

C2 =
Y Y Vβ

1− (Y + Y Vβ − Y Y Vβ )
≈ Y Y Vβ (1 + Y + Y Vβ − Y Y Vβ ) +O(Y Y Vβ (Y + Y Vβ − Y Y Vβ )2),

C3 =
Y AsαY Vβ

Y Vα(1− Y Vβ )
≈
Y AsαY Vβ

Y Vα

(1 + Y Vβ ) +O(
Y AsαY Vβ

Y Vα

Y
2
Vβ

),

typical values for the constants Ci, i ∈ {1; 2; 3} hence fulfil

0 < C1 < 1, C1 � C3, 0 < C2 � 1 (A.4)

and with the additional assumptions YVα � YAsα , YVα � Y , which fits to experimental data, we
finally get

0 < C1 � C2 � 1, 0 < C1 < C2 � C3. (A.5)

We remark that for typical temperatures Y = O(10−4), C1 = O(10−30), C2 = O(10−14) and
C3 = O(102) are upper bounds.
We introduce some abbreviations in order to avoid too long formulas:

E(y) := 1− Y y, A(y) := C2 + (1− C2)Y y, G(y) := C2 + (C3 − C2)Y y,
Ĝ(y) := C2

2E(y)3 − C1A(y)G(y)
= (1− C1)C2

2 − (C1(1 + C3 − 2C2) + 3C2)C2Y y

− (C1(1− C2)(C3 − C2)− 3C2
2 )(Y y)2 − C2

2 (Y y)3.

At first we reduce the absolute lattice occupancies to one independent variable, for experimental
reasons we have chosen Y = YAsγ .

(2.95.1) ⇐⇒ YVγ = 1− Y y = E(y),

(2.95.2) (2.97)=⇒ YVβ = C2(1− Y y)
C2 + (1− C2)Y y

= C2E(y)
A(y) ,

(2.96)=⇒ YVα = C1(C2 + (1− C2)Y y)
C2(1− Y y)2 = C1A(y)

C2E(y)2 ,

(2.95.2)=⇒ YAsβ = Y y

C2 + (1− C2)Y y
= Y y

A(y) ,
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(2.98)=⇒ YAsα = C1C3Y y(C2 + (1− C2)Y y)
C2

2 (1− Y y)3 = C1C3Y yA(y)
C2

2E(y)3

(2.95.3)=⇒ YGaα = C2
2E(y)3 − C1A(y)G(y)

C2
2E(y)3 = Ĝ(y)

C2
2E(y)3 .

By inserting y ≡ 1 we get the formulas for the reference values Y a, a ∈ aS, and so we get the
reduction of the relative lattice occupancies just by division.

yVγ = 1− Y y
1− Y

= E(y)
E(1) ,

yVβ = (1− Y y)(C2 + (1− C2)Y )
(1− Y )(C2 + (1− C2)Y y)

= E(y)A(1)
E(1)A(y) ,

yVα = (C2 + (1− C2)Y y)(1− Y )2

(C2 + (1− C2)Y )(1− Y y)2 = A(y)E(1)2

A(1)E(y)2 ,

yAsβ = y(C2 + (1− C2)Y )
(C2 + (1− C2)Y y)

= yA(1)
A(y) ,

yAsα = y(C2 + (1− C2)Y y)(1− Y )3

(C2 + (1− C2)Y )(1− Y y)3 = yA(y)E(1)3

A(1)E(y)3

yGaα = (C2
2E(y)3 − C1A(y)G(y))E(1)3

(C2
2E(1)3 − C1A(1)G(1))E(y)3 = Ĝ(y)E(1)3

Ĝ(1)E(y)3

We now discuss the three polynomials E, A and Ĝ, considering at first y ∈ D0. We denote partial
derivatives of a function f with respect to y by f ′(y).
E is linear, strictly monotone decreasing with E′(y) = −Y . The range is (0, 1) and particularly E
has no zeros in D0.
A is linear, strictly monotone (increasing) under the assumption from above that C2 < 1 with
A′(y) = (1− C2)Y . The range is (C2, 1) and A has no zeros too.
We consider now Ĝ. Due to the estimates for the constants (A.4) and (A.5) we see immediately
that the first coefficient is positive, the second and the forth one are negative. Furthermore by
assuming e.g.

C1C3 > 6C2
2 , (A.6)

that is justified since we have typically Y Asα � Y
2, we get that the third coefficient is negative.

Unfortunately Ĝ has one or three zeros in (0, 1/Y ) as we can see by change of sign of the continuous
function Ĝ for instance by evaluating Ĝ for y → 0 or y → 1/Y :

lim
y→0

Ĝ(y) = (1− C1)C2
2 > 0, lim

y→1/Y
Ĝ(y) = −C1C3 < 0.

A negative lattice occupancy yGaα makes no sense in our model.
If we consider the first and second derivatives of Ĝ,

Ĝ′(y) = −(C1(1 + C3 − 2C2) + 3C2)C2Y − 2(C1(1− C2)(C3 − C2)− 3C2
2 )Y 2

y − 3C2
2Y

3
y2,

Ĝ′′(y) = −2(C1(1− C2)(C3 − C2)− 3C2
2 )Y 2 − 6C2

2Y
3
y < 0 ∀y, y > −1/Y .

Ĝ is strictly monotone decreasing for all Y ∈ (0, 1) and since Ĝ is concave we see, that there exists
one and only one zero in D0. Hence chemical equilibrium can be realised only for small values of
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yGaα or y. From now on we work with y ∈ Jy := (0, ζ) where ζ := (y ∈ (0, 1)|Ĝ(y) = 0).
We can make a rough estimate of ζ by using the fact that the tangent of a concave function always
lies beyond the function itself. By using (A.5) we get

ζ <
(1− C1)C2

C1(1 + C3 − 2C2) + 3C2

1
Y
≤ 1

3Y
.

Since YAs and 3− YV appear several times in this study, we give explicit formulas:

YAs =
∑
b∈L

YAsb = C1C3Y yA(y)2 + C2
2E(y)3Y y(1 +A(y))

C2
2A(y)E(y)3 , (A.7)

YV =
∑
b∈L

YVb = C1A(y)2 + C2E(y)3(C2 +A(y))
C2A(y)E(y)2 . (A.8)

A.3. Monotonicity of chemical potentials and of the mole fraction of As in the solid

We show in this section in particular that u and XS are strictly monotone in y. In this section we
use the notation of Section A.2.

Lemma A.3 (Monotonicity of chemical potentials in the solid). W.l.o.g. we assume (2.88).
1) uchemAs as defined in (2.90) has range in (0, RT ln( ζ

1−Y ζ )), is continuous and strictly monotone
in y on Jy.

2) uchemGa as defined in (2.89) has range in (−∞, RT ln( (1−C1)C2E(1)A(1)
Ĝ(1) )), is continuous and strictly

monotone decreasing in y on Jy if (A.4) holds.
3) u as defined in (2.91) has range in R, is continuous and strictly monotone in y on Jy if µ̃ > 1

3
and (A.4) holds.

Proof. 1) We have

µchemAs (y) = RT ln( y

yVγ (y)) = RT ln(yE(1)
E(y) )

and we see that µchemAs (0) = 0 and µchemAs (ζ) = RT ln( ζ

1−Y ζ ) ≤ RT ln( 1
2Y ). We calculate

1
RT

µ′As(y) = 1
y

+ Y

E(y) = 1
yE(y) > 0,

where y < ζ ≤ 1
3Y ≤

µ̃

Y
< 1

Y
.

2) There holds
1
RT

µchemGa (y) = yGaα
yVα(y) = ln( Ĝ(y)E(1)A(1)

Ĝ(1)E(y)A(y)
)

and limy→0 µ
chem
Ga (y) = RT ln( (1−C1)C2E(1)A(1)

Ĝ(1) ) > 0 and limy→ζ µ
chem
Ga (y) = −∞. With (A.4) we

have Ĝ(y) > 0 and Ĝ′(y) < 0 according to the proof of Lemma A.2 and find

1
RT

µ′Ga(y)
Ĝ,−Ĝ′>0
<

Y

E(y) −
A′(y)
A(y) = −Y 1− 2C2 − 2(1− C2)Y y

(1− Y y)(C2 + (1− C2)Y y)
< 0
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for y ∈ Jy.
3) We have u(y) = RT ln(S(y)) according to (2.93) with S as defined in (2.92). From 1) & 2)
follows limy→0 u(y) = 0 and limy→ζ u(y) = +∞. 1) & 2) yields directly for the sign of derivative

A(y) := (ln(S(y)))′ = 1
y

+ (1− 1
µ̃

) Y

E(y) + 1
µ̃

((1− C2)Y
A(y) − Ĝ′(y)

Ĝ(y)
) > 0. (A.9)

Lemma A.4 (Monotonicity of chemical potentials in the liquid). We assume L1 > 0 and L0+3L1 <
0, which holds for typical values for L0 and L1, see Appendix D. Then with (2.88)
1) uchemAsL

as defined in (2.85) has range in (0, RT ln( 1
XL

) − (L0 + L1(1 − 4XL))(1 − XL)2), is
continuous and strictly monotone in XL on JXL = (XL(1− h̃), 1).
2) uchemGaL

as defined in (2.84) has range in (−∞, 0), is continuous and strictly monotone decreasing
in XL on JXL.
3) uL as defined in (2.94) has range in (RT ln( 1

XL
)−(L0+L1(1−4XL))(1−XL)2,∞), is continuous

and strictly monotone in XL on JXL.

Proof. The statements about continuity and range are seen directly.
Under our assumptions on L0 and L1 we get by calculation that

µchemGaL

′(XL) =− RT

1−XL
+ 2(L0 + 3L1)XL − 12L1X

2
L < 0, (A.10)

µchemAsL

′(XL) =RT

XL
− 2(L0 + 3L1)(1−XL) + 3L1XL(5− 4XL) > 0. (A.11)

Hence uL is strictly increasing and we check that it has range as given.

Lemma A.5. XS as defined in (2.7) in the solid has range in (X0, 1), is continuous and strictly
monotone in y on Jy.

Proof. At first we have a closer look at XS(y):

XS(y) = C1C3Y yA(y)2 + C2
2E(y)3Y y(1 +A(y))

C1C3Y yA(y)2 + C2
2E(y)3Y y(1 +A(y)) + Ĝ(y)A(y)

(A.12)

= Y y

C2E(y)
C1C3A(y)2 + C2

2E(y)3(1 +A(y))
C2E(y)2Y y(1 +A(y)) + C2E(y)2A(y)− C1A(y)2

To verify the monotonicity of XS we declare some abbreviations

τ(y) := YAs
YGaα

, YAs = YAsα + YAsβ + YAsγ ,

U(y) := YAsYGaα
(YAs + YGaα)2 , in particular U(y) > 0.

We get X ′S(y) = Y ′AsYGaα−YAsY
′
Gaα

(YAs+YGaα )2
YAsYGaα

(YAs+YGaα )2 (Y
′
As
YAs
− Y ′Gaα

Y ′Gaα
) = U(y)(ln(τ(y)))′. So the sign of X ′S(y)

depends on ln(τ(y))′. We reduce first the fraction

τ(y) = Y y
C1C3A(y)2 + C2

2E(y)3(1 +A(y))
Ĝ(y)A(y)
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and use then standard calculus for logarithms

(ln τ(y))′ = (lnY y)′ − (lnA(y))′ + (lnH(y))′ − (ln Ĝ(y))′ (A.13)

= 1
y
− (1− C2)Y
C2 + (1− C2)Y y

+ (lnH(y))′ − (ln Ĝ(y))′ (A.14)

= C2

y(C2 + (1− C2)Y y)
+ H ′(y)Ĝ(y)−H(y)Ĝ′(y)

H(y)Ĝ(y)
, (A.15)

where we defined

H(y) := C1C3A(y)2 + C2
2E(y)3(1 +A(y))

= C2
2 (1 + C1C3 + C2)− 2C2(C2(1 + C1C3 + 2C2)− C1C3)Y y

+ (C1C3(1− C2)2 + 6C3
2 (T ))Y 2

y2 + 2C2
2 (1− 2C2)Y 3

y3 − C2
2 (1− C2)Y 4

y4

>≈ 0 ∀y ≤ C2(1 + C1C3 + C2)
2(C2(1 + C1C3 + 2C2)− C1C3)Y

∈ ( 1
3Y

,
1

4Y
),

and so the latter “≤“ is fulfilled if y ∈ Jy. We consider

H ′(y) = −2C2(C2(1 + C1C3 + 2C2)− C1C3)Y + 2(C1C3(1− C2)2 + 6C3
2 )Y 2

y

+ 6C2
2 (1− 2C2)Y 3

y2 − 4C2
2 (1− C2)Y 4

y3.

We note that the coefficients of H and hence also of H ′ are of same order, that justifies to consider
only the first terms of the development.
Let hk the coefficient in the polynomial H in a expansion w.r.t. yk, k ∈ N0. It is a priori not clear,
what is the sign of 2h1 := −2C2(C2(1 +C1C3 + 2C2)−C1C3), which appears as first coefficient in
H ′, i.e. the sign of H ′ for small y. If the coefficient h1 is nonnegative we are already finished with
(A.14) since Ĝ > 0 and Ĝ′ < 0 for y ∈ Jy. We now examine, what happens if h1 < 0 (that holds
for numerical data). Then

H ′(y) <≈ 0 ∀y ≤ C2

Y

C2(1 + C1C3 + 2C2)− C1C3
C1C3(1− C2)2 + 6C3

2

and compute now

H ′(y)Ĝ(y)−H(y)Ĝ′(y)
= C3

2 (C1 + C2(1− (1− 2C1)C2) + C1C2 + C1C3(3− C1) + 2C1C2C3 + C2
1C

2
3 )Y

+ 2C2
2 (−C2

1C3 + C2
1C

2
3 − 2C1C2C3 + C2

1C2C3 − C2
1C2C

2
3 − 3C1C

2
2C3 + 3C3

2 − C1C2+

+ 2C1C3 − 5C1C
3
2 − 3C2

2 )Y 2
y

− C2(−2C2
1C2C3 + 2C1C

2
2C3 − 2C1C

2
2 − C2

1C
2
2C

2
3 − 20C1C

4
2 + 2C2

1C2C
2
3 + 10C1C

3
2+

+ C2
1C3 + C2

1C
2
2C3 − 4C1C

3
2C3 − C2

1C
2
3 − 15C3

2 + 5C1C2C3 + 15C4
2 )Y 3

y2

− 4C3
2 (C1 + 5C1C

2
2 + 5C2 − 5C1C2 − 5C2

2 − C1C2C3)Y 4
y3

+ C2
2 (1− C2)(−10C1C

2
2 + 15C2

2 + 6C1C2C3 + 5C1C2 − C1C3)Y 5
y4

+ 2C2
2 (1− C2)(C1C

2
2 − 3C2

2 − C1C2 − C1C2C3 + C1C3)Y 6
y5

+ C4
2 (1− C2)Y 7

y6.
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It follows in linear approximation H ′(y) > 0 since the coefficients in order 1 and y are positive.
The positivity of the second coefficient follows (by using the additional assumption (A.6)) from:

C1(C3 − C2) + C1(C3(1
2 − 3C2

2 + C1(−1 + C3(1− C2)) + C2)− 5C3
2 ) + 1

2(C1C3 − 6C2
2 ) + 3C3

2 > 0.

Hence H ′(y)Ĝ(y)−H(y)Ĝ′(y) > 0 on Jy and we get X ′S(y) > 0 from (A.15).

Since XS is continuous this allows us in principle to express y ∈ Jy uniquely as a function of XS .

A.4. An approximation of terms of the diffusion problem for small lattice occupancies

In this appendix we calculate explicit approximation formulas in case of the reduced Freiberg
model by using in particular Y � 1. These approximations are important for quantities of the
homogenised model since in the limit Y → 0. We assume in the following that y � constε0 � ζ.
The approximations are needed for approximations used in Subsection C.1.2 and for the formal
homogenisation but not anywhere else in this study.
We make a development of the nonlinearities X and A of the diffusion problem in y and consider
only the dominant terms of X and A.
At first we make a development of A(y) = ln′(S(y)) in Y = yY . We start with (A.9)

A(y) = 1
y

+ Y

E(y) + 1
µ̃

((1− C2)Y
A(y) − Y

E(y) + Ĝ′(y)
Ĝ(y)

).

We use C2 � Y y � 1 and C2 � Y
3 and get the following Taylor series

1
E(y) = 1

1− Y y
= 1 + Y y +O((Y y)2),

1− C2
A(y) = 1

Y y(1 + C2
(1−C2)Y y )

= 1
Y y
− C2

(1− C2)(Y y)2 +O( C2
2

(1− C2)(Y y)2 )

≈ 1
Y y

+O( C2

(Y y)2 )

and

Ĝ′(y)
Ĝ(y)

= −3C2
2Y E(y)2 − C1(1− C2)Y G(y)− C1(C3 − C2)Y A(y)

C2
2E(y)3 − C1A(y)G(y)

= −(3C2
2 + C1C2(1 + C3 − 2C2))Y + (−3C2

2 + 2C1(1− C2)(C3 − C2))Y 2
y +O((Y y)2)

(1− C1)C2
2 − (C1(1 + C3 − 2C2) + 3C2)C2Y y +O((Y y)2)

(∗)= −((3C2
2 + C1C2(1 + C3 − 2C2))Y + 2(C1(1− C2)(C3 − C2)− 3C2

2 )Y 2
y)×

× 1
(1− C1)C2

2
(1 + C1(1 + C3 − 2C2) + 3C2

(1− C1)C2
Y y) +O((Y y)2)
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where we used that C1(1+C3−2C2)+3C2
(1−C1)C2

≈ 3 in order to justify the approximation (*). This yields

Ĝ′(y)
Ĝ(y)

= −3C2 + C1(1 + C3 − 2C2)
(1− C1)C2

Y

− ((3C2 + C1(1 + C3 − 2C2))2 + 2(1− C1)(C1(1− C2)(C3 − C2)− 3C2
2 )

(1− C1)2C2
2

)Y 2
y

+O((Y y)2)

= −3C2 + C1(1 + C3 − 2C2)
(1− C1)C2

Y

− (3C2
2 + 4C1C2 + f2C2

1 + 4C1C
2
2 − 2C2

1C2 + 2C2
1C

2
2 + (2C1 + 4C1C2)C3 + C2

1C
2
3

(1− C1)2C2
2

)Y 2
y

+O((Y y)2).

We put this together

A(y) = 1
y
− ( 1

µ̃
− 1) Y

E(y) + 1
µ̃

((1− C2)Y
A(y) + Ĝ′(y)

Ĝ(y)
)

= ( 1
Y y
− ( 1

µ̃
− 1) + 1

µ̃

1
Y y
− 1
µ̃

3C2 + C1(1 + C3 − 2C2)
(1− C1)C2

+O(Y y))Y

= (1 + 1
µ̃

)1
y
− ( 1

µ̃

4C2 + C1(1 + C3 − 3C2)
(1− C1)C2

− 1)Y +O(Y 2
y)

= (1 + 1
µ̃

)1
y
− ( 4

µ̃
− 1)Y +O(Y 2

y). (A.16)

The dominant term turns out to be (1 + 1
µ̃) 1

y .
We use (A.16) in order to give an approximation for the total chemical potential u, too:

u(y) = ln(S(y)) =
∫ y

1
A(ỹ)dỹ = 1 + µ̃

µ̃
ln(y)− ( 4

µ̃
− 1)Y (y − 1) +O(Y 2

y)

⇐⇒ S(y) = y
1+µ̃
µ̃ exp(−( 4

µ̃
− 1)Y (y − 1) +O(Y 2

y))

= y
1+µ̃
µ̃ (1− ( 4

µ̃
− 1)Y (y − 1) +O(Y 2

y)) = y
1+µ̃
µ̃ +O(Y y).

This implies in O(Y y) if y ∈ Dy
u(y) = 1 + µ̃

µ̃
ln(y) (A.17)

and
y(u) = exp( µ̃

1 + µ̃
u),

which yields
y′(u) = µ̃

1 + µ̃
exp( µ̃

1 + µ̃
u) = µ̃

1 + µ̃
y(u).
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We proceed as above, now with X (y) := ρS(y)P ′(XS(y))X ′S(y). We have the Taylor series

XS(y)

= Y yH(y)
Y yH(y) + Ĝ(y)A(y)

= Y y(C2
2 (1 + C1C3 + C2)− 2C2(C2(1 + C1C3 + 2C2)− C1C3)Y y + (C1C3(1− C2)2 + 6C3

2 )
× (Y y)2)/(C3

2 (1− C1) + C2
2 (2− 3C2)(1− C1)Y y − C2(C2(5− 2C2) + C1(1− 4C2 − 3C2

2 ))(Y y)2+
+ C2(C2(3 + 2C2) + C1(1− 2C2 + C2

2 ))(Y y)3)
+O((Y y)3)
C2�(Y y)2

= 1
C2

(C2
2 (1 + C1C3 + C2)− 2C2(C2(1 + C1C3 + 2C2)− C1C3)Y y+

+ (C1C3(1− C2)2 + 6C3
2 )(Y y)2)/

/(C2(2− 3C2)(1− C1)− (C2(5− 2C2) + C1(1− 4C2 − 3C2
2 ))Y y+

+ (C2(3 + 2C2) + C1(1− 2C2 + C2
2 ))(Y y)2)

+O(C2

Y y
)

= 1
(2− 3C2)(1− C1)×

1 + C1C3 + C2 − 2(1 + C1C3 + 2C2 − C1
C2
C3)Y y + (C1C3

C2
2

(1− C2)2 + 6C2)Y y2

1− (C2(5−2C2)+C1(1−4C2−3C2
2 ))

C2(2−3C2)(1−C1) Y y + (C2(3+2C2)+C1(1−C2)2)
C2(2−3C2)(1−C1) (Y y)2

+O(C2

Y y
)

= 1
2

1− 2Y y + C1C3
C2

2
(Y y)2

1− (C2(5−2C2)+C1(1−4C2−3C2
2 ))

C2(2−3C2)(1−C1) Y y + (C2(3+2C2)+C1(1−C2)2)
C2(2−3C2)(1−C1) (Y y)2

+O(C2

Y y
)

= (1
2 − Y y + C1C3

2C2
2
Y y2)(1 + 5

2Y y + 19
4 (Y y)2) +O(C2

Y y
)

= 1
2 + 1

4Y y + (C1C3
2C2

2
− 1

8)(Y y)2 +O(C2

Y y
) (A.18)

In the expansion for XS we considered terms up to second order since we will also need X ′S(y),

X ′S(y) = 1
4Y + (C1C3

C2
2
− 1

4)Y 2
y +O( C2

Y
3
y2

).

We substitute the development (A.18) for XS(y) into

P ′(XS(y)) = µ̃

(XS(y) + µ̃(1−XS(y)))2 = µ̃

(1
2(1 + µ̃) + 1

4(1− µ̃)Y y)2 +O( C2
2

(Y y)2 )

= 4µ̃
(1 + µ̃)2 (1− 1− µ̃

1 + µ̃
Y y) +O((Y y)2).

Finally with
ρS = ρS(1− tr(∇U))

167



Appendix A. Further details of the modelling

we get

X (y) = 1
MAs

ρSP
′(XS(y))X ′S(y)

= 1
MAs

ρS(1− tr(∇U)) 1
(1 + µ̃)2 (1− 1− µ̃

1 + µ̃
Y y)(1 + (4C1C3

C2
2
− 1)Y y)Y +O( C2

(Y y)2 )

= 1
MAs

ρS(1− tr(∇U)) 1
(1 + µ̃)2 (1 + [4C1C3

C2
2
− 2

1 + µ̃
]Y y)Y +O( C2

(Y y)2 ).

(A.19)

For the derivative we get

X ′(y) = 1
MAs

ρS(1− tr(∇U)) 1
(1 + µ̃)2 [4C1C3

C2
2
− 2

1 + µ̃
]Y 2 +O(Y 3

y) > 0, (A.20)

where the strict positivity follows from Assumption 2.1 and (A.6).
For illustration, the approximated mobility is

Ba ≈
B(1 + 3a)

nG(Y As + µ̃Y Ga)
(1 + µ̃)3

µ̃

1
Y
.

Furthermore we give an approximation for n∗As for small Y . We start from (A.7) and keep leading
order terms in Y and assume C2 � Y y

YAs(y) ≈ C1C3Y y(C2 + Y y)2 + C2
2 (1− 3Y y)Y y(1 + Y y)

C2
2 (C2 + Y y)(1− 3Y y)

≈ [C1C3
C2

2
Y y(C2 + Y y)2 + (1− 3Y y)Y y(1 + Y y)] 1

Y y
(1 + 3Y y)

≈ C1C3
C2

2
(1 + 3Y y)(Y y)2 + 1 + Y y

≈ 1 + Y y + C1C3
C2

2
(Y y)2,

which is strictly monotone in y. We have

Y As = YAs(1) = 1 + Y + C1C3
C2

2
Y

2
.

Analogously we find 3− YV = 2 + Y y +O((Y y)2).
Thus in our approximation we find

n∗As(y) = YAs(y)nG = (1 + Y y)nG = (1 + Y (y − 1))nAs. (A.21)

A.5. Boundary conditions on interfaces

We can prove Assumption 2.4 in case of a single droplet problem (SDP). Numerically this assump-
tion seems to hold in general. We motivate Assumption 2.4 for a formal asymptotic expansion,
which reduces for sufficiently small ε to a superposition of many single droplet problems.

Lemma A.6 (Well-posedness of boundary conditions on interfaces). We assume (2.130) to hold.
1) If ri > rmin ≥ 2σ

4GS+3kL , XL ≥ 1
2 , 1 > µ̃ > 1

3 and m̃ > 1, then exists a unique solution
to (uint, XL) ∈ (1, const(rmin, h̃)) × JXL of the interface conditions (2.128) and (2.129) for all
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parameters rI ∈ Jr = (rmin, rmax) and solutions U of the mechanical BVP (where in particular the
data of the mechanical BVP has to be in our approximation of O(h̃)).
2) uint and XL depend smoothly on ri and on ‖U‖H1.

Proof. 1) As first step we summarise the monotonicities of chemical potentials.
Due to Lemma A.3 and since the proof works analogously if we replace µ̃ by m̃ and S by S̃, we
have that u and analogously ũ clearly have range in R, are continuous and strictly monotone in y
on Jy if µ̃ > 1

3 or m̃ > 1
3 . Thus u is invertible on R.

The monotony of uchemL is proved in Lemma A.4 and follows analogously for ũchemL .
2) We now consider (2.133) and (2.134) i.e.

uεint(rI) = (ũchem)−1[ũchemL (XL(rI))−
1
nAs

2σ
rI

],

0 = ũchemL (XL(rI))−
1
nAs

2σ
rI
− ũchem(uchemL (XL(rI))

+ 3kL
nL

1− µ̃
µ̃

(h∗L(XL(rI))− aL(XL(ri), rI , U iM , (∇U)iM )))).

The first equation can be solved if the second yields a unique XL. We define

Φ(XL(rI), rI , U iM , (∇U)iM )) = ũchemL (XL(rI))−
1
nAs

2σ
rI
− ũchem(uchemL (XL(rI))

+ 3kL
nL

1− µ̃
µ̃

(h∗L(XL(rI))− aL(XL(rI), rI , U iM , (∇U)iM ))).

and prove by the intermediate value theorem that Φ has for all of the parameters a unique solution.
By means of the asymptotic expansion of Chapter 3 we can prove this. Then the problem reduces
to consider a single droplet problem, for which we refer to Appendix C.1.2.

A.6. The denominator of the Stefan condition

In this section we show that X as defined in (2.156) can be rewritten in the approximation of small
displacement gradients as (2.157). We demonstrate that X is strictly positive for all arguments and
motivate that X is strictly monotone decreasing in ri.
In Section 2 we derive (2.160) and assume then, that we can write ∂tρL = ∂riρLṙi and ∂tnAsL =
∂rinAsL . We show this in the following by algebraic considerations in our approximation and state
(2.157).
First we calculate explicit formulas for ∂taL and ∂tXL. Since aL is a function in rI and U iM ,
according to (2.111), we have

∂taL = viM
ri
− U iM

r2
i

ṙi

but viM still depends on ∂tρL and hence on ∂taL. Due to (2.134) for the rest of this proof we can
consider XL to be a function in ri and aL and thus

∂tXL = ∂riXLṙi + ∂aLXL∂taL.

We calculate

∂tρL = −3ρL∂taL = −3ρL

(
viM
ri
− U iM

r2
i

ṙi

)
= −ρL((1− ρL

ρS
) 3
ri
ṙi −

∂tρL
ρS
− 3U

i
M

r2
i

ṙi)
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where we plug in (2.159) in the last step. We solve the equation for ∂tρL and get

∂tρL = −
ρL(1− ρL

ρS
− U iM

ri
)

1− ρL
ρS

3
ri
ṙi = −ρL(1 +

ρL
ρS

3aL −
U iM
ri

1− ρL
ρS

) 3
ri
ṙi (A.22)

= −ρL(1 +
(3ρLρS − 1)U

i
M
ri
− 3ρLρS δ

R

1− ρL
ρS

) 3
ri
ṙi by (2.111)

or in our approximation

∂taL = (1 +
(3ρLρS − 1)U

i
M
ri
− 3ρLρS δ

R

1− ρL
ρS

) ṙi
ri
. (A.23)

On the other hand if we calculate

∂tρL = ∂tnLM(XL) + nL∂tM(XL) = −3nLM(XL)(∂taL − h∗L
′∂tXL) + nLMAs(1− µ̃)∂tXL

and we get with (A.22) and with

h∗L
′(XL) = − 1

3(1− h∗L)2
MAs(1− µ̃)
M(XL)

(A.24)

that

∂tXL = 3(XL −XL)
1− 3aL + h∗L

∂taL = 3(XL −XL)(1 + 3aL − h∗L)(1 +
(3ρLρS − 1)U

i
M
ri
− 3ρLρS δ

R

1− ρL
ρS

) ṙi
ri
, (A.25)

whereas in the last step we use (A.23) and our approximation in O(h̃).
We get

∂tnAsL −
nAs
ρS

∂tρL

= −3nLXL(∂taL − h∗L
′∂tXL) + nL(1− 3aL + 3h∗L)∂tXL + 3nAs

ρS
ρL∂taL

= [−3nLXL(1 + 1
3(1− h∗L)2

MAs(1− µ̃)
M(XL)

3(XL −XL)
1− 3aL + h∗L

) + nL(1− 3aL + 3h∗L) 3(XL −XL)
1− 3aL + h∗L

+ 3nAs
ρS

ρL]∂taL

= 3nL[−XL(1 + (1 + 3aL − 3h∗L)(1− M(XL)
M(XL)

)) + (1 + 2h∗L)(XL −XL) + nAs
ρS

M(XL)]∂taL

= 3nL[XL − 2XL + nAs
ρS

M(XL)]∂taL = −3[2nLXL − nAsL −
nAs
ρS

ρL]∂taL

by (A.24) and (A.25) and using several times our approximation.
Then

ṙi =
B
RT −

∫
Ii
∂νu

X(ri, U iM )
where

X(ri, U iM ) = −nAs
ρ−
ρ+

+ nAs− − [2nLXL − nAsL −
nAs
ρS

ρL](1 +
(3ρLρS − 1)U

i
M
ri
− 3ρLρS δ

R

1− ρL
ρS

)
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and in our approximation, where we can not exclude the case % = 1− ρL
ρS
≈ O(h̃) (this is plausible

for our material data, which is given in Appendix D), this simplifies in our approximation to

X(ri, U iM ) = −nAs
ρ−
ρ+

+ nAs− − [2nLXL − nAsL −
nAs
ρS

ρL](1 +
2U

i
M
ri
− 3δR

%
)

= (nGY As − nGYAs)
ρL
ρS

+ (nL − nL)XL + nL(XL −XL)

− [nL(2XL −XL −XS)]
2U

i
M
ri
− 3δR

%

= nG(3− Y V )[(XS −XS)ρL
ρS

+ (XL −XL)(1−
2U

i
M
ri
− 3δR

%
) + (XS −XL)

2U
i
M
ri
− 3δR

%
]

which is (2.157). With XL−XL = O(h̃1/2) and y−1 = O(h̃1/2) eq. (2.157) is in our approximation

X ≈ nG(3− Y V )[(XS −XS)ρL
ρS

+ (XL −XL)(1−
2U

i
M
ri
− 3δR

%
) + (XS −XL)

2U
i
M
ri
− 3δR

%
]

which is bigger than h̃ and strictly positive for typical material data i.e.

X > nG(3− Y V )(XL −XS)3δR

%
≈ O(1) > 0

since always XL > XS .

By plugging into (2.157) the ansatz y − 1 = c1
Y + c2Y

ri
and XL −XL = c1

X + c2X
ri

(see Section A.5)
with positive constants c1

X , c
2
X , c

1
Y and c2

Y we get

X ≈ nG(3− Y V )[−X ′S(1)(c1
Y + c2

Y

ri
)ρL
ρS

+ (c1
X + c2

X

ri
)(1−

2U
i
M
ri
− 3δR

%
) + (XS −XL)

2U
i
M
ri
− 3δR

%
]

which is monotone in ri since c1
X , c

1
Y , U

i
M = O(h̃), c2

X , c
2
Y = O(1), c2

X ≥ 0.1, c2
Y ≤ 9 and 0 <

X ′S(y)� 1.
Hence

0 < nG(3− Y V )(XL −XS)3δR

%
(1 +O(h̃)) ≤ X ≤ X(rmin, U iM (ri = rmin)(1 +O(h̃)) <∞. (A.26)

A.7. Proof of the availability result

Theorem A.1 (Lyapunov function). Assume Problem B or BI has a smooth solution and assume
in particular that ∂Ω and Ii for all i ∈ N are spheres. We assume the Helmholtz energy density ρψ
to fulfil the relations (A.28) and (A.29), we use local conservation of substance and we assume all
assumptions which we made so far on material parameters to hold.
Then the availability is decreasing in time i.e. there holds

d

dt
A ≤ 0 ∀t 6= τi, i ∈ N(0) (A.27)

where the availability is modelled at τi as in (2.171). The therin appearing “availability of two
single atoms” Adi as defined by (2.172) is well-defined.
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The availability is bounded from below and by adding up a suitable constant we can achieve that

A = 0

for a equilibrium. Hence A is a Lyapunov function in sense of [Wal00] w.r.t. this equilibrium.

We prove 3) for regime (DC) and prove 1) & 2) for all regimes.

Proof. 1) We derive (2.45) w.r.t. time for arbitrary t ∈ (0, T ) \ ∪N (0)
i=1 τi and apply the transport

theorem which reads for closed surfaces A as d
dt

∫
A da = 2

∫
A kMw · ν+da

d

dt
A =

∫
ΩS

d

dt
(ρSψS) +

∑
i∈N

∫
ΩiL

d

dt
(ρiLψiL)

+
∫
∂Ω

(ρSψS + p0)v · ν +
∑
i∈N

∫
Ii

(ρiLψiL − ρSψS + 2σkM )w · ν+.

With the help of the continuity equation (2.20) this is rewritten as

d

dt
A =

∫
ΩS
Dt(ρSψS)−DtρSψS +

∑
i∈N

∫
ΩiL
Dt(ρiLψiL)−Dtρ

i
Lψ

i
L

+
∫
∂Ω

((ρSψS)(w − v) + p0w) · ν −
∑
i∈N

∫
Ii

([[ρψ]]w − [[ρψv]]− 2σkMw) · ν+.

We introduce the common notation A : B = tr(ATB) =
∑3
i,j=1A

jiBij for two matrices A,B ∈
Rn×n, here always n = 3.
Due to several identities from mechanics, e.g. the Gibbs-Duhem equation (2.44), there holds (see
[DD08], eq.(A 4))

Dt(ρSψS) =
∑
a∈aS

µaDtna −
p

ρS
DtρS + σS : ∇v (A.28)

and
Dt(ρLψL) =

∑
a∈aL

µaDtna −
pL
ρL
DtρL − pLI : ∇vL. (A.29)

Together with the definition of the specific free enthalpy g := ψ + p
ρ we obtain

d

dt
A =

∫
ΩS

∑
a∈aS

µaDtna − gDtρ+ σS : ∇v

+
∑
i∈N

∫
ΩiL

∑
a∈aL

µaDtna − gDtρ− pLtr(∇vL)

+
∫
∂Ω

((ρSψS)(w − v) + p0w) · ν −
∑
i∈N

∫
Ii

([[ρψ]]w − [[ρψv]]− 2σkMw) · ν+.

We consider the mechanical contributions and exploit the mechanical BVP (2.51) – (2.55),∫
ΩS
σS : ∇v −

∑
i∈N

∫
ΩiL
pLtr(∇vL)

= −
∫

ΩS
(∇ · σS) · v +

∑
i∈N

∫
ΩiL
∇pL · vL +

∫
∂Ω
σSv · ν −

∑
i∈N

∫
Ii

(σSv+ + pLv−) · ν+

= −
∫
∂Ω
p0v · ν −

∑
i∈N

∫
Ii

(σS [[v]] + 2σkMv−) · ν+,
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where we used on ∂ΩS

σSv · ν = σS((v · ν)ν + (v · τ̃1)τ̃1 + (v · τ̃2)τ̃2) · ν = σSν · ν(v · ν).

Hence

d

dt
A =

∫
ΩS

∑
a∈aS

µaDtna − gDtρ+
∑
i∈N

∫
ΩiL

∑
a∈aL

µaDtna − gDtρ

+
∫
∂Ω

(ρSψS + p0)(w − v) · ν

−
∑
i∈N

∫
Ii

([[ρψ]]w − [[ρψv]] + σS [[v]]− 2σkM (w − v−)) · ν+.

With the Gibbs-Duhem equation (2.44) g = ρ
∑
a∈ab

µana, b ∈ {S,L}, local conservation of sub-
stance (2.17) and (2.18) and local conservation of mass (2.20) and the definition of the diffusion
fluxes ja we find, since we assumed chemical equilibrium i.e. no chemical reactions take place,∑

a∈aS

µaDtna − gDtρ =
∑
a∈aS

µa(Dtna −
na
ρ
Dtρ) = −

∑
a∈aS

µa∇ · ja

and an analogous formula in the liquid. We get

d

dt
A = −

∫
ΩS

∑
a∈aS

µa∇ · ja −
∑
i∈N

∫
ΩiL

∑
a∈aL

µa∇ · ja +
∫
∂Ω

(
∑
a∈aS

µana)(w − v) · ν

−
∑
i∈N

∫
Ii

((
∑
a∈aS

µana −
∑
a∈aL

µana − σ<·,·>S )w

− (
∑
a∈aS

µanav+ −
∑
a∈aL

µanav− − σ<·,·>S )v+)) · ν+

where we further used the Gibbs-Duhem equation (2.44) under the surface integrals and again
(2.51) – (2.55) and (2.16). Note that in particular

[[p]] = pS − pL = ν+σ
<·,·>
S ν+ − 2σkM . (A.30)

Assuming a homogeneous spherical liquid droplet, which allows to use Gauss’ theorem, with use
of w = ṙiν and together with the interfacial conditions (2.56) and (2.57) where we consider at first
both regimes (DC) & (IC) simultaneously, we have

d

dt
A = −

∫
ΩS

∑
a∈aS

µa∇ · ja −
∑
i∈N

(µAsS
∫
Ii

jAsL · ν+ + µGaS

∫
Ii

jGaL · ν+

− ( 1
ρiS
−
∫
Ii

ν+ · σ<·,·>S ν+
∑
a∈aL

Ma −
∑
a∈aL

RT

BI
a

(va − w)na)
∫
Ii

ja · ν+)

+
∫
∂Ω

(
∑
a∈aS

µana)(w − v) · ν +
∑
i∈N

∫
Ii

(µAsSnAsL + µGaSnGaL

+ (1− ρiL
ρiS

)−
∫
Ii

ν+σ
<·,·>
S ν+ +

∑
a∈aL

RT

BI
a

(va − w)n2
a −

∑
a∈aS

µana)w · ν+

+ (
∑
a∈aS

µanav+ − (µAsSnAsL + µGaSnGaL)v− − (v+ −
ρiL
ρiS
v−)−

∫
Ii

ν+ · σ<·,·>S ν+) · ν+

−
∑
a∈aL

RT

BI
a

(va − w)n2
av− · ν+
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and with (2.24), (2.25), BI
a =: naBI

∗ and the definition of u, (2.91),

d

dt
A = −

∫
ΩS

∑
a∈aS

µa∇ · ja −
∑
i∈N

(uiint
∫
Ii

jAsL · ν+ + RT

BI
∗

∫
Ii

(vAsL −
1
µ̃
vGaL − (1− 1

µ̃
)w)jAsL · ν+)

+
∫
∂Ω

(
∑
a∈aS

µana)(w − v) · ν +
∑
i∈N

∫
Ii

(
∑
a∈aS

µana(−w + v+)

− (µAsSnAsL + µGaSnGaL)(−w + v−) +−
∫
Ii

ν+ · σ<·,·>S ν+(w − v+ + ρiL
ρiS

(−w + v−)) · ν+

− RT

BI
∗

((vAsL − w)nAsL + (vGaL − w)nGaL)(v− − w)).

We now exploit chemical equilibrium to express
∑
a∈aS

µana as a function of the total chemical
potential u, first (2.95), then (2.96) and finally (2.97) and (2.98).∑
a∈aS

µana = (µGaαYGaα + µAsαYAsα + µAsβYAsβ + µAsγY + µVαYVα + µVβYVβ + µVγYVγ )nG

= (µGaαYGaα + µAsαYAsα + µAsβYAsβ + µAsγY + µVα(1− YAsα − YGaα)
+ µVβ (1− YAsβ ) + µVγ (1− Y ))nG

= ((µGaα − µVα)YGaα + (µAsα − µVα)YAsα + (µAsβ − µµVβ )YAsβ + (µAsγ − µVγ )Y )nG
= (µGaSYGaα + µAsSYAs)nG = µGaSnGaS + µAsSnAsS . (A.31)

Therefore with (2.26), (2.96) – (2.98) and finally with (2.24) there results∑
a∈aS

µa∇ · ja = µGaα∇ · jGa + µAsα∇ · jAsα + µAsβ∇ · jAsβ + µAsγ∇ · jAsγ

+ µVα∇ · (jAsγ + jVγ − jAsα − jGa) + µVβ∇ · (jAsγ + jVγ − jAsβ ) + µVγ∇ · jVγ
= (µGaα − µVα)∇ · jGa + (µAsα − µVα)∇ · jAsα + (µAsβ − µVβ )∇ · jAsβ

+ (µAsγ − µVγ )∇ · jAsγ

= (− 1
µ̃
µGaS + µAsS )∇ · jAs = u∇ · jAs.

We have now

d

dt
A = −

∫
ΩS
u∇ · jAs −

∑
i∈N

(uiint
∫
Ii

jAsL · ν+

+ RT

BI
∗

∫
Ii

((vAsL − w)(vAsL − v−)nAsL + (vGaL − w)(vGaL − v−)nGaL)

+
∫
∂Ω

(µGaSnGaS + µAsSnAsS )(w − v) · ν

+
∑
i∈N

∫
Ii

(µGaS (−[[nGa]]w + [[nGav]]) + µAsS (−[[nAs]]w + [[nAsv]])

+
−
∫
Ii
ν+ · σ<·,·>S ν+

ρiS
([[ρ]]w − [[ρv]])) · ν+

−
∑
i∈N

RT

BI
∗

∫
Ii

((vAsL − w)nAsL + (vGaL − w)nGaL)(v− − w)).

We can simplify further by applying conditions for the change of interface (2.158),
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−
∫
Ii

w · ν(+) = −
( B
RT −

∫
Ii
∇u+ jAsL) · ν
[[nAs]]

+
−
∫
Ii

[[nAsv]] · ν+

[[nAs]]
on Ii(t) ∀i ∈ N(t) for a.a. t ∈ (0, T ),

and (2.31) which translates into

−
∫
Ii

w · ν(+) =
−
∫
Ii

[[ρv]] · ν+

[[ρ]] on Ii(t) ∀i ∈ N(t) for a.a. t ∈ (0, T ).

We find

d

dt
A = −

∫
ΩS
u∇ · jAs −

∑
i∈N

(uiint
∫
Ii

jAsL · ν+

+
∫
∂Ω

(µGaSnGaS + µAsSnAsS )(w − v) · ν + B

RT

∑
i∈N

∫
Ii

(− 1
µ̃
µGaS + µAsS )∇u · ν+

+
∑
i∈N

∫
Ii

(− 1
µ̃
µGaS + µAsS )jAsL · ν+ −

RT

BI
∗

∑
i∈N

∫
Ii

(|vAsL − w|
2nAsL + |vGaL − w|

2nGaL)

and we obtain by further using Fick’s law (2.59) and since the terms with jAsL cancel out, that

d

dt
A = B

RT

∫
ΩS
u∆u+

∫
∂Ω

(µGaSnGaS + µAsSnAsS )(w − v) · ν + B

RT

∑
i∈N

∫
Ii

uiint∇u · ν+

− RT

BI
∗

∑
i∈N

∫
Ii

( |ṄAs|
2

nAsL
+ |ṄGa|

2

nGaL
)

and finally by integration by parts where we use (2.178)

d

dt
A = − B

RT

∫
ΩS
|∇u|2+

∫
∂Ω

(µGaSnGaS+µAsSnAsS )(w−v)·ν−RT
∑
i∈N

∫
Ii

( 1
BI
As

|ṄAs|2+ 1
BI
Ga

|ṄGa|2).

If we assume nAs|∂Ω = const (that implies µchemAs |∂Ω = const, while µmechAs |∂Ω = const since p|∂Ω =
p0) and nGa|∂Ω = const with w · ν = v · ν+O(ε̃) according to Lemma 3.1 there results with further
exploiting (2.28)

d

dt
A = − B

RT

∫
ΩS
|∇u|2− 1

RT

∑
i∈N

∫
Ii

(BI
As([[µAs]]−

MAs

ρS
σ<·,·>S )2 +BI

Ga([[µGa]]−
MGa

ρS
σ<·,·>S )2) ≤ 0,

(A.32)
which is always nonpositive. In the regime (DC) the last term vanishes while in (IC) the first term
is zero (after suitable rescaling of time).
This can be rewritten as

d

dt
A = B

RT

∫
ΩS
u∆u+

∑
i∈N

∫
Ii

uiintṙiX(ri,−
∫
Ii

U · ν)− RT

BI
∗

∑
i∈N

∫
Ii

( |ṄAs|
2

nAsL
+ |ṄGa|

2

nGaL
).

2) We use the formula (2.45) for A in order to consider the availability at time τi. With (A.31)

A =
∫

ΩS
µGaSnGaS + µAsSnAsS + p0 − pS

+
∑
i∈N

∫
ΩiL
µGaLnGaL + µAsLnAsL + p0 − piL +

∑
i∈N

∫
Ii

σ.
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By plugging in the mechanical parts of the chemical potentials and the assumption of spherical
homogeneous droplets and (2.79) for pL in we have

A =
∫

ΩS
µchemGaS

nGaS + µchemAsS
nAsS + p0 − p

+
∑
i∈N

∫
ΩiL
µchemGaL

nGaL + µchemAsL
nAsL + nL

nL
3kL(h∗L − hL) + p0 − p+ 3kL(hL − h∗L) +

∑
i∈N

∫
Ii

σ,

that simplifies in our approximation to

A = |Ω|(p0 − p) +
∫

ΩS
µchemGaS

nGaS + µchemAsS
nAsS +

∑
i∈N

∫
ΩiL
µchemGaL

nGaL + µchemAsL
nAsL +

∑
i∈N

∫
Ii

σ.

With the modelling of a dissolving droplet as in Subsection 2.6.7, where we indicate functions at
time τi+ by an index + and at time τi− by an index −, we have

Adi = A(τi+)−A(τi−) =
∫

ΩiL
(µchemGaS

+
n+
Ga − µ

chem
GaL

−
n−GaL) + (µchemAsS

+
n+
As − µ

chem
AsL

−)n−AsL −
∫
Ii

σ

(A.33)
(A.33) shows that Adi is finite, depends only on the time τi+ and varies in terms of order O(h̃) for
each droplet i.
If we neglect the regularisation for nAs(τi+) as in (2.168) and for the resulting nGa(τi+) and assume
nAs(τi+) ≈ nAsL(τi−) and nAs(τi+) ≈ nAsL(τi−) we get

Adi = A(τi+)−A(τi−) =
∫

ΩiL
(µchemGaS

+ − µchemGaL

−)n−GaL + (µchemAsS

+ − µchemAsL

−)n−AsL −
∫
Ii

σ (A.34)

Clearly the last term is negative. Numerically we see that the other terms are expected to be also
negative, but this is not important for the rest of the study.
3) We calculate explicitly A as expression in the variables u, U, {ri} and Rbd.
We start from (2.45). With (A.31) together with the interfacial conditions (2.56) and (2.56)

A =
∫

ΩS
µGaSnGaS + µAsSnAsS + p0 − pS

+
∑
i∈N

∫
ΩiL

((µGaS −
MGa

ρiS
ν+σ

<·,·>
S ν+ + RT

BI
∗

(vGaL − w) · ν+)nGaL

+ (µAsS −
MAs

ρiS
ν+σ

<·,·>
S ν+ + RT

BI
∗

(vAsL − w) · ν+)nAsL) + p0 − piL) +
∑
i∈N

∫
Ii

σ.

By plugging in the mechanical parts of the chemical potentials and the assumption of spherical
homogeneous droplets we have

A =
∫

ΩS
(µchemGaS

(1−XS) + µchemAsS
XS)nS + pS − p+ p0 − pS

+
∑
i∈N

∫
ΩiL

((µchemGaS
(1−Xi

L) + µchemAsS
Xi
L)niL + RT

BI
∗

(vGaL(1−Xi
L) + vAsLX

i
L − w) · ν+n

i
L

+ ρiL
ρiS

(pS − p− ν+σ
<·,·>
S ν+) + p0 − piL) +

∑
i∈N

∫
Ii

σ.
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Now we exploit (A.30)

A =
∫

ΩS
(µchemGaS

(1−XS) + µchemAsS
XS)nS + p0 − p

+
∑
i∈N

∫
ΩiL

((µchemGaS
(1−Xi

L) + µchemAsS
Xi
L)niL + RT

BI
∗

(vGaL(1−Xi
L) + vAsLX

i
L − w) · ν+n

i
L

+ (ρ
i
L

ρiS
− 1)(piL − p) + p0 − p) + 4π

∑
i∈N

r2
i (1−

2
3
ρiL
ρiS

)σ

and with (2.115) together with some rearranging

A =
∫

Ω
p0 − p+

∫
ΩS

(µchemGaS
YGa + µchemAsS

YAs)nG

+
∑
i∈N

∫
ΩiL

((µchemGaS
(1−Xi

L) + µchemAsS
Xi
L)niL + RT

BI
∗

(vGaL(1−Xi
L) + vAsLX

i
L − w) · ν+n

i
L

− 3kL(ρ
i
L

ρiS
− 1)(

−
∫
Ii
U · ν
ri

− δR − h∗L(Xi
L)) + 4π

∑
i∈N

r2
i (1−

2
3
ρiL
ρiS

)σ.

Eliminating nG and nL by (2.75.1) and (2.112) and with ρiL
ρiS

= ρL
ρS

(1− 3
−
∫
Ii
U ·ν
ri

+ 3δR + 3tr(∇U)) in
our approximation

A =
∫

Ω
p0 − p

+
∫

ΩS
(µchemGaS

YGa + µchemAsS
YAs)nRG(1− tr(∇U) + 3h∗)

+
∑
i∈N

∫
ΩiL

((µchemGaS
(1−Xi

L) + µchemAsS
Xi
L)(3− Y V )nRG(1− 3

−
∫
Ii
U · ν
ri

+ 3h∗L))

+ RT

BI
∗

(vGaL(1−Xi
L) + vAsLX

i
L − w) · ν+n

i
L − 3kL(ρL

ρS
(
−
∫
Ii
U · ν
ri

− δR − h∗L(Xi
L))

+ 4π
∑
i∈N

r2
i (1−

2
3
ρL
ρS

)σ.

The (IC) term is bounded where we use |ṙi| ≤ k. We let this term now → 0.
Finally with dependencies on variables u, U , ri and Rbd

A = |Ω|(Rbd)(p0 − p)

+
∫

ΩS(Rbd,{ri})
(µchemGaS

YGa + µchemAsS
YAs)(u)nRG(1− tr(∇U) + 3h∗(u))

+ 4π
3
∑
i∈N

r3
i ((µchemGaS

(1−Xi
L) + µchemAsS

Xi
L)(ri)nRG(3− Y V )(1− 3

−
∫
Ii
U · ν
ri

+ 3h∗L(XL(ri))))

+ 3kL(δR + h∗L(Xi
L)) + 4π

∑
i∈N

r2
i [−kL

ρL
ρS
−
∫
Ii

U · ν + (1− 2
3
ρL
ρS

)σ] (A.35)

or alternatively
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Appendix A. Further details of the modelling

A = |Ω|(Rbd)(p0 − p) +
∫

ΩS(Rbd,{ri})
µchemGaS

(u)nRG(1− tr(∇U) + 3h∗(u))

+ 4π
3
∑
i∈N

r3
i µ

chem
GaS

(ri)nRG(3− Y V )(1− 3
−
∫
Ii
U · ν
ri

+ 3h∗L(XL(ri))))

+
∫

ΩS(Rbd,{ri})
[(−µchemGaS

+ µchemAsS
)XS ](u)nRG(1− tr(∇U) + 3h∗(u))

+ 4π
3
∑
i∈N

r3
i [(−µchemGaS

+ µchemAsS
)Xi

L)(ri)nRG(3− Y V )(1− 3
−
∫
Ii
U · ν
ri

+ 3h∗L(XL(ri))))

+ 3kL(δR + h∗L(Xi
L)) + 4π

∑
i∈N

r2
i [−kL

ρL
ρS
−
∫
Ii

U · ν + (1− 2
3
ρL
ρS

)σ].

The last could also be written by formal extension of µchemaS
constant onto the liquid and by means

of notation of extended h, h∗ and X and n· := nS/L as

A = |Ω|(p0 − p) +
∫

Ω
µchemGaS

nR· (1− 3h+ 3h∗) +
∫

Ω
(−µchemGaS

+ µchemAsS
)XnR· (1− 3h+ 3h∗)

+ 4π
∑
i∈N

r3
i kL(δR + h∗L) + 4π

∑
i∈N

r2
i [−kL

ρL
ρS
−
∫
Ii

U · ν + (1− 2
3
ρL
ρS

)σ].

We use (A.35) in order to show that A is bounded. Due to 1) & 2) it suffices to give a bound from
below in the case that a solutions exist.
We can estimate the mechanical terms in nG if we are in approximation of small displacement
gradients and if nRG = O(1).

A ≥ |Ω|(Rbd)(p0 − p) +
∫

ΩS(Rbd,{ri})
(µchemGaS

YGa + µchemAsS
YAs)(u)nRG(1 +O(h̃))

+ 4π
3
∑
i∈N

r3
i ((µchemGaS

(1−Xi
L) + µchemAsS

Xi
L)(ri)nRG(1 +O(h̃))(3− Y V )

+ 3kL(δR + h∗L(Xi
L)) + 4π

∑
i∈N

r2
i [−kL

ρL
ρS
−
∫
Ii

U · ν + (1− 2
3
ρL
ρS

)σ].

The first term is strictly positive since we have |Ω| ≥ 0, also the first term with XL > XL. The last
term of the last line is bounded below and if σ > 0 and ρL ≤ 3

2ρS) then this term is nonnegative.
The term −

∫
Ii
U · ν has no sign, but it is bounded by 3kL max{p−p0

3kS ,
2σ

3kLrmin , δ
R, h∗L(XL), h∗(XS)}.

This leaves with kL < kS ,
∑
i∈N |Ii| < |Ω| and h∗ ≤ h∗L

A >

∫
ΩS(Rbd,{ri})

(µchemGaS
YGa + µchemAsS

YAs)(u)nRG(1 +O(h̃))

+ 4π
3
∑
i∈N

r3
i ((µchemGaS

(1−Xi
L) + µchemAsS

Xi
L)(ri)nRG(1 +O(h̃))(3− Y V ) + 4π

∑
i∈N

r3
i |O(h̃)|.

The first two terms with chemical potentials are nonnegative since XL ≤ XL < 1 and 1 ≤ y < ζ.
Hence

A > 4π
∑
i∈N

r3
i kL|O(h̃)| ≥ 0 > −∞.
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Appendix B.

Transformation on fixed domain

B.1. Construction of a transformation on fixed domain

We construct explicitly a transformation Φ of the type, which we used in Section 4.2.
Therefore we split Ωε

S(t) in spherical shells around the droplets, Σε
i (t) = BεRiext(t)(Xi)\Bε3ri(t)(Xi),

a boundary layer shell of thickness of order ε around the free outer boundary defined by Σε
0(t) :=

BRbd(t)(0) \ BRbl(t)(0), and denote the rest by F ε0 (t) := Ωε
S(t) \ ∪Ni=0Σε

i (t). In this section we use
again the notation of Section 4.2.
We assume that Riext(t) are small enough resp. Rbl(t) is large enough such that up to time T neither
spherical shells Σε

i intersect each other nor the boundary layer shell and any other shell intersect.
Further T should be small enough that both the boundary layer shell and the other shells have
strictly positive thickness.
Now we transform the Σε

i onto the fixed domains Σε
i (t = 0) := BεRiext(0)(Xi) \ Bε3r0

i
(Xi), i ∈ N ε

resp. Σε
0(t = 0) := BRbd(t)(0) \ BRbl(0)(0) and analogously we rescale Ωε

S(t) onto Ωε
S(0) := Ω(t =

0) \ ∪Ni=1Br0
i
(Xi) by means of

Φ(·, t) :


z 7→ x := z , z ∈ F ε0 (t = 0),
z 7→ x := qt(|z|) z

|z| , z ∈ Σε
0(t = 0),

z 7→ x := Xi + pt(|z −Xi|) z−Xi
|z−Xi| , z ∈ Σε

i (t = 0) ∀i ∈ N ε,

where qt is a function which fulfils qt(Rbl(0)) = Rbl(t), qt(Rbd(0)) = Rbd(t) and where pt is a function
which fulfils pt(ε3r0

i ) = ε3ri(t), pt(εRiext(0)) = εRiext(t) s.t. qt resp. pt are continuous.
In principle we could assume existence of such a transformation Φ since all boundaries are smooth
and by decomposition of unity we could locally map balls of the original domain onto the time-
dependent domain, analogously we proceed at points close to the boundaries and then put these
maps together to get the sought-after Φ. But since Φ is time-dependent and we need in the following
∂tΦ to be continuous on Ωε

S(0) we construct explicitly the transformation. We calculate

(DΦ(z, t))ij :=



δij , z ∈ F ε0 (t = 0),
qt(|z|)
|z| (δij − zizj

|z|2 ) + ∂ρqt(|z|) zizj|z|2 , z ∈ Σε
0(t = 0),

pt(|z−Xl|)
|z−Xl| (δi,j − (zi−[Xl]i)(zj−[Xl]j)

|z−Xl|2 )
+∂ρpt(|z −Xl|) (zi−[Xl]i)(zj−[Xl]j)

|z−Xl|2 , z ∈ Σε
l (t = 0) ∀l ∈ N ε.

where 1 ≤ i, j ≤ 3, hence for continuity of DΦ, ∂ρqt(Rbl(0)) = ∂ρpt(εRlext(0)) = 1 ∀l ∈ N ε.
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Appendix B. Transformation on fixed domain

Remark: this yields for the metric tensor

gij :=



δij , z ∈ F ε0 (t = 0),
( qt(|z|)|z| )2(δij − zizj

|z|2 ) + (∂ρqt(|z|))2 zizj
|z|2 , z ∈ Σε

0(t = 0),
(pt(|z−Xl|)|z−Xl| )2(δi,j − (zi−[Xl]i)(zj−[Xl]j)

|z−Xl|2 )
+(∂ρpt(|z −Xl|))2 (zi−[Xl]i)(zj−[Xl]j)

|z−Xl|2 , z ∈ Σε
l (t = 0) ∀l ∈ N ε.

Furthermore

∂kjΦ(z, t)i :=



0 , z ∈ F ε0 (0),
(∂ρqt(|z|)− qt(|z|)

|z| )(δi,jzk + δjkzi + δkizj − 3 zizjzk|z|2 ) 1
|z|2

+∂ρ,ρqt(|z|) zizjzk|z|3 , z ∈ Σε
0(0),

(∂ρpt(|z −Xl|)− pt(|z−Xl|)
|z−Xl| )(δij(zk − [Xl]k) + δj,k(zi − [Xl]i)

+δki(zj − [Xl]j)− 3 (zi−[Xl]i)(zj−[Xl]j)(zk−[Xl]k)
|z−Xl|2 ) 1

|z−Xl|2

+∂ρ,ρpt(|z −Xl|) (zi−[Xl]i)(zj−[Xl]j)(zk−[Xl]k)
|z−Xl|3 , z ∈ Σε

l (0) ∀l ∈ N ε,

where 1 ≤ i, j, k ≤ 3, hence we need ∂ρ,ρqt(Rbl(0)) = ∂ρ,ρpt(εRlext(0)) = 0 ∀l ∈ N ε.
We introduce as abbreviations for the thickness of the shells λi(t) := ε(Riext(t) − ε2ri(t)), λi0 :=
ε(Riext(0)− ε2r0

i ), λ0(t) := Rbd(t)−Rbl(t) and λ0
0 := Rbd(0)−Rbl(0).

We achieve that Φ is C2 in space by taking Newton’s interpolation with polynomials up to order
3, and get finally

qt(ρ) := Rbd(t)−
λ0(t)
λ0

0
(Rbd(0)− ρ)[1 + ( 1

λ0(t) −
1
λ0

0
)(ρ−Rbl(0))(1− 1

λ0
0
(ρ−Rbl(0)))]

resp.

pt(ρ) := ε3ri(t) + λi(t)
λi0

(ρ− ε3r0
i )[1 + ( 1

λi0
− 1
λi(t))(εRiext(0)− ρ)(1 + 1

λi0
(εRiext(0)− ρ))]

where we can take ρ ∈ R+.
We remark, that in principle for 1 ≤ k < ∞ we achieve that Φ is Ck in space by taking Newton’s
interpolation with polynomials of order k+1, with q(l)

t (Rbl(0)) = 0 and p(l)
t (εRiext(0)) = 0 for l ≥ 2.

We check, that for suitable small ε, we have that DΦ > 0.
Furthermore we want to have ∂tqt(Rbl(0)) = Ṙbl(t) = 0 and ∂tpt(εRiext(0)) = εṘiext(t) = 0 i.e.
Rbl(t) := Rbl(0) resp. Rext(t) = Rext(0) in order to guarantee that the time-derivative of Φ is at
least continuous in space and as smooth in time as Rbd resp. ri. We have even that ∂kt Φ, k ≥ 0 are
continuous in space

∂tΦ(z, t) :=


0 , z ∈ F ε0 (t = 0),
Ṙbd(t)∂Rbd(t)qt(|z|) z

|z| , z ∈ Σε
0(t = 0),

ṙi(t)∂ri(t)pt(|z −Xi|) z−Xi
|z−Xi| , z ∈ Σε

i (t = 0), i ∈ N ε

that simplifies to

∂tΦ(z, t) :=


0 , z ∈ F ε0 (t = 0),
Ṙbd(t)(ρ−Rbl(0)

λ0
0

)3 z
|z| , z ∈ Σε

0(t = 0),

ṙi(t)( εR
i
ext(0)−ρ
λi0

)3 z−Xi
|z−Xi| , z ∈ Σε

i (t = 0), i ∈ N ε.
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B.2. Transformation of a stress tensor

If we want to exploit any specific properties of the transformation Φ we will work in the following
with qt resp. pt.
Remark: By convolution with suitable mollifiers we could improve the regularity of Φ up to C∞. It
suffices for our purposes to assume that Φ and analogously Φ−1 is C2 in space, because this implies
that Christoffel symbols are C0, and Φ to be as good in time as R̃.

B.2. Transformation of a stress tensor

Now we derive briefly the transformation formulas of the reduced Cauchy stress σ̂S to arbitrary
curvilinear coordinates, which are given in detail in [Cia00]. In order to determine the transforma-
tion behaviour of this Cauchy stress tensor, we recall its definition:

σ̌ijS (∇U ε) := Kijkleij(∇U ε)

where the components of the stiffness tensor K are defined by (2.78), which transform contravari-
antly and in our new coordinates they read

K̃ijkl = λSg
ijgkl + µS(gikgjl + gilgjk).

Hence with (4.24)

σ̃ijS (∇Ũ ε) = λSg
ijek||l(∇Ũ ε) gkl + µS(gikek||l(Ũ ε) gjl + gilel||k(∇Ũ ε) gjk) (B.1)

for components, or rewritten

σ̃S(∇Ũ ε) = λSg
−1(e·||·(∇Ũ ε) : g−1) + 2µS sym(g−1e·||·(∇Ũ ε) g−T ).

Hence the components of the reduced Cauchy stress tensor transform contravariantly, i.e.

σ̌S(·) = DΦT σ̃S(·)DΦ,

or written in components we have

σ̌ĩj̃S (·) = [gĩ]
iσ̃ijS (·)[gj̃ ]

j .

B.3. Derivation of the transformed problem for the velocity

Here we derive in details the derivation of the problem for the velocity after transformation on
fixed domain, given in (4.30) – (4.32). We do not assume here (2.13) i.e. v = ∂tU and start with
the definition v = (I3 +∇U)∂tU . We will see at the end of this section that ∂tU = O(‖∇U‖) hence
we can always work in our approximation of small displacement gradients with

vε = ∂tU
ε.

We examine the dependence of the mechanical BVP in time in order to get a problem for the
transformed barycentric velocity field

ṽε = ∂tŨ
ε +DΦ−T∇Ũ εDΦ−1(∂tŨ ε − ∂tΦ)

or
[ṽε]i = ∂t[Ũ ε]i + [gi(x)]̃iŨ

ε
ĩ||j̃ [g

k(x)]j̃(∂t[Ũ
ε]k − ∂tΦk)
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Appendix B. Transformation on fixed domain

in the approximation of small displacement gradients.

Therefore we consider difference quotients Ũε(t+h)−Ũε(t)
h . Then we can exchange the ∇ and the

difference quotient and for letting h → 0 we assume that the limits of the right hand sides exist.
Hence we can differentiate (4.26) – (4.28) w.r.t. time and find the following problem for η := ∂tŨ

ε.

σ̃··S ||·(∇η) = −(div (∂tσ̃S)(∇Ũ ε) + ∂tΓ·pj σ̃
pj
S (∇Ũ ε)

+ ∂tΓjjpσ̃
·,p
S (∇Ũ ε))

+ ∂tf̃ + 3kS [h∗′′(ũε)DΦ−T∇ũε∂tũε

+ h∗′(ũε)[∂tDΦ−T∇ũε +DΦ−T∂t∇ũε]] in Ωε
S(0),

σ̃S(∇η)ν = (−(∂tσ̃S)(Ũ ε) + 3kSh∗′(ũε)∂tũε)ν on ∂Ω(0),

(σ̃S(∇η)− 3kL
ε3ri
−
∫
Iεi (0)

(η · ν))ν = (−(∂tσ̃S)(∇Ũ ε) + [− 3kL
ε3r2

i

−
∫
Iεi (0)

(Ũ ε · ν)− 2σ
r2
i

− 3kLh∗L
′(ri) + 3kSh∗′(uint(ri))u′int(ri)]ṙi)ν on Iεi (0) ∀i ∈ N,

where

(∂tσ̃S)ij(∇Ũ ε) := λS [∂tgijek||l(∇Ũ ε) gkl + gij(∂te)k||l(Ũ ε) gkl + gijek||l(∇Ũ ε) ∂tgkl]
+ µS [∂tgikek||l(∇Ũ ε) gjl + gik(∂te)k||l(Ũ ε) gjl + gikek||l(∇Ũ ε) ∂tgjl

+ ∂tg
ilel||k(∇Ũ ε) gjk + gil(∂te)l||k(Ũ ε) gjk + gilel||k(∇Ũ ε) ∂tgjk]

and
(∂te)i||j(Ũ ε) := −∂tΓqjiŨ

ε
q .

We see that the r.h.s. of the problem for the velocity depends on data, which is in O(h̃) if ∂tũε
and ṙi are bounded pointwise in space. Hence we have ṽ = ∂tŨ

ε = η in the approximation of small
displacement gradients and hence we can work with v = ∂tU

ε in our approximation.
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Appendix C.

Single droplet problem

Here we consider a problem of type (SDP) as defined in Section 2.1. We recall that this means
Ω(t) = BRbd(t)(0), N 0 = 1 and X1 = 0. Regarding the notation we write rI = r1 and I = I1. We
define r = |x−X1| = |x|.

C.1. Single droplet problem for regime (DC) – Problem A

We consider the regime (DC) i.e. Problem B, where we replace (2.178) by

u = u(t) ∀x, |x| = Rbd(t) ∀t ∈ (0, T ) (C.1)

with u(t) a given function, which is smooth in t and with given time derivative u̇.
Furthermore we set here Rbd(t) = Rext fixed in time. For this two modifications we have in mind to
get a formal homogenisation of the many droplet Problem D by coupling single droplet problems
together, which communicate only by a mean field u. This is in done in Section 3.3, in this appendix
we derive as far as possible explicit solutions of the single droplet problems. Our single droplet
problems play the role of the “cell problems”, which are used in standard homogenisation theory,
see e.g. [CD99]. We refer to (3.23) – (3.33) in this case as Problem A.
Since the data is spherically symmetric w.r.t. the origin, all quantities are here in spherical sym-
metry, too. In the whole of this Appendix C we exploit the spherical symmetry. In particular
the mechanical BVP (3.23) – (3.25) can be solved explicitly then. We follow the solution of the
mechanical single droplet problem in [DD08] closely, but we do not assume from the beginning,
that rI/Rext → 0.
We work with rI

Rext
∼ ε4 as in Section 3.1, i.e. we consider the dilute scaling regime, and assume

w.l.o.g.
rI � ε−4Rext. (C.2)

Furthermore we use the scaling of h∗ with ε9.

C.1.1. Explicit solution of the mechanical BVP

Theorem C.1 (Mechanical BVP for a single droplet in spherical symmetry). In the case of spher-
ical symmetry we can give an explicit solution formula for U rε in our approximation of small dis-
placement gradients.

U rε (r) = aεr + bε

r2 + cεI(r)r, (C.3)
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Appendix C. Single droplet problem

where

aε = −
(4GS + 3kL)((4GS + 3kS)p−p0

3kS + 4GSε9h∗(u) + 6(−2GS+kS)
R3
ext

∫ Rext
ε4rI

z3ε9h∗′(u(z))∂zu(z)dz)

(4GS + 3kS)(−(4GS + 3kL) + ε9r3
I

R3
ext

4GS(1− kL
kS

))

+
ε9r3

I

R3
ext

(4GS + 3kS)4GS
3kS (2σ

rI
− 3kL(δR + h∗L(rI)) + (4GS + 3kL)ε9h∗(uint(rI)))

(4GS + 3kS)(−(4GS + 3kL) + ε9r3
I

R3
ext

4GS(1− kL
kS

))
, (C.4)

bε := bεIε
9r3
I , (C.5)

bε =
(4GS + 3kS)(2σ

rI
− 3kL(δR + h∗L(rI)) + (4GS + 3kL)ε9h∗(uint(rI)))

(4GS + 3kS)(−(4GS + 3kL) + ε12r3
I

R3
ext

4GS(1− kL
kS

))
(C.6)

−
3(kS − kL)((4GS + 3kS)p−p0

3kS + 4GSε9h∗(u) + 6(−2GS+kS)
R3
ext

∫ Rext
ε4rI

z3ε9h∗′(u(z))∂zu(z)dz)

(4GS + 3kS)(−(4GS + 3kL) + ε12r3
I

R3
ext

4GS(1− kL
kS

))
,

cεI(r) := 3kS
4GS + 3kS

ε9(h∗(u(r))− 1
r3

∫ r

ε4rI
z3h∗′(u(z))u′(z)dz). (C.7)

The pressure in the liquid is then

pL = p− 3kL(aε + bεI + cεI(rI)− δR). (C.8)

Proof. In spherical coordinates σS is diagonal. By assuming radial symmetry of Uε i.e. Uε =
(U rε (r), 0, 0)T we rewrite (2.119)

σ̂r,rS (Uε) = (kS −
2
3GS)(∂rU rε + 2U

r
ε

r
) + 2GS∂rU rε ,

σ̂φ,φS (Uε) = σ̂θ,θS (Uε) = (kS −
2
3GS)(∂rU rε + 2U

r
ε

r
) + 2GS

U rε
r
,

σ̂r,φS (Uε) = σ̂r,θS (Uε) = σ̂φ,θS (Uε) = 0.

We plug this into (2.173) – (2.175) and get

∂rσ̂
r,r
S (Uε) + 2

r
(σ̂r,rS (Uε)− σ̂φ,φS (Uε)) = 3kSε9h∗′(u)∂ru ∀r ∈ (ε4rI , Rext), (C.9)

σ̂φ,φS (Uε) = σ̂θ,θS (Uε) ∀r ∈ [ε4rI , Rext], (C.10)

σ̂r,φS (Uε) = σ̂r,θS (Uε) = σ̂φ,θS (Uε) = 0 ∀r ∈ [ε4rI , Rext], (C.11)
σ̂r,rS (Uε) = p− p0 + 3kSε9h∗(u) r = Rext, (C.12)

σ̂r,rS (Uε)− 3kL
U rε
rI

= 2σ
rI
− 3kL(δR + h∗L(rI))

+ 3kSε9h∗(uint(rI)) r = ε4rI . (C.13)

We abbreviate g0 = p− p0 and g1 = 2σ
rI
− 3kL(δR + h∗L(rI)). Our problem simplifies to

∂2
r,rU

r
ε + 2∂rU

r
ε

r
− 2U

r
ε

r2 = 3kSε9h∗′(u)∂ru ∀r ∈ (ε4rI , Rext), (C.14)

(kS + 4
3GS)∂rU rε + 2(kS −

2
3GS)U

r
ε

r
= g0 + 3kSε9h∗(u) r = Rext, (C.15)

and

184



C.1. Single droplet problem for regime (DC) – Problem A

(kS + 4
3GS)∂rU rε + 2(kS −

2
3GS)U

r
ε

r
− 3kL

U rε
rI

= g1 +3kSε9h∗(uint(rI)))r = ε4rI . (C.16)

Note that with taking (C.3) as ansatz

∂rU
r
ε = aε − 2bεI

ε12r3
I

r3 + cεI(r) + cε′(r)r, U rε
r

= aε + bεI
ε12r3

I

r3 + cεI(r)

where cεI(r)′ =
3kS

4GS+3kS
3
r4
∫ r
ε4rI

z3ε9h∗′(u(z))∂zu(z)dz. It follows that cεI fulfils the following ODE

(kS + 4
3GS)(cεI(r)′′r + 4cεI(r)′) = 3kSε9h∗′(u)∂ru ∀r ∈ (rI , ε−4Rext)

and see that (C.14) is hence fulfilled in our approximation. From the boundary conditions we get
the following linear system of equations for the coefficients aε and bε

3kSaε − 4GS
ε12r3

I

R3
ext

bεI = g0 + 3kSε9h∗(u)− 3kScεI(Rext)− (3kS + 4GS)cεI(Rext)′Rext,

3(kS − kL)aε − (4GS + 3kL)bεI = g1 + 3kSε9h∗(uint(rI)− 3(kS − kL)cεI(ε4rI)).

With

cεI(ε4rI) = 3kS
4GS + 3kS

ε9h∗(uint(rI)),

cεI(Rext) = 3kS
4GS + 3kS

ε9(h∗(u)− 1
R3
ext

∫ Rext

ε4rI
z3h∗′(u(z))∂zu(z)dz).

and cεI ′(ε4rI) this yields the linear system of equations for the coefficients aε and bεI

3kSaε − 4GS
ε12r3

I

R3
ext

bεI = g0 + 3kS
4GS

4GS + 3kS
ε9h∗(u)

+ 18kS
−2GS + kS
4GS + 3kS

1
R3
ext

∫ Rext

ε4rI
z3ε9h∗′(u(z))∂zu(z)dz,

3(kS − kL)aε − (4GS + 3kL)bεI = g1 + 3kS
4GS + 3kL
4GS + 3kS

ε9h∗(uint(rI))

which has as unique solution

aε = −
(4GS + 3kL)(g0 + 3kS 4GS

4GS+3kS ε
9h∗(u) + 18kS −2GS+kS

4GS+3kS
1

R3
ext

∫ Rext
ε4rI

z3ε9h∗′(u(z))∂zu(z)dz)

−3kS(4GS + 3kL) + ε12r3
I

R3
ext

12GS(kS − kL)

+
ε12r3

I

R3
ext

4GS(g1 + 3kS 4GS+3kL
4GS+3kS ε

9h∗(uint(rI)))

−3kS(4GS + 3kL) + ε12r3
I

R3
ext

12GS(kS − kL)

bεI =
3kS(g1 + 3kS 4GS+3kL

4GS+3kS ε
9h∗(uint(rI)))

−3kS(4GS + 3kL) + ε12r3
I

R3
ext

12GS(kS − kL)

−
3(kS − kL)(g0 + 3kS 4GS

4GS+3kS ε
9h∗(u) + 18kS −2GS+kS

4GS+3kS
1

R3
ext

∫ Rext
ε4rI

z3ε9h∗′(u(z))∂zu(z)dz

−3kS(4GS + 3kL) + ε12r3
I

R3
ext

12GS(kS − kL)
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which simplifies to (C.4) and (C.6). By (C.8) we have a unique formula to determine pL.

We calculate with the help of our result the densities in the solid

ρS = ρS(1− tr(∇U)) = (MGaYGaα(1) +MAsYAs(1))nRG(1− 3aε) (C.17)

and in the liquid, respectively,

ρL = ρL(1− 3aεL) = M(XL)nRL(1− 3aεL) = (MGa(1−XL) +MAsXL)(3− Y V )nRG(1− 3(aε + bεI)).

We see that under the Assumption 2.1 the displacement gradient ∇Uε is of order O(h̃) and hence
consistent in our approximation.
With assuming as in the mean field model that u ≈ u far away from droplets, see Subsect. 3.3.3,
we have

| 1
r3

∫ r

ε4rI
z3h∗′(u(z))∂zu(z)dz| ≤ 1

r3

∫ r

ε4rI
z3|h∗′(u(z))∂zu(z)|dz

≤ ε4rI
r3

∫ r

ε4rI
z3|h∗′(u(z))| |u− uint(z)|

z2 dz

≤ ε4rI
r

1
2(1− ε8r2

I

r2 ) sup
z∈(ε4rI ,Rext)

|h∗′(u(z))|(|u− uint(z)|)

≤ ε4Const for r � ε4rI .

Together with the assumption (C.2) our formulas (C.3) – (C.6) simplify in leading order in ε, where
we keep for the moment the h∗ terms, to

U r(r) = ar + bI
ε12r3

I

r2 + cI(r)r

where

a = p− p0
3kS

+ 4GS
4GS + 3kS

ε9h∗(u) (C.18)

bI = b

ε12r3
I

=
3(kS − kL)p−p0

3kS −
2σ
rI

+ 3kL(δR + h∗L(rI)) + 3(kS − kL) 4GS
4GS+3kS ε

9h∗(u))
4GS + 3kL

− 3kS
4GS + 3kS

ε9h∗(uint(rI)), (C.19)

cI(r) := 3kS
4GS + 3kS

ε9(h∗(u(r))− 1
r3

∫ r

ε12rI
z3h∗′(u(z))u′(z)dz). (C.20)

In leading order in ε we find

σ̂<r,r>S = −4GSbI
r3
I

r3
r=rI= −4GSbI , (C.21)

ρS = (MGaYGaα(1) +MAsYAs(1))nRG(1− 3a) (C.22)
ρL = M(XL)(3− Y V )nRG(1− 3(a+ bI)) (C.23)

which will be needed for the formally homogenised problem. We find according to (2.111)

aL = a+ bI + cI(rI)− δR =
(4GS + 3kS)p−p0

3kS −
2σ
rI
− 4GSδR + 3kLh∗L(rI))

4GS + 3kL
. (C.24)
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C.1. Single droplet problem for regime (DC) – Problem A

Hence the leading order terms in ε are identical to the formulas in [DD08].

C.1.2. Boundary conditions on interfaces for single droplet problem

We consider (2.133) and (2.134) in case of a spherically symmetric single droplet problem,

uεint(rI) = (ũchem)−1[ũchemL (XL(rI))−
1
nAs

2σ
rI

], (C.25)

0 = ũchemL (XL(rI))−
1
nAs

2σ
rI
− ũchem(uchemL (XL(rI))

+ 3kL
nL

1− µ̃
µ̃

(h∗L(XL(rI))− aεL(XL(rI), rI , u, uεint(rI)))).
(C.26)

We explicitly solve (C.26) for XL(rI) in our approximation. In particular we have (XL − XL) =
O(h̃1/2) and approximate XL ≈ XL in the term h∗L − aL. We approximate

aεL(XL(rI), rI , u, uεint(rI)))) ≈ aL(XL, rI),

with aL as defined in (C.24). Furthermore we use twice h∗L = 0 for XL = XL and thus the h∗L term
drops out in aL. Hence we approximate by

0 = ũchemL (XL(rI))−
1
nAs

2σ
rI
− ũchem(uchemL (XL(rI))−

3kL
nL

1− µ̃
µ̃

aL(rI)). (C.27)

We follow our arguments given in Appendix A.5 and use the spherical symmetry. This allows us
to give an approximation in leading order in ε of XL and uint. We prove

Lemma C.1 (Well-posedness of boundary conditions on interfaces for a single droplet).
Let

− 1
nAs

2σ
rI

+ 3kL
nL

1− µ̃
µ̃

aL(rI)) > 0. (C.28)

1) If rI > rmin ≥ 2σ
4GS+3kL , XL ≥ 1

2 , 1 > µ̃ > 1
3 and m̃ > 1, then exists a unique solution to

(uint, XL) ∈ Ju × JXL, as defined in (2.125) and (2.124), of the interface conditions (2.128) and
(2.129) for all parameters rI ∈ Jr := (rmin,∞).
2) uint and XL depend smoothly on rI and are strictly monotone decreasing in rI in our approxi-
mation from Assumption 2.1.

We see that the assumptions of the lemma are fulfilled for typical values of the material data, see
Appendix D.
The statement of the lemma corresponds to the numerics in the study of Dreyer and Duderstadt
[DD08], who consider different temperatures.

Proof. We define the function

Φ(XL; rI) := ũchemL (XL)− 1
nAs

2σ
rI
− ũchem(uchemL (XL)− 3kL

nL

1− µ̃
µ̃

aL(rI)) (C.29)

and show by means of the intermediate value theorem, that Φ has a zero.
We calculate now that Φ is strictly monotone in XL. By deriving Φ w.r.t. XL we get

∂XLΦ(XL; rI) = ũchemL
′(XL)− ũchem′(uchemL (XL)− 3kL

nL

1− µ̃
µ̃

aL(rI))uchemL
′(XL). (C.30)
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Appendix C. Single droplet problem

According to (A.10) and (A.11) we have µchemAs
′(y) > 0 and µchemGa

′(y) < 0. For ease of presentation
we introduce

c(u) := −µ
′
Ga(y(u))
µ′As(y(u)) > 1,

where the inequality is due to (A.9) with µ̃ < 1. We calculate

ũchem′(u) = ũchem′(y(u))y′(u) = ũchem′(y(u))
u′(y(u)) =

1 + 1
m̃c(u)

1 + 1
µ̃c(u)

,

that can be bounded if m̃ > µ̃ > 0 i.e.

µ̃ <
1 + 1

m̃c(u)
1 + 1

µ̃c(u)
< ũchem′(u) < m̃+ 1

µ̃+ 1
µ̃

m̃
< 1 (C.31)

since ∂c
1+ 1

m̃
c

1+ 1
µ̃
c
< 0.

We use the estimate (C.31) in (C.30)

∂XLΦ(XL; rI) > ũchemL
′(XL)− m̃+ 1

µ̃+ 1
µ̃

m̃
uchemL

′(XL) > 0, (C.32)

which follows from the definitions of ũchemL and uchemL and m̃ > 1.
We consider the range of Φ and start with plugging in XL

Φ(XL; rI) := − 1
nAs

2σ
rI
− ũchem(−3kL

nL

1− µ̃
µ̃

aL(rI)), (C.33)

where we use uchemL (XL) = 0 and ũchemL (XL) = 0. We point out, that the argument of ũchem is of
order O(h̃). We insert the expansion of ũchem around u = 0, ũchem(u) = uA(y) (see (A.9))

Φ(XL; rI) := − 1
nAs

2σ
rI

+ 3kL
nL

1− µ̃
µ̃

aL(rI)) < 0, (C.34)

due to our assumption (C.28).
Since − ln(1−XL)→∞ as XL → 1− we can estimate for some fixed rI and δ sufficiently small

Φ(1− δ; rI) > −
RT

m̃
ln(δ) + RT

µ̃
ln(δ) + const

where the constant is independent of δ. Since µ̃ < m̃ this is strictly positive for small enough δ.
Furthermore Φ is strictly monotone in rI . We use (C.24)

∂rIΦ(XL; rI) = ( 1
nAs
− ũchem′(uchemL (XL)− 3kL

nL

1− µ̃
µ̃

aL(rI))
1
nL

1− µ̃
µ̃

3kL
4GS + 3kL

)2σ
r2
I

> 0, (C.35)

where the estimate follows by (C.31) and (C.28).
By the implicit function theorem applied to Φ(XL; rI) = 0 we find smooth dependence of the explicit
function XL on rI and since ∂rIΦ(XL; rI) < 0 this yields the monotone decreasing behaviour of XL

w.r.t. rI by the chain rule: We have on one hand

d

drI
Φ−1(Φ(XL; rI); rI) = ∂rI1 = 0,
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on the other hand

∂rIΦ−1(Φ(XL; rI); rI) + ∂XLΦ−1(Φ(XL; rI); rI)∂rIΦ(XL; rI)

and this implies with (C.35)

∂rIΦ−1(Φ(XL; rI); rI) = −∂XLΦ−1(Φ(XL; rI))∂rIΦ(XL; rI) < 0.

We have furthermore limrI→∞XL(rI) ≥ XL − h̃ and limrI→∞ uint(rI) ≥ u(y = 1− h̃).

Our lemma focused on arsenic-rich droplets i.e. we consider JXL = (XL(1 − h̃), 1). We remark,
that also gallium-rich droplets with XL <

1
2 exist for a suitable choice of material constants.

Finally we give approximate solution formulas for XL and uint by Taylor expansions around
the reference configuration and compare it with the classical Gibbs-Thomson law. We assume
ũchem′(u) = 1+ 1

m̃

1+ 1
µ̃

, which holds for sufficiently small Y , and we linearise (C.27)

0 = ũchemL (XL) + (XL −XL)ũchemL
′(XL)− 1

nAs

2σ
rI
− ũchem(uchemL (XL))

− (XL −XL)
1 + 1

m̃

1 + 1
µ̃

uchemL
′(XL),

what yields with uchemL (XL) = 0

XL = XL + 1

ũchemL
′(XL)− 1+ 1

m̃

1+ 1
µ̃

uchemL
′(XL))

1
nAs

2σ
rI
.

This is of the form
XL(rI) = XL + c1

2σ
rI
, (C.36)

with the constant c1 = 1

ũchemL
′(XL)−

1+ 1
m̃

1+ 1
µ̃

uchemL
′(XL)

1
nAs

. Note, that the constant c1 is strictly positive.

From (C.25) we find
uint(rI) = u(y = 1 + c1

2σ
rI

) (C.37)

or
yint(rI) = 1 + c1

2σ
rI
. (C.38)

Note that the classical Gibbs-Thomson law uint = 2σ
rI

(uint ≈ 1+µ̃
µ̃ ln(yint)), see (A.17)), which is

considered up to a factor in the Mullins-Sekerka model is just an approximation of a first order
Taylor expansion of the general case. Note that we do not make use of this expansion at all.

C.1.3. Stefan condition for single droplet problem

We emphasise that we consider the single droplet problem for fixed external radius Rext. From
(C.3) we get an explicit formula for v,

v = ∂tU
r
ε (r)er = [∂taε + (∂tbεIrI + 3bεI ṙI)

ε12r2
I

r3 + ∂tc
ε
I(r)]rer (C.39)
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With the abbreviations

Y(r, rI , u) = ∂rI b
ε
I + 3bεI

ε12r3
I

r3 + ∂rI c
ε
I(r),

Z(r, rI , u) = ∂ua
ε + ∂ub

ε
I

ε12r3
I

r3 + ∂uc
ε
I(r),

we can rewrite (C.39) as

v = (Y(r, rI , u)ṙI + Z(r, rI , u)u̇)rer. (C.40)

On the interface this simplifies to

v|Ii · er = [(∂rI bεI + 3
rI
bεI + ∂rI c

ε
I(r))ṙI + (∂uaε + ∂ub

ε
I + ∂uc

ε
I(r))u̇]rI

= [Y(r = rI , rI , u)ṙI + Z(r = rI , rI , u)u̇]rI . (C.41)

C.1.4. Diffusion problem for single droplet problem

Under our assumptions for a single droplet problem we can simplify (3.26) – (3.33) and get as the
diffusion problem of Problem A

εX (u(r, t), rI , u)× (∂tu(r, t)
+(Y(r, rI , u)ṙI + Z(r, rI , u)u̇)r∂ru(r, t))

−(2
r
∂r + ∂2

r,r)u(r, t) = 0 ∀r ∈ (ε4rI(t), Rext) ∀t ∈ (0, T ) (C.42)

u(rI(t), t) = uint(rI(t)) ∀t ∈ (0, T ), (C.43)
u(Rext, t) = u(t) ∀t ∈ (0, T ), (C.44)
u(r, t = 0) = u0(r) ∀r ∈ (ε4r0

I , Rext) (C.45)

with free boundary rI(t). The motion of the free boundary is determined by the ODE

ṙI = ε4∂ru(rI(t), t)
X(rI)

∀t ∈ (0, T ), (C.46)

rI(t = 0) = r0
I . (C.47)

Since in case of the geometry (SDP) we can solve the mechanical BVP explicitly for given rI and
u, we have plugged in U and v in leading order term in ε into the diffusion problem, the boundary
condition on the interface and the Stefan condition. We now solve formally the diffusion problem
(C.42) – (C.45) coupled to the ODE (C.46) for the radii by transformation on fixed domain and
an ansatz of an asymptotic expansion.
We remark again that we seek solutions of the diffusion problem ΩT where the time T has to be
chosen such that rmin < rI < Rext i.e. neither the droplet nor the solid vanishes.
In order to get rid of the difficulties with the time-dependent domain we transform our problem on
fixed domain. We proceed similar as described in Appendix B.1.
We rescale ΩS(t) = BRext(0)\BrI(t)(0) onto the fixed domain ΩS(0) := BRext(0)\BrI(0) by applying
the dilation

ψt : ρ 7→ r := ψt(ρ) = ε4rI(t) + Rext − ε4rI(t)
Rext − ε4r0

I

(ρ− ε4r0
I )
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with

∂ρψt(ρ) = Rext − ε4rI(t)
Rext − ε4r0

I

=: Λ(t).

We get as transformed problem

εX (ũε(ρ, t), rI , u)(Λ(t)∂tũε(ρ, t)

−∂ρũε(ρ, t)((−ε4 ρ− ε4r0
I

Rext − ε4r0
I

−(Ỹ(ρ, rI , u)ṙI + Z̃(ρ, u, rI)u̇)ρ)))

−(2
ρ
∂ρ + ∂2

ρ,ρ)ũε(ρ, t) = 0 ∀ρ ∈ (ε4r0
I , Rext) ∀t ∈ (0, T ),

ũε(r0
I , t) = uint(rI(t)) ∀t ∈ (0, T ), (C.48)

ũε(Rext, t) = u(t) ∀t ∈ (0, T ), (C.49)
ũε(ρ, t = 0) = u0(ρ) ∀r ∈ (ε4r0

I , Rext). (C.50)

The function rI(t), which enters as parameter in the PDE, is determined by the ODE

ṙI = ε4 Λ−1∂ρũ
ε(rI(t), t)

X(rI)
∀t ∈ (0, T ), (C.51)

rI(t = 0) = r0
I . (C.52)

The existence and uniqueness of a solution ũε ∈ C1C2, rI ∈ C1 of (C.48) – (C.52) for all t < T
follows from Th. 4.8 for initial data u0 ∈ H1.
For a formal solution we try an ansatz of an asymptotic expansion in ε

ũε(ρ, t) = ũA(ρ, t) + εũB(ρ, t) +O(ε2).

According to our asymptotics for X in Appendix A.4 X is smooth, bounded and has bounded
derivatives w.r.t. u. Hence we develop X around ũA as X (ũA+εũB) = X (ũA)+εũBX ′(ũA)+O(ε2).
We plug uε into (C.48) – (C.52) and get by neglecting higher order terms in ε

(2
ρ
∂ρ + ∂2

ρ,ρ)ũA(ρ, t) = 0 ∀ρ ∈ (ε4r0
I , Rext) ∀t ∈ (0, T ),

ũA(r0
I , t) = uint(rI(t)) ∀t ∈ (0, T ),

ũA(Rext, t) = u(t) ∀t ∈ (0, T ),

where t ∈ (0, T ). The solution ũA of this standard problem is

ũA(ρ, t) = Rextu(t)− ε4r0
Iuint(rI(t))

Rext − ε4r0
I

− u(t)− uint(rI(t))
ρ

Rextε
4r0
I

Rext − ε4r0
I

= u(t)− u(t)− uint(rI(t))
ρ

ε4r0
I +O(ε4).

(C.53)

Since the time derivative drops out on our time scale, the initial conditions does not enter in the
problem for ũA. The initial condition can be fulfilled by asymptoting matching, but we are here
only interested in times t of order ε0. Let us assume that

u0(ρ, t) = ũA(ρ, 0) = Rextu(0)− ε4r0
Iuint(r0

I )
Rext − ε4r0

I

− u(0)− uint(r0
I )

ρ

Rextε
4r0
I

Rext − ε4r0
I

. (C.54)
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Since in the problem for ũA time enters only as a parameter we can transform the problem back
on time-dependent domain and calculate an explicit solution there, too.
We put (C.53) into (C.51) and get in leading order in ε

ṙI = u(t)− uint(rI(t))
r0
IX(rI)

Rext
Rext − ε4rI(t)

= u(t)− uint(rI(t))
r0
IX(rI)

+O(ε4) ∀t ∈ (0, T ). (C.55)

In next order in ε we have to solve the following problem for ũB

(2
ρ
∂ρ + ∂2

ρ,ρ)ũB(ρ, t) = fB(ρ, t) ∀ρ ∈ (ε4r0
I , Rext) ∀t ∈ (0, T ) (C.56)

ũB(r0
I , t) = uB,int(rI(t), u(t)) ∀t ∈ (0, T ), (C.57)

ũ(Rext, t) = 0 ∀t ∈ (0, T ), (C.58)

where we use (C.54) and where

fB(ρ, t) = Λ(t)X (ũA(ρ, t), rI , u)(∂tũA(ρ, t) + Λ−1(t)∂ρũA(ρ, t)(Ỹ(ρ, rI , u))ṙI)

= X (ũA(ρ, t), rI , u)(u′int(rI(t))
ε4r0

I

ρ
ṙI −

u− u′int(rI)
ρ

ε4r0
I (Ỹ(ρ, rI , u))ṙI) +O(ε)

is given since ũA has been determined by (C.53). Furthermore we remind that u̇ ∼ ε0.
ũB solves a standard elliptic problem with smooth data, which is further independent of ε, ũB is
smooth and bounded uniformly in ε. Since in the problem for ũB time enters only as a parameter
we could transform the problem back on time-dependent domain and calculate an explicit solution
there.
Since we found a simple Laplace equation with homogeneous Dirichlet boundary conditions we see
that there exists a unique v1 for each time t ∈ (0, T ).
If a droplet shrinks or growths depends in first order on the sign of u∆(t) := u(t)− uint(rI(t)). We
see smooth dependence of solution ũA on rI and u.

C.2. Single droplet problem in regime (IC) – Problem AI

The diffusion problem in regime (DC) is easily solved since we find u = u(t), which is constant
in space. The mechanical boundary value problem is solved as for regime (DC), unless that the
coefficient cεI or cI can be simplified to

cI = cεI = ε9 3kS
4GS + 3kS

h∗(u(t)). (C.59)

and hence does not depend on r, which is contrary to regime (DC).

192



Appendix D.

Nomenclature

Here we give a compilation about the most important symbols, abbreviations, physical constants
and material data, which we use. Unless otherwise mentioned all material parameters and param-
eters in experiments are given for T = 1100 K.

Symbol Declaration

Geometry

x Eulerian coordinates of ΩS(t) ⊂ R3

X Lagrangian coordinates of ΩS(0) ⊂ R3

z Coordinates of ΩS(0) ⊂ R3, which are linked to x by the transformation Φ

t ∈ R+
0 , time

T maximal time t, until which the model is considered
τi point in time, when droplet i vanishes

N(t) Index set of all liquid droplets, which exist at time t
N (t) = |N(t)|, number of liquid droplets existing at time t

Ω(t) Open bounded time-dependent domain in R3 representing the GaAs wafer
ΩS(t) Simply connected open subset of Ω, solid part
ΩL(t) Open subset of Ω, liquid part
Ωi
L(t) Connected open subset of Ω, the liquid droplet with index i ∈ N(t)

Ii(t) := ∂Ωi
L, interface between droplet i and the solid

I(t) Union of all interfaces Ii(t), i ∈ N(t)

Xi Fixed centre of droplet i ∈ N(0)
Rbd(t) External radius if Ω is spherical
ri(t) Radius of interface Ii, i ∈ N(t) if ΩL is spherical
Riext Fixed external radius around a droplet centre, modelling its “influence”

IS(x) The characteristic function of a set S, which is 1 if x ∈ S and 0 if x /∈ S
I3 := δij , 1 ≤ i, j ≤ 3, identity matrix in 3 dimensions
ν Outer normal of a surface
τl Tangential vectors of a surface
kM := −div ν, mean curvature of a surface
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Appendix D. Nomenclature

Symbol Declaration

Operators

∂t Partial derivative w.r.t. t
d
dt Total derivative w.r.t. t
∇ := (∂x1 , ∂x2 , ∂x3), the Nabla operator
∆ :=

∑3
i=1 ∂

2
xi , the Laplace operator

Dt := ∂t + v · ∇, the convective derivative, where v is a velocity of transport

tr :=
∑3
i=1A

ii, trace of a matrix Aij , 1 ≤ i, j ≤ 3

Variables and some dependent quantities

Ũ Mechanical displacement in Lagrangian coordinates (for the definition see (2.10))
U Mechanical displacement in Eulerian coordinates (for the def. see (2.10))
ṽ Barycentric velocity in Lagrangian coordinates
v Barycentric velocity in Eulerian coordinates

u “total” chemical potential, i.e. a linear combination of chemical potentials in the
solid defined in (2.91), which appears in the diffusion fluxes jAs and jGa

A Available free energy (or availability) of the system

σS Cauchy stress tensor
p Pressure
aL scalar factor of the elastic deformation gradient matrix in the liquid, which is a

multiple of I
h∗ scalar factor of the inelastic deformation gradient matrix in the liquid/solid, which

is a multiple of I

nAs Mole density of As atoms in the solid
XS Arsenic mole fraction in the solid
XL Arsenic mole fraction in the liquid

SL Subset of sublattices in a solid GaAs crystal
aS Subset of species in the solid GaAs crystal
aL Subset of species in a liquid GaAs droplet
na Mole density of atoms of species “a”, a ∈ aS ∪ aL

X := n′As(u), appears in the diffusion equation, when we consider nAs as function of u
Ξ := nAs(u), appears in the diffusion equation, when we consider nAs as function of u
X Abbreviation of the denominator of the Stefan condition for regime (DC)
Z Abbreviation of the denominator of the Stefan condition for regime (IC)

Natural constants

R = 8.3145 J mol−1 K−1 universal gas constant
NA = 6.0221 · 1023 mol−1 Avogadro’s constant
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Symbol Declaration

Material data (cf. [DD08])

MAs ≈ 74.922 g mol−1, mole mass of arsenic
MGa ≈ 69.723 g mol−1, mole mass of gallium

σ(T ) Surface tension of liquid GaAs, we use σ ≈ 7.5 · 10−2N m−1 as guess as in [DD08]
GS(T ) Shear modulus of crystalline GaAs within the isotropic approximation,

GS ≈ 3.5364 · 1010 Nm−2 for T ≈ 900 K− 1200 K
kS(T ) Bulk modulus of crystalline GaAs, kS ≈ 7.5 · 1010 Nm−2 for T ≈ 900 K− 1200 K
kL(T ) Bulk modulus of liquid GaAs, kL(T = 1100 K) ≈ 6.25 · 109 Nm−2

L0(T ) = (−25485− 4.4 T K−1) J mol−1

L1 = 5174.7 J mol−1

}
Redlich-Kister coefficients

The arsenic-rich reference standard system (cf. [DD08])

X0 ≈ 0.5 + 8.2 · 10−5, mean mole fraction of arsenic for semi-insulating behaviour
XL(T ) ≈ 0.9386, mole fraction of As in the liquid for the reference standard system
XS(T ) mole fraction of As in the solid for the reference standard system,

can be calculated with Y a, a ∈ aS from XS(y = 1)

Y (Asγ)(T ) ≈ 1.0710 · 10−4, lattice occupancy for interstitial As
Y Vβ (T ) ≈ 2.1225 · 10−17

Y Vα(T ) ≈ 1.0300 · 10−24

Y Asα(T ) ≈ 8.2193 · 10−7

Y V (T ) =
∑
a∈SL Y Va ≈ 1− 1.0710 · 10−4, concentration of vacancies w.r.t. to sublattice

places for the reference standard system

ρL(T ) density of liquid GaAs, ρL(T = 1100 K) = nLM(XL) ≈ 5.220 · 103 kg m−3

ρS(T ) density of pure crystal GaAs, ρS(T = 1100 K) ≈ 5.351 · 103 kg m−3

nG(T ) ≈ 37000 mol m−3, number density of sublattice places for the reference standard
system

nL(T ) ≈ 70000 mol m−3, number density of atoms in the liquid for the reference
standard system

δR(T ) misfit parameter, calculated according to (2.110)
p(T ) ≈ 1.7471 · 106 Nm−2, pressure in the reference standard system

Typical experimental data

p0 ≈ 107 Nm−2, typical outer pressure used in experiments

D ≈ 10−12 m2 s−1, diffusion constant, as given by Steinegger [Ste01]
B(D) ≈ 3.7 · 10−8 mol m−1 s−1, mobility of interstitial GaAs in the bulk
BI ≈ 9.8 · 106 mol m−2s−1, “common” interface mobility corresponding to (2.62)

≈ 10−23 mol m−2s−1, as used for simulations in Section 6.6
NR

0 typical number of atoms in a box with side length D0,
NR

0 = 4π
3 ((D0/2)3 −R3

0) 2nG + 4π
3 R

3
0nL ≈ 3.9 · 10−14 mol
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Symbol Declaration

Auxiliary quantities

C1 = Y VαY VβY Vγ ≈ 2.1857 · 10−41

C2 = Y (Asγ)Y Vβ/(Y VγY Asβ ) ≈ 5.2775 · 10−21

C3 = Y AsαY Vβ/(Y VαY Asβ ) ≈ 1.6937 · 101

µ̃ = MGa
MAs

≈ 0.9309, relation of mole mass of gallium to arsenic

m̃ =
1−MGa

nL
ρS

1−MAs
nL
ρS

≈ 4.3683, a parameter that appears often e.g. in Subsection 2.6.3

% = 1− ρL
ρS
≈ 2.43572 · 10−2, useful for comparing [[ρ]] against O(h̃)

Typical scales

ε scaling parameter
ε0 = 10−3/2 (critical regime), = 10−1 (dilute regime), scaling parameter which

corresponds to original system

L = ε0, scaling of the initial outer boundary R0
bd

D = ε, scaling of the mean value of initial distances between droplet centres dij ,
i, j ∈ N(0)

R = ε3, scaling of the mean value of initial radii r0
i , i ∈ N(0)

L0 between 3.16 · 10−4 m and 10−5 m, typical length of the initial outer boundary R0
bd

in the original system
D0 = 10−6 m, typical length of all initial distances between droplet centres dij ,

i, j ∈ N(0) in the original system
R0 = 10−9 m, typical length of all initial radii r0

i , i ∈ N(0) in the orig. system

DM mean value over dij , i, j ∈ N(0) of a distribution νtε, with dimensions
RM mean value over r0

i , i ∈ N(0) of a distribution νtε, with dimensions

Quantities in the homogenisation

−
∑
i∈Nε := ε3/N 0

0
∑
i∈Nε , a sum over droplets normalised to the initial number of droplets

νtε Distribution of droplets for fixed ε
νt Limit distribution of droplets as ε→ 0

u Mean field of u of the formal homogenisation
u∞ Mean field of u of the rigorous homogenisation
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