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Abstract. We present a novel, thermodynamically consistent, model for
the charged-fluid flow and the deformation of the morphology of polymer
electrolyte membranes (PEM) in hydrogen fuel cells. The solid membrane
is assumed to obey linear elasticity, while the pore is completely filled
with protonated water, considered as a Stokes flow. The model com-
prises a system of partial differential equations and boundary conditions
including a free boundary between liquid and solid. Our problem gener-
alizes the well-known Nernst-Planck-Poisson-Stokes system by including
mechanics. We solve the coupled non-linear equations numerically and
examine the equilibrium pore shape. This computationally challenging
problem is important in order to better understand material properties
of PEM and, hence, the design of hydrogen fuel cells.

Keywords: Nernst-Planck-Poisson-Stokes system, Free boundary prob-
lem, Equilibrium shape, Fluid-structure interaction, Polymer electrolyte
membrane, Proton exchange membrane fuel cell, Nafion, Mechanical de-
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1 Introduction

Fuel cells running at low temperature provide a possibility for the electrification
of the power train in automotive devices. Proton exchange membrane fuel cells
(PEMFC) are based on hydrogen as fuel and do not rely on the use of fossil
combustible material, which is likely getting increasingly scarce and expensive
in the future. PEMFC allow to produce electric current by only emitting water
as a byproduct and no carbon dioxide. In a hydrogen fuel cell, hydrogen enters
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into the fuel cell at the anode (negative), while oxygen flows in at the cathode
(positive). The design of the PEM allows for control of the potentially explosive
chemical reaction between hydrogen and oxygen. The reaction product, just
water, leaves the fuel cell predominantly through the cathode outlet. The electric
load is applied between anode and cathode, which closes the electric circuit.
Within the PEM, the protons migrate from anode to cathode.

The PEM consists of a polymer with a nanopore structure. Negatively charged
sulfonic acid groups (SO−3 ) at the walls of the nanoscale pores allow the dissocia-
tion of protons (H3O+) in the presence of water. A typical material for a PEM is
Nafion, a perfluorosulfonic acid ionomer. A hydrated Nafion membrane exhibits
a hydrophobic elastic backbone and hydrophilic pores, that are filled with pro-
tons and water molecules [1]. The precise morphology of Nafion on nanoscales
remains a controversially discussed issue. We follow the widely accepted ap-
proach by Schmidt-Rohr and Chen [2], that a Nafion membrane consists mainly
of parallel cylindrical channels surrounded by hydrophilic side chains.

Within the production of PEMs, a possibility is to press together several lay-
ers of thinner membranes. An increased ohmic resistance between interfaces of
two joint PEM is observed in experiments. Our objective is to establish a math-
ematical model, describing the charged fluid flow and the change of the mor-
phology of the pore due to mechanical deformations, that allows to understand
better material properties of PEM. In particular we are interested in finding an
equilibrium pore shape and, finally, in explaining this ohmic resistance.

The behaviour of water in a nanochannel may be very different compared to
that of bulk water. The physics of water in a confined small channel depends
significantly on the type of surface, i.e. whether the interface is hydrophilic or
hydrophobic, and on the presence of surface charges [3]. There are several ap-
proaches, adapted to different scales, in order to study the charged fluid within
PEM pores. On a microscopic level these are mainly molecular dynamics and
Brownian motion, on a mesoscopic level there are continuum models, e.g. the
Nernst-Planck-Poisson-Stokes (NPPS) system. We follow a continuum approach
that is applicable in our situation since the Debye length is small, see [4].

We generalize the well-known NPPS model [5] by fluid-structure interaction
between the charged fluid flow and the elastic wall of the channel. Previous
electrohydrodynamic models, e.g. [4–6], do not incorporate the coupling to the
mechanical displacement field. The equations for the flow stated by Castellanos
[5] and analysed by Schmuck [7] are more general. They deal with the full non-
stationary Navier-Stokes flow and allow also negative charge carriers, but the
liquid domain is fixed. The equations in [4, 6] represent the first-order approxi-
mation for a stationary version of our model without mechanical deformations.
The significant effects of the radial variation of system parameters in this situa-
tion has been underlined in [4]. However, we work with a varying viscosity instead
of a no-slip surface as in [4], modelling essentially the Stern layer in the pore.
Furthermore, we consider slightly different boundary conditions (b.c.), e.g. we
work with homogeneous Neumann b.c. (13), (14) for the chemical potential on
in-/outlet and on the interface instead of Neumann b.c. for the proton concen-
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Fig. 1. Domains: L, the liquid, S the solid, I the interface, O1 inlet (anode), O2 outlet
(cathode). Unknowns: in L: u, p, φ, c; in S: U . Dashed part of the interface: initial
pore shape, part of the interface with continuous lines: equilibrium pore shape.

tration, which are only an approximation of our thermodynamically consistent
b.c. A free boundary problem for an interface between elastic solids and fluids
is described in [8, 9]. These models are similar to our model, when any coupling
of the flow to electric field and concentration is neglected. A similar setting as
ours has been considered by [10], but the authors focus on possible equilibrium
configurations depending on the hydration of the pore and they make the as-
sumption, arguably too strong in nature, of a constant proton concentration.
Secondly, we study a stationary fluid flow in a fully saturated PEM.

To the best knowledge of the authors, a full problem involving both charged
fluid flow and fluid-structure interaction has not been considered yet. We derive
partial differential equations that we state in Sect. 2. We focus on a single cylin-
drical channel that joins another cylindrical channel from the adjacent PEM
layer. Both channels are assumed to be completely filled with protonated water.
In §2.1 we define our geometry and introduce the crucial physical quantities. The
model is solved numerically by a commercial finite element software in Sect. 3.
We discuss the impact of our results in the last part, Sect. 4, of this short paper.

2 An Elasto-Electrohydrodynamical Model for Polymer
Electrolyte Membranes

2.1 Geometry and Relevant Physical Quantities

We assume that a single Nafion pore consists of several nanochannels and that
the length of nanochannels is larger than their diameter d, typically a few
nanometre. Instead of solving the full problem for many channels, we examine
the situation around the region where one channel from one PEM layer meets
one other channel from another PEM layer. We consider a nanochannel segment
of length l including the interface (see Fig. 1). The joint channel extends further
on in both directions and is assumed to be connected to other pores at both
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ends. Let C = L∪S ∪ I denote the whole domain with the open domains L and
S, modelling the liquid channel and the solid Nafion backbone (of both PEM).
I = ∂L∩∂S denotes the interior free boundaries (or interface) between S and L
and ∂C are all outer boundaries of C. We denote the inlet by O1 and the outlet
by O2. Here the outer boundaries are considered as fixed boundaries, since in our
model the channel extends further out of the considered domain C. Free bound-
aries may move with a normal speed ω. We make the following convention: ν
denotes the outer normal on I ∪ ∂C, pointing on ∂C outside C and pointing on
I \∂C always from the liquid into the solid. Consequently ∂νf =∇f ·ν denotes
the derivative in direction of the outer normal for a differentiable function f .
The mean curvature (times a factor 2) of a surface is the tangential divergence
of the outer normal, i.e. κ = ∇τ · ν, being positive on I, if I is convex (seen
from L). τ1 and τ2 denote the two orthonormal tangential vectors on I.

In this study, we suppose that the channel is completely filled with protonated
water. Counter-ions, i.e. protons, are considered to be the only charge carriers
in our model. On the interface I between liquid and solidwe have negatively
charged sulfonic acid groups, that are modelled by the negative surface charge
density σC , see [6]. We like to solve for the velocity field u, the pressure p, the
proton concentration c, and the electric potential φ in the liquid L, and we are
looking for the mechanical displacement field U in the solid S.

2.2 Modelling of Strains and Stresses

Mechanical strains and stresses are defined w.r.t. a reference configuration, where
the system is free of strains and stresses or the stresses are at least known a-
priori, either from experiments or from calculations (as it is possible e.g. in
the case of a symmetrical geometry). In order to define a mechanical reference
configuration, we consider at first another case where we have a straight circular
channel with a fixed diameter cut out of a box of solid Nafion. An outer pressure
p∗ is exerted on the liquid channel without flow. At the interface the well-known
Young-Laplace law p∗+γκR = pR holds. Here γ is the surface tension, κR = 2/d
is the mean curvature of the straight channel, and pR is the reference pressure
in the solid for a straight cylinder.

As a reference configuration we consider the case of two joint straight cylin-
drical channel segments with the same radius and parallel axes. These channels
are shifted by a fixed offset s between the axes. The offset is the distance be-
tween the circle centres at the interface plane. The reference pressure p in the
solid, corresponding to the situation of two channels with an offset, is varying in
space. Namely we have p = pR = p∗ − 2γ/d on the part of I that belongs to the
cylinder barrels, while p = p∗ on the part of I near the offset that belongs to the
cylinder covers. Stresses and strains are to be formulated w.r.t. this reference
configuration. The geometry within the reference configuration will be denoted
by S0, L0 and I0, while in the current (actual or deformed) configuration we
write S, L and I. We assume that we may neglect here inelastic deformations
that are due to changes of the chemical composition.
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We consider mechanical deformations and displacements U0 in the refer-
ence configuration on S0 and then as U in the current (actual) configuration
on S w.r.t. the reference configuration. We consider a material point X in
the reference configuration, whose location at time t is given by x in the cur-
rent configuration. χ(t,X) = x is called the deformation of material points.
The displacement of a material point is defined by U0(t,X) := χ(t,X) −X.
We assume that we may invert the deformation χ at any time w.r.t. material
points X and, thus, we express the displacement w.r.t. the current configura-
tion, U(t,x) := U0(t,χ−1(t,x)). It is convenient to consider fluid flow in the
current configuration, i.e. in Eulerian coordinates, while mechanical displace-
ments in a solid are considered in the reference configuration, i.e. in Lagrangian
coordinates. We may work in good approximation with linear elasticity instead
of nonlinear elasticity, which would be needed for a full description of large de-
formations of polymers, see e.g. [11]. Therefore solid stresses are represented by
the Cauchy stress tensor σS(∇U) = (−p + λStr(∇U))1 + µS e(∇U), where 1
is the unit tensor, tr denotes the trace, and e(t) = t+ t> is the symmetrization
of a tensor t times 2. The Lamé constants λS , µS are given material parame-
ters. In the liquid we deal with a Newtonian fluid and the stress tensor reads
σL = −(p+ 2

3µdtr(∇u))1 + µde(∇u), with µd being the dynamic viscosity.

2.3 Governing Equations

Now we may state our mathematical problem. For details of its derivation from
first principles and the choice of thermodynamically consistent constitutive re-
lations, see [12]. We remark that we assume that the dynamic viscosity µd, the
electric permittivity εr, and the diffusion coefficient of protons, D, may vary in
space [4]. Furthermore, we have as given data the outer pressure at in-/outlet

p
(1)
0 /p

(2)
0 , a given displacement g0 on the boundary ∂S0 \ I0, and a constant

external electric field Eext.
Our problem consists of Stokes equations for u and p,

[Momentum balance] −∇ · (µd e(∇u)) +∇p = −Fc∇φ inL, (1)

[Incompressibility] ∇ · u = 0 inL, (2)

where Fc∇φ accounts for electro-osmotic pressure, F being Faraday’s constant.
This is complemented by the boundary conditions

[Normal pressure bal.] µd e(∇u)ν − pν = −p(i)0 ν onOi, i = 1, 2, (3)

[Tangential moment. bal.] u · τj = 0 onOi, i, j = 1, 2, (4)

[Momentum balance] u = ∂tU on I. (5)

The mechanical displacement field U0 is determined by the following problem
of linear elasticity, formulated in the reference configuration,

−∇ · σS(∇U0) = 0 inS0, (6)

U0 = g0 on ∂S0 \ I0, (7)

−σS(∇U0)ν0 = −µd e(∇u0)ν0 + (p0 − γκ0)ν0 on I0, (8)
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where the last line is the Young-Laplace equation, a pressure balance. u0, p0 and
κ0 denote u, p and κ expressed in the reference configuration. For the electric
potential φ, we solve the Poisson equation with Neumann b.c.

[Electrostatics] −ε0∇ · (εr∇φ) = Fc inL, (9)

[External electric field] −∂νφ = (−1)iEext onOi, i = 1, 2, (10)

[Interface charges] −ε0εr∂νφ = −σc on I, (11)

where ε0 is the vacuum permittivity. For the proton concentration c, we solve
the Nernst-Planck equation

−∇ ·
(
D∇c+

F

RT
Dc∇φ

)
+ u · ∇c = 0 inL, (12)

∂νc+ (−1)i+1 F

RT
Eext c = 0 onOi, i = 1, 2, (13)

∂νc+
F

RTε0εr
σc c = 0 on I, (14)

the last two lines representing homogeneous Neumann b.c. for the chemical po-
tential RT ln(c/c) + Fφ, R denoting the universal gas constant and T the tem-
perature. In (12), the first term represents the diffusion of protons, the second
term the migration of protons within the electric field and the third term is the
advection due to the moving fluid. The normal velocity ω of the free boundary
I is determined by

[Normal momentum balance] ω = ∂tU · ν on I. (15)

In this study, we are looking for stationary solutions of (1) – (15). Consequently,
we neglect the time-derivatives in (5) and (15). Otherwise, we would have to
prescribe an initial condition for I, and consider time-dependent domains and
boundaries. The equilibrium pore shape corresponds to a displacement on the
interface, U0|I , that is constant in time. It is designated by (8).

We determine uniquely the electric potential φ by imposing φ = φ at the
centre point P of the inlet O1. By solving a nonlinear eigenvalue problem, a
typical value c for the proton concentration is derived in [6] that corresponds to
setting φ = φ at the centre of a straight cylindrical channel in the case of constant
permittivity. The arbitrariness of φ or c corresponds to the gauge invariance of
the electric potential.

We emphasize that the b.c. (10) is consistent with global electroneutrality,
meaning that we rule out that the electric field extends into the solid and, hence,
ions would cross the interface. This requires that the hydronium charges (H30+)
in the liquid and the negative ions (SO−3 ) on the boundary balance

∫
L
Fc +∫

I
σc = 0. Together with (9), (11), and Gauss’ theorem we find

∫
O1∪O2

ε0εr∂νφ =

0. The last equation is guaranteed by (10), a choice among many others.
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3 Numerical Solution

For any solution approach, numerical or analytical, it is crucial to non-dimen-
sionalize the system, and to split up the equations and, consequently, the quanti-
ties according to their different scales. We remark that by non-dimensionalization
of the system we find the relevant dimensionless coupling parameters, e.g. a pa-
rameter resulting from non-dimensionalization of (9) is the Debye length of the
nanochannel. The dimensionless parameter Pe arising in (12) is the Peclet num-
ber describing the relation between advection and diffusion for mass transfer.
Since Pe � 1 we could be tempted to neglect the term u · ∇c in the Nernst-
Planck equation. This observation motivates the first-order approximation that
is considered and compared with the full model in [12]. However, for the flux of
protons, j+ = −D

(
∇c+ F

RT c∇φ
)

+ cu, that enters significantly into the ohmic
resistance within the nanochannel, we would obtain zero within this first-order
approximation. Hence, it is crucial to consider the full equation (12). Sorting
the r.h.s. of the PDE by their scales suggests to introduce an internal electric
potential φ0 (with a non-zero b.c. only on the interface), an external electric
potential φ1 (with a non-zero b.c. only at in-/outlet) and a remainder potential
φ2. Corresponding to φ0 we introduce a concentration c0 = c exp (−F/(RT )φ0),
yielding a remainder concentration c1 with a well scaled PDE. Finally for the
pressure it is convenient to replace p by q := p−RTc0, since q = 0 implies u = 0.

Since the analytical solution of our non-linear coupled system is quite am-
bitious we focus on a numerical solution. Schmuck’s analytical results [7], for a
model without coupling to linear elasticity, rely on the parabolic structure of the
non-stationary equations for u and c and cannot be transferred to our station-
ary case directly. We remark that we have a two-sided fluid-structure interaction.
The charged fluid flow influences by means of (8) the deformation of the elas-
tomer membrane, while a narrowing (e.g. a complete closing of the channel) or
widening of L has large influence on velocity or pressure.

3.1 Description of the Numerical Algorithm

Our numerical algorithm solves for the state variables as well as for the free
interface. It should be emphasized that it is a non-trivial matter in which order
the coupled equations are solved so as to obtain fast convergence and numerically
stable results. We make use of the ALE (Arbitrary Lagrangian Eulerian) method,
i.e. we discretize the original geometry in Lagrangian coordinates. Our numerical
algorithm is built up in the following way:

a) Considering the reference configuration, we initialize the mesh for L0, S0 and
I0. Formally, we set U0 = 0, u0 = 0, and q0 = 0, where q0 is q transformed
into the reference configuration.

b) We compute smoothed normal vectors on the boundaries by extending the
normal vector field ν0 by means of ∆ν0 = 0 into L0∪S0, using the definition
of ν0 on ∂C0 ∪ I0 as boundary condition. This enables us to compute the
mean curvature κ0, even at corners that would become smooth instantly due
to surface tension anyways.
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c) We store U
(old)
0 = U0, then we solve the linear elasticity problem (6) – (8)

for U0 in S0, using the present values for u0 and q0.
d) We update the geometry. The free boundary is moved by the mechanical

displacement U0 − U (old)
0 on I0, yielding the update of I, and hence of S

and L.
e) We solve the electrohydrodynamical system (1) – (5), (9) –(14) as follows.

(i) First we solve for φ1, φ0, and c0, that do not depend on other variables.
(ii) We solve the remaining equations iteratively. We start solving for u and

q simultaneously, and then for φ2 and c1 simultaneously.
(iii) Then we reiterate e)(i) and e)(ii) until we have a suitable residual error.

f) If maxI0

∥∥∥U0 −U (old)
0

∥∥∥ < err, err a prescribed error tolerance, or if a topo-

logical event has occured (e.g. closing of the pore), or a specified maximal
number of iterations has been reached, we terminate our algorithm with
the obtained numerical solution. Else we take the updated geometry as new
reference configuration. Should the situation of a geometrically unsuitable
mesh arise after the deformation, we remesh. We restart with step b).

For more details of the algorithm see [13]. Our algorithm has been implemented
in the commercial finite element software COMSOL 3.4. The use of a parallel
solver, like PARDISO, is crucial for efficient calculations.

3.2 Numerical Results

We show two plots, corresponding to two different choices for external parame-
ters, namely, (i) a situation where the initial interface is close to an equilibrium

(due to large p
(1)
0 −p

(2)
0 and p∗ the surface tension term is negligible) (see Fig. 2,

top), and (ii) a situation where the charged fluid flow is close to zero (p
(1)
0 − p

(2)
0

small, Eext negligible) (see Fig. 2, bottom). All remaining data for our simu-
lations is discussed and summarized in [12]. We emphasize that the database,
e.g. for surface tension of protonated water and typical pressures, is thin.

4 Conclusions and Open Questions

We have stated a continuum model describing the charged fluid flow within
nanochannels of PEM. The numerically accurate simulation of the differential
equations allows further investigation of system characteristics. In our study
[12], we focus on the ohmic interface resistance between two circular cylindrical
pores, and analyze its dependence on system parameters. By splitting our model
into two models, we consider the main effects separately. In this context, our
model suggests that this interface resistance depends mainly on two factors: (a)
the offset value (the distance between the pore centres at the intersection plane)
and its stochastic distribution and (b) on the deformed pore shape due to the
balance of elastic and electrohydrodynamic forces. Furthermore, for a straight
channel the electro-osmotic drag and the specific pore conductivity match results
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Fig. 2. Top: u3, velocity in x3 direction, zoom towards the channel intersection, plotted
on the cross section L ∩ {x1 = 0} (s.t. the channels are sliced in half). Bottom: Cross
section S ∩{x1 = 0}. U2, mechanical displacement field in x2 direction, deformed con-
figuration. A channel may close completely. In both figures the cylinders have diameter
d = 2 nm in the reference configuration, length 10 nm and offset s = 0.5 nm; g0 = 0.

from experiments, see the discussion in [12], supporting the validity of our model.
The effect (b) raises the question whether it is possible to find an equilibrium
shape for the nanochannel pore, balancing the solid pressure with the liquid
pressure and the interfacial pressure, due to surface tension and mean curvature
of the interface. This question yields a mathematically challenging problem and
requires refined numerical techniques. For suitable outer pressures and external
electric field, the above described algorithm suggests fast convergence, but a
mathematical justification thereof is missing. However, for a simplified version
of our model we can prove existence and uniqueness of a solution and the shape
differentiability of the solution. Using a variational energy formulation, we show
that this numerically determined optimal shape minimizes the free energy. The
latter results are the subject of an upcoming paper [13].
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In summary, our full model, being derived from thermodynamical first prin-
ciples, presents a generalisation of previous models [4–6] by including surface
tension and bulk stresses in the solid Nafion, or compared to [10, 8, 9], by includ-
ing charged fluid flow. We emphasize that, contrary to our last contributions [4,
6], we have solved additionally, in the electrohydrodynamical part of our model,
the full Nernst-Planck-Poisson-Stokes system without neglecting higher order
terms. In particular, our novel approach, i.e. a continuum model of the electro-
chemical fluid flow within a nanochannel of a PEM including surface tension and
bulk stresses, allows to explain ohmic resistance and electro-osmotic drag.Our
mathematical results might turn out to be important for further advances in the
design of hydrogen fuel cells.
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research. S.-J. K. thanks the University of Ottawa for its hospitality.
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