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We present a mathematical model of a crane-trolley-load model, where the crane beam
is subject to the partial differential equation (PDE) of static linear elasticity and the
motion of the load is described by the dynamics of a pendulum that is fixed to a
trolley moving along the crane beam. The resulting problem serves as a case study for
optimal control of fully coupled partial and ordinary differential equations (ODEs). This
particular type of coupled systems arises from many applications involving mechanical
multi-body systems.

We motivate the coupled ODE-PDE model, show its analytical well-posedness locally
in time and examine the corresponding optimal control problem numerically by means
of a projected gradient method with BFGS update.
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1. Introduction

In this article we consider a crane model, where the crane arm is modelled by an
elastic beam Ω fixed at one end to the crane tower. The load is represented as
a mathematical pendulum that is fixed to a trolley which moves along the crane
beam. The mechanical displacement u of the crane beam is determined by the
elliptic partial differential equation of static linear elasticity. The trolley and load
states q = (q1, q2), that is, the position of the trolley and the angle of the load
are subject to an ordinary differential equation. It turns out that all differential
equations are fully coupled with one another. The goal is to transport the load by
means of the trolley along the crane beam from a given initial position q0 and initial
velocity v0 to a designated terminal position qf with terminal velocity vf , while
minimizing vibrations as well as the total time T . Here the control is given by the
acceleration force U of the trolley. For the relevance of this optimal control problem
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in engineering, see [1, 2]. The optimal control of a gantry crane has been examined
by Biswas [3] who considers additionally the displacement of a non-rigid cable fixing
the load, while the rails are considered as unflexible. This different model yields a
coupled ODE-PDE system as well, but with a one-dimensional PDE.

For the geometry of our model, we refer to Fig. 1. Our optimal control problem
(OCP) is to find

min
U,T,q

J(q, q̇, U, T ) (1)

with the objective

J(q, q̇, U, T ) = ν1T +
ν2

2
‖q̇2‖2L2(0,T ) +

ν3

2
‖U‖2L2(0,T )

+

1∑
i=0

ν4+i

2
|qi(T )− qfi |

2 +

1∑
i=0

ν6+i

2
|q̇i(T )|2 (2)

subject to the elliptic PDE

− divσ(u) = H in Ω× [0, T ] (3)

and the ODE system

M(q, ū) q̈ = F (q, q̇, ū, U) in [0, T ], (4)

and the PDE and ODE are completed by boundary and initial conditions, respec-
tively. Here ν ∈ R7 denotes a non-zero vector of non-negative weights. The state
q(t) denotes the vector of generalized coordinates of the rigid bodies at time t
(see Sect. 2.3). The right hand side H encodes the gravitational forces due to the
weight of the beam itself, M the mass matrix, and F comprises generalized Cori-
olis forces and external forces. We mention as a particular feature of our model
that only mean values ū of the beam’s displacement u, averaged over the surface
ΓC(q1) = q1 + ΓC(q0

1) connecting the trolley to the beam (for the precise definition
see Fig. 1 and Sect. 2.1), enter into the ODE (4). The differential equations are
completed by boundary and initial conditions. Time-optimal control is realized by
scaling to a fixed time interval, yielding the total time T only as a control parameter.
The scaled full problem is stated precisely in Section 2.

Our problem class cannot be solved directly by standard software owing to the
strong coupling of the constraints. In this study we prove the local-in-time well-
posedness of the coupled dynamical problem and present an algorithm for solving
the OCP, based on a first-discretize-then-optimize (FDTO) approach. The non-
standard Algorithms 4.1–4.4 are designed specifically for our problem and are based
on a projected gradient method without and with BFGS update, respectively. We
emphasize that it is not clear whether Newton-based methods as in Chen and Gerdts
[4, 5] could be applied in our situation. On the one hand it is not obvious whether
our problem exhibits the smoothness needed for Newton methods, and on the other
hand this approach requires the solution of the necessary optimality conditions that
turns out to be challenging. Finally we present numerical results for the optimal
control of the crane-trolley-load system. The open-source finite element software
FEniCS [6] is employed to solve the PDEs of linear elasticity. Special attention has
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to be given to the elements at surfaces where forces are applied, that is, at the free
boundary between moving trolley and crane beam. For ease of presentation we focus
in this article on a crane that does not rotate.

In the modelling of multi-body systems we often encounter the following situation.
We find ODEs representing the interactions between the centers of mass, algebraic
equations from constraining forces and elliptic PDEs modelling mechanical defor-
mations within the bodies. Here we focus on the crane-trolley-load system serving
as a case study. Other applications include, for example, (a) a quarter-car model,
where an elastic wheel-tyre-damper system with free road contact is controlled [7],
(b) the heat-optimal ascent and re-entry into atmosphere of a hypersonic spacecraft
[8], and (c) a truck or plane with a tank filled with fluid [9, 10]. In the latter example
the PDEs are the St-Venant equations yielding the height and velocity of the fluid.
However, it should be emphasized that the class of optimal control problems subject
to ODE and PDE constraints is heterogeneous, since different types of PDE require
already different theories and methods. Furthermore the methods for this problem
class depend on the particular coupling structure between ODE and PDE.

On optimal control of PDE and optimal control of differential-algebraic equations
(DAE) alone there exists a wide variety of results and numerical approaches, see for
example, the overview article [11] or the textbooks [12–15] for control of PDEs and
[16, 17] for optimal control of ODE and DAE, respectively.

However, only few results about combined ODE-PDE constrained optimal control
exist so far. Biswas et al. [18, 19] examine control and optimal control of a large
flexible space structure, e.g. a satellite, subject to PDE modelling vibrations and
to ODE describing the dynamics. Chudej et al. [8] consider optimal control for
coupling of the heat equation and equations of motions. Similar as in our situation,
the coupling from ODE to PDE is effected by means of a boundary condition, but
the controls arise in the ODE system only and the PDE is considered in one space
dimension. In our problem, the controls arise in the ODE as well as in the boundary
condition. Our control acts on the PDE by means of a Neumann boundary control.
In our problem we encounter control constraints, too. For a particular class of ODE-
PDE-problem, a so-called hypersonic rocket car problem, including the problem of
[8], some new phenomena have been discovered by Pesch et al. [20]. In [21] this
OCP is reformulated as a state constrained optimal control problem for PDE and
necessary optimality conditions for it are derived.

Our study is organized as follows. In Section 2 we derive the mathematical model.
The local-in-time well-posedness of our model is shown in Section 3. Due to the
complexity of the resulting coupled ODE-PDE problem, we apply here the direct
FDTO method, and follow a sensitivity-based approach. The discretization for the
numerical simulation, the projected gradient method, and the quasi-Newton method
BFGS for the optimal control are described in Section 4. In Section 5, numerical
results are presented. Finally we close with a discussion of our results and give, in
particular, an outlook on open questions and future work.

2. Mathematical model of the elastic crane

2.1. Geometry

For the geometry of a crane in the undeformed configuration, see Fig. 1. In this
study we consider no rotation of the crane beam, yielding that the pendulum is
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Figure 1. Configuration of the elastic crane (within Lagrangian coordinates).

restricted to the plane defined by x2 ≡ 0. The full 3d model with a rotating crane
is presented in the study [23].

The deformations of the crane beam are here considered in a full 3d model avoiding
the issue, how to replace the crane beam by a lower dimensional model sensitively.
The domain

Ω = {x = (x1, x2, x3) ∈ R3 | b1/2 ≤ x1 ≤ l2 − b1/2, |x2| ≤ b2/2, l1 − b3 ≤ x3 ≤ l1},

where b1 < l2, b3 < l1, describes the undeformed extension arm of the crane, which
is considered elastic and attached to the rigid vertical bar. On ΓD = ∂Ω ∩ {x ∈
R3 |x1 = b1/2} the extension arm is fixed.

A force is applied on the trolley at its center of mass, located at

rM(t) =

(
xT(t), 0, l1 − b3 −

hT

2

)>
(5)

in the undeformed state. This load is a pendulum of length l with a point mass
mL. The trolley, with mass mT, may move on rails, modelled by translating the x1-
position xT(t) ∈ ((b1+lT )/2, l2−(b1+lT )/2) of its center of mass. The application of
a force U , e.g., by means of a neglectable cable along the beam, at the trolley’s center
of gravity allows to control the trolley. Alternatively, if the trolley was controlled
by a motor within the trolley, moving a wheel that is in contact with rails at the
crane beam, this would yield the same model, but with a slightly different area of
support ΓC, now being the wheel’s area of support. On the boundary ΓC(xT) = {x ∈
∂Ω |xT(t)−lT/2 ≤ x1 ≤ xT(t)+lT/2, |x2| ≤ bT/2, x3 = l1−b3} = ΓC(xT(0))+xT e1

varying with time, the trolley exerts a force on the extension arm. As usual e1

denotes the unit vector in x1-direction. In particular, the definition of ΓC implies
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that the surface area of ΓC, denoted by |ΓC|, remains constant. The application of a
moment UM at the trolley’s center of gravity allows to rotate the crane by an angle
β. We assume α ∈ (−π/2, π/2).

2.2. Strains and stresses in the beam

Within the domain Ω of the crane we aim to solve for the mechanical displacement
field. For a realistic crane we may assume small displacement gradients and, hence,
model the elastic deformations within the structure of the crane by linear elasticity.
As usual in linear elasticity, we do not distingiush between the reference (unde-
formed) configuration Ω (in Lagrangian coordinates x) and the deformed configu-
ration Ω′ ⊂ R3 (in Eulerian coordinates x̂). As reference configuration we consider
the crane’s extension arm in the absence of strains or stresses. For the interaction
between the deformed beam and the trolley, the deformation of the beam is not
neglected in our study. In this context, we consider u in the reference configuration.
For the deformed configuration the formula (19) would look different, though lead-
ing to the same results within the approximation of small displacement gradients.
The deformation depends on time through the control. The system is considered
on the compact time interval [0, T ] ⊂ R and thus the mechanical displacement
field reads u : Ω × [0, T ] → Ω′, (x, t) 7→ u(x, t) = x̂(x, t) − x. The symmetrized
strain associated with the displacement field u is ε(u) = (∇u+ ∇u>)/2 and as a
constitutive assumption we work with the Cauchy stress tensor

σ(u) = λ trace(ε(u))1 + 2µ ε(u), (6)

where 1 denotes the unit matrix and µ > 0, λ > −2µ/3 are the Lamé constants
scaled by 1/(l mL). For our purposes it suffices to consider λ > 0. We assume that
we may neglect the deformation of the trolley, since typically hT � b3 holds.

Terms of higher order in ‖∇u‖ are neglected, since ‖∇u‖ � 1. (This is empha-
sized in the following by the ≈ symbol.) For more details see [22, Ch. 3].

2.3. Governing equations for the trolley and the load

We introduce the generalized coordinates q = (xT, α)>, see Fig. 1. The trolley’s
center of gravity at time t is given by

rT(q1,u, t) = rM(q1) + u(rM(q1), t), (7)

where rM is defined by (5). The position of the load, considered as point mass, at
time t is

rL(q,u, t) = rT(q1,u, t) +

 l sin q2

0
−l cos q2

 ,

where q2 = α is positive for a counterclockwise rotation around the x2-axis, see
Fig. 1. The kinetic energy of the mechanical system written for the generalized
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coordinates q = (xT, α)> and scaled by 1/(l mL) is given by

T (q, q̇,u, t) =
1

2 l mL

(
mT‖ṙT(q1,u, t)‖2 +mL‖ṙL(q,u, t)‖2

)
, (8)

where we neglect the moment of inertia of the trolley and the load. Furthermore,
we have neglected velocities

u̇ ≈ 0 (9)

in (8), which is motivated by a short dimensional analysis (see Subsection 2.4)
and is consistent as we will see in our numerics (see, e.g., Fig. 3, bottom left).
For brevity, we set m := (mT + mL)/(l mL). The scaled, generalized potential V,
uniquely determined up to a constant, is V(q, U) = −Uq1−ge cos q2, where U is the
control (divided by l mL) and ge is the gravity acceleration. From E = −∇qV we
obtain the vector of applied generalized forces

E(q) =

(
U

−ge sin q2

)
, (10)

that is, the control acting along the deformed rail of the trolley and gravita-
tion acting on the deformed system. The Lagrange function is L(q, q̇,u, U) =
T (q, q̇,u)− V(q, U).

By means of the Euler-Lagrange equation d
dt∇q̇L = ∇qL for a given control

we derive the equations of motion within our approximation of small displacement
gradients. Neglecting u̇, we obtain from (7) the time derivative

ṙT = FD(∇u)>q̇1e1,

where FD(∇u) = 1 + ∇u is the deformation gradient. In our approximation of
small displacement gradients we have

F 2
D,11(∇u) + F 2

D,21(∇u) + F 2
D,31(∇u) = 1 + 2∂1u1 +

3∑
i=1

|∂iu1|2 ≈ 1 + 2∂1u1.

Furthermore, ṙL = ṙT − l (cos q2, 0, sin q2)>q̇2 and the scaled kinetic energy reads

T (q, q̇,u, t) =
m

2
(1 + 2∂1u1(rM(q1), t)) q̇2

1 +
l

2
q̇2

2

+ ((1 + ∂1u1(rM(q1), t)) cos q2 + ∂1u3(rM(q1), t) sin q2) q̇1q̇2.

For brevity, we introduce the notation ∂i := ∂xi
and the operator D1 defined by

D1ui := ∂2
1,1ui + ∂2

2,1ui + ∂2
3,1ui, i = 1, 2, 3, (11)

and abbreviate

Φ1(q2,D
2u) = D1u1 cos q2 +D1u3 sin q2,

Φ2(q2,Du) = −(1 + ∂1u1) sin q2 + ∂1u3 cos q2.
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We compute

∂qT (q, q̇,u) =

(
mD1u1 q̇

2
1 + Φ1(q2,D

2u) q̇1q̇2

Φ2(q2,Du) q̇1q̇2

)
and

∂q̇,qT q̇ =

(
2mD1u1 q̇

2
1 + Φ1(q2,D

2u) q̇1q̇2 + Φ2(q2,Du)q̇2
2

Φ1(q2,D
2u)q̇2

1 + Φ2(q2,Du)q̇1q̇2

)
.

Thus the generalized Coriolis forces are

G(q, q̇,u) = ∂qT (q, q̇,u)− ∂2
q̇,qT (q, q̇,u) q̇ =

(
−mD1u1q̇

2
1 − Φ2(q2,Du)q̇2

2

−Φ1(q2,D
2u)q̇2

1

)
.

This yields as equation of motion for q,

M̃(q,u) q̈ = G(q, q̇,u) +E(q, U) (12)

where the symmetric and positive definite mass matrix reads

M̃(q,u) =

(
m(1 + 2∂1u1) (1 + ∂1u1) cos q2 + ∂1u3 sin q2

∗ l

)
, (13)

and where the generalized Coriolis forces are

G(q, q̇,u) =

(
−mD1u1 q̇

2
1 + ((1 + ∂1u1) sin q2 − ∂1u3 cos q2) q̇2

2)
−(D1u1 cos q2 +D1u3 sin q2) q̇2

1

)
. (14)

The ODE system for itself has a unique solution locally in time, since M̃ is invertible
for ‖∇u‖ � 1.

2.4. Governing equations for the crane beam

For the domain of the crane’s extension arm we consider the standard model of
linear elasticity [22]. We do not observe significant vibrations in the beam in our
simulations. Elastic waves within the crane beam may be safely neglected due to
different typical time scales, see [23] for the full elastodynamical problem for the
displacement field and its dimensional analysis. Indeed, the speed of shear waves is√
lµ/ρ ≈ 4.73 km/s and the speed of longitudinal waves, i.e. the speed of sound,

is of the same order. This elastostatic problem, where time enters as a parameter,
reads

−divσ(u) = H in Ω× [0, T ], (15)

u = 0 on ΓD × [0, T ], (16)

−σ(u).n− g̃(q,u, U) = 0 on ΓN × [0, T ]. (17)

where g̃ : ΓN × [0, T ]→ R3 is a boundary force (scaled by 1/(l mL)), ΓD is the part
of ∂Ω where the Dirichlet boundary condition (b.c.) holds and ΓN := ∂Ω \ ΓD the
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boundary with the Neumann b.c. The term

H = −ρ g e3 (18)

in (15) models the gravity of the crane cantilever. Here ρ is the mass density divided
by mL and g := ge/l is the reduced gravity acceleration.

Note that we work within the approximation of small displacement gradients and,
thus, for consistency the linear deformation of the crane beam has to be modelled
for the trolley-load system as well, only higher order terms in ∇u may be safely
neglected. According to (10), the scaled forces E applied to the crane beam read in
Cartesian coordinates

Ec(q, U) =

 U + g sin q2

0
−g cos q2


acting in the deformed configuration. We assume that this force is realized by a
constant pressure acting on the contact surface ΓC between the trolley and the
beam. In order to transform a surface integral from the deformed to the reference
configuration we use [22, Th. 1.7-1], also called Nanson’s formula. The deformation
gradient FD(∇u) = 1 + ∇u is invertible for ‖∇u‖ � 1. Note that ∂2ui ≈ 0,
i = 1, 2, 3, on ΓC. In our situation the scaled gravity and control forces by the load
and the trolley onto the crane beam yield g0 : R× R3 × R→ R3 by

det(FD(∇u)−1)F>D(∇u) (Ec(q, U)− η g e3)

≈
(
(1− trace(∇u))1 + ∇u>

) (
U + g sin q2, 0,−g(cos q2 + η)

)>
=: g0(q,u, U),

where η = mT/mL abbreviates the trolley/load mass ratio. This pressure is dis-
tributed on the surface ∂Ω ∩ {x3 = l1 − b3} as follows

g̃(x, q(t),u(x, t), U(t)) :=

{ 1
|ΓC|g0(q(t),u(x, t), U(t)); x ∈ ΓC(q1(t)),

0 ; otherwise.
(19)

The elliptic PDE problem (15)–(17) for u depends on the trolley/load states q by
means of the contact pressure g̃, while the ODE system (12) for q is coupled as it
depends on derivatives of u. Since the important coupling effect that we would like
to consider takes place on a small part ΓC of the surface, we introduce the mean
values

ū(t) :=


ū1(t)
ū2(t)
ū3(t)
ū4(t)
ū5(t)
ū6(t)

 =



1
|ΓC|

∫
ΓC(q1(t)) ∂1u1(x, t) dx

1
|ΓC|

∫
ΓC(q1(t)) ∂1u3(x, t) dx

1
|ΓC|

∫
ΓC(q1(t))D1u1(x, t) dx

1
|ΓC|

∫
ΓC(q1(t))D1u3(x, t) dx

1
|ΓC|

∫
ΓC(q1(t)) ∂3u1(x, t) dx

1
|ΓC|

∫
ΓC(q1(t)) ∂3u3(x, t) dx


, (20)

in the coupling terms of the ODE and, consistently, in g̃. For the definition of the
operator D1 see (11). This also implies that we do not have to solve for every point
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in space x another ODE system. We will consider ū as an independent state variable
in the following.

2.5. Objective function

Our aim is to transport a load at rest (v0 = 0) from an initial state q0 to a terminal

position qf1 with angle qf2 = 0, where the load should be at rest, that is, vf = 0.
We would like to achieve this in minimal time, while also minimizing the swing
of the load. Now the objective function (2), consisting of a time-minimal term, a
(kinetic) energy-minimal term, possibly a regularization term, and terms penalizing
the violation of terminal conditions, reads:

J(q, q̇,U , T ) = ν1T +
ν2

2
‖q̇2‖2L2(0,T ) +

ν3

2
‖U‖2L2(0,T ) +

ν4

2
|q1(T )− qf1 |

2

+
ν5

2
|q2(T )|2 +

ν6

2
|q̇1(T )|2 +

ν7

2
|q̇2(T )|2. (21)

Different choices for the weights ν1 > 0, νj ≥ 0, j = 2, . . . , 7 are discussed in
Section 5. Except for the first term, the objective function J exhibits only quadratic
terms and J is positive. Note that the displacements u or ū do not enter explicitly
into the objective function. However, since ū enters into the ODE for q by means of
the mass matrix M and the right-hand side F, finding an optimal control U implies
that vibrations of ū are damped out as well.

2.6. Optimal control problem for 2d crane

We solve the second-order ODE (12) for q as a system of coupled ODEs for q and
v := q̇, where v is considered as an independent state.

Our optimal control problem reads: Find states q ∈ [C2([0, T ])]2, v ∈ [C1([0, T ])]2,
u ∈ C0([0, T ];H1(Ω;R3)), a control U ∈ L∞(0, T ) and a parameter T ≥ Tmin > 0
(without loss of generality Tmin arbitrarily small) such that the reduced cost function

F(U, T ) = J(q(U, T ),v(U, T ), U, T ) (22)

is minimized under the following constraints:

• the ODE system

M(q, ū) v̇ = F (q,v, ū, U) (23)

q̇ = v in (0, T ), (24)

resulting from (12) having employed the mean values ū in (13), yielding

M(q, ū) :=

(
m(1 + 2ū1) (1 + ū1) cos q2 + ū2 sin q2

(1 + ū1) cos q2 + ū2 sin q2 l

)
, (25)

and analgously in (14) and in (10), yielding

F (q,v, ū, U) :=

(
−mū3 v

2
1 + ((1 + ū1) sin q2 − ū2 cos q2) v2

2 + U
− (ū3 cos q2 + ū4 sin q2) v2

1 − ge sin q2

)
, (26)
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together with initial conditions

q(0) = q0, v(0) = 0, (27)

• the PDE (15)–(17)

−divσ(u) = H in Ω× [0, T ], (28)

u = 0 on ΓD × [0, T ], (29)

−σ(u).n = R(q, ū, U) on ΓN × [0, T ], (30)

with the gravity termH from (18) and with averaging over ΓC in (19) yielding

R(q, ū, U) :=

{ 1
|ΓC|R0(q, ū, U); x ∈ ΓC(q1),

0 ; otherwise,
(31)

where

R0(q, ū, U) :=

 (1− ū6)(U + g sin q2)− ū2g(cos q2 + η)
0

ū5(U + g sin q2)− (1− ū1)g(cos q2 + η)

 , (32)

• the state equation (20) for ū, and
• the control constraints

Umin ≤ U(t) ≤ Umax point-wise for all t ∈ [0, T ]. (33)

In this paper we consider a smoothed version χεΓC
, see (47), of the characteristic

function χΓC
(being 1 on the set ΓC and 0 otherwise) entering in (31). The solvability

of this coupled problem for a given control is discussed in Section 3. We check that in
case of neglected elastic deformations we recover in (23)–(27) and (33) the standard
ODE-problem for an inelastic overhead gantry crane [4, 5]. As in the model in [4, 5]
we consider no damping term and, furthermore, neglect the moment of inertia.

The terminal conditions q(T ) = qf and v(T ) = 0 are realized approximately by
the penalty terms corresponding to the weights νi, i = 4, . . . 7, within the objective
function (21). We could also require state constraints, as (b1 + lT)/2 < q1 < l2 −
(b1 + lT)/2, modelling that neither the trolley touches the crane tower nor that it
jumps off the rails at the end of the crane beam, and |q2| < qmax2 , reflecting that
the pendant cord may not be tight for angles larger than a certain qmax2 . State
constraints are neglected as in [4, 5], since we see in our numerical experiments that
for typical initial data a control is found such that the state constraints are safely
guaranteed.

3. Local-in-time existence and uniqueness of the coupled states

3.1. Smoothed computational domain

Let us consider a sufficiently small T > 0. We emphasize that, without loss of
generality, Ω has a C3 boundary, that could be obtained by smoothing out the
corners, since corners are not relevant for the trolley-load system. We introduce

10
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Ωε̃ = {x ∈ Ω |x1 > b1/2 + ε̃} where ε̃ ∈ (0,min{(l2 − b1)/2, b2/2, b3/2}) may be
chosen arbitrarily small. In order to avoid technical regularity issues, we focus in
this section on

Ω∗ := Ωε̃ ∪ Bε̃({x ∈ Ω |x1 = b1/2 + ε̃, |x2| ≤ b2/2− ε̃, l1 − b3 + ε̃ ≤ x3 ≤ l1 − ε̃})

where Bε̃(S) = ∪x∈SBε̃(x) is a usual ε̃-neighborhood of a closed set S. Ω∗ is con-
structed smoothly such that the contact lines ΓD ∩ ΓN between Dirichlet and Neu-
mann boundary, where singularities might occur (compare [25, Sect. 3]), are taken
out of Ω. Let u∗ denote for the moment the solution on Ω∗. On B∗ := ∂Ω∗ \ ∂Ω
we prescribe a∗u + (1 − a∗)σ(u∗).n = 0 as boundary condition, where a∗ is a
smooth spatial function on B∗ such that a∗(x) = 1 for x1 = b1/2 and a∗(x) = 0
for x3 = l1 − b3. According to [25, Sect. 3] and the references therein, u can be
decomposed into a regular and singular parts. For the intersection {x ∈ Ω |x1 =
b1/2, |x2| = b2/2 or |x3 − l1 − b3/2| = b3/2} between homogeneous Dirchlet and
Neumann b.c., the usual regularity results hold for the regular part of u, while the
singular parts (smooth except for the singularity) are bounded by r̃−m̃, r̃ being the
distance to the respective singularity, where 0 < m̃ < 3 depends on the interior an-
gle and the Lamé parameters [26, Sect. 2]. Thus the norm of the whole singular part
is arbitrarily small on Ω∗ for suitable ε̃. Furthermore, our numerical simulations do
not exhibit a singular behaviour in the corners or at the edges or in a neighborhood
of these, thereby reconfirming that the corner and edge smoothing is only an aux-
iliary construction in order to avoid technical details in the proof concerning the
interplay between crane and trolley.

Furthermore, we assume that the prescribed control U ∈ L∞(0, T ). For suitable
data U , ρ, η, and g and sufficiently small T we may assume ‖∇u‖L2(Ω), |ūj | � 1,
j = 1, 2, 5, 6, for all t ∈ [0, T ], meaning that the assumption of small displacement
gradients is justified (see also our numerics in Sect. 5). The latter implies inter alia
1− 2ū1 > 0. As usual we denote, e.g., Hk = W k,2 or LpHk = Lp(0, T ;Hk(Ω∗;R3))

for the Bochner space with the norm ‖f‖pLpHk =
∫ T

0 ‖f(t)‖pHk(Ω∗;R3) dt.

3.2. Standard results for uncoupled differential equations

We summarize standard results for the ODE system and the PDE considered as
stand alone equations. For given ūj ∈ C0([0, T ]), j = 1, 2, 3, 4, U ∈ C0([0, T ]) there
exists a unique solution q ∈ [C2([0, T ])]2 of the ODE system for sufficiently small
T by the theorem of Picard-Lindelöf, since M−1F is Lipschitz in q and v = q̇. For
given ūj ∈ L∞(0, T ), j = 1, 2, 3, 4, U ∈ L∞(0, T ) there exists a unique solution
q ∈ [W 2,∞(0, T )]2 (that is, C2 for almost all t) of the ODE system for sufficiently
small T . We have the standard estimate for ODE

‖qj‖H2(0,T ) ≤ C‖(M−1F )(q, q̇, ū, U)‖L2(0,T ).

Let λ, µ > 0 in (6). For given q ∈ [W θ,κ(0, T )]2, U ∈ Lκ(0, T ) and ūj ∈ Lκ(0, T ),
j = 1, 2, 5, 6, there exists a unique solution u ∈ Lκ(0, T ;W 1,p(Ω)) of the PDE
problem for 0 ≤ θ < ∞, 6/5 ≤ p < ∞, and 1 ≤ κ ≤ ∞ [22, Sect. 6.3], where the
time regularity carries over from the data. For almost all t, there holds the estimate

‖u(·, t)‖H1(Ω) ≤ c (‖Rε(q, ū, U)‖L2(ΓN) + 1), (34)

11
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where

Rε(q, ū, U) :=
1

|ΓC|
R0(q, ū, U)χεΓC

(x) (35)

is a smoothed version of R defined in (31), ε > 0 being another sufficiently small
smoothing parameter. Note that the estimate (34) holds on Ω (as well as for u∗

on Ω∗ with the corresponding boundary conditions) and, therefore, u ∈ H1/2(B∗).
Now testing on Ω∗ (instead of Ω) yields an additional integral term ‖a∗u‖L2(B∗) in
the estimates for u∗.

We need the regularity result from [22, Sect. 6.3] combined with [25, Sect. 3] that
for ∂Ω∗ ∈ C3 we have u∗ ∈ W 3,p(Ω∗) for any p ≥ 6/5, since Rε is W 1−1/r,r(ΓN),
6/5 ≤ r ≤ ∞. Thus together with the Sobolev embedding for W 3,p(Ω∗) for p >
3/(1− δ), 0 < δ < 1 [27, Th. 10.13, 2)], we get

u∗ ∈ Lκ(0, T ;W 3,p(Ω∗)) ↪→ Lκ(0, T ;C2,δ(Ω∗)). (36)

We consider only Ω∗ in the following and, for ease of notation, we write again u
instead of u∗. (36) shows that the derivatives entering in the definition (20) of ū
are well-defined. We remark that using mean values is crucial to obtain the stated
regularity for u and ū.

3.3. Local-in-time existence for coupled differential equations

We cannot expect an existence and uniqueness result for an arbitrary right hand
side M−1F in the ODE (23). We will need the following local Lipschitz estimate.

Lemma 3.1: (Estimate for the right-hand-side of the ODE) Within our
approximation ‖∇u‖ � 1, there holds for two different state pairs (q(i), ū(i)), i =
1, 2,

‖(M−1F )(q(1), q̇(1), ū(1), U)− (M−1F )(q(2), q̇(2), ū(2), U)‖L2(0,T )

≤ Const(k,K)
(
‖q(1) − q(2)‖H1(0,T ) + ‖ū(1) − ū(2)‖L2(0,T )

)
, (37)

when supj ‖q̇
(i)
j ‖L∞(0,T ) ≤ k and supl ‖ū

(i)
l ‖L∞(0,T ) ≤ K for all i = 1, 2.

Proof. The proof relies on computing M−1 explicitly by Cramer’s rule. For further
details, see [24, A]. Then we exploit that for the quadratic terms

‖(q̇(1)
j )2 − (q̇

(2)
j )2‖L2(0,T ) ≤ ‖(q̇

(1)
j + q̇

(2)
j )(q̇

(1)
j − q̇

(2)
j )‖L2(0,T )

≤ 2k‖q̇(1)
j − q̇

(2)
j ‖L2(0,T ),

that for the mixed terms

‖ū(1)
l q̇

(1)
j − ū

(2)
l q̇

(2)
j ‖L2(0,T ) ≤ ‖ū

(1)
l q̇

(1)
j − ū

(1)
l q̇

(2)
j + ū

(1)
l q̇

(2)
j − ū

(2)
l q̇

(2)
j ‖L2(0,T )

≤ K‖q̇(1)
j − q̇

(2)
j ‖L2(0,T ) + k‖ū(1)

l − ū
(2)
l ‖L2(0,T ),

12
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and that | sin q1|, | cos q2| ≤ 1 and sin, cos are Lipschitz, where j = 1, 2, l = 1, 2, 3, 4.

Theorem 3.2: (Local-in-time well-posedness of the dynamics) Let Ω∗ be a
C3 domain and let λ, µ > 0 be the Lamé parameters. Suppose that U ∈ L∞(0,∞)
and that for M−1F the estimate (37) holds. Then for each pair (k,K) of positive
numbers, there exists T > 0 and an area of the contact surface |ΓC| > 0, such that
the coupled ODE-PDE problem (23) – (32), with (20) and the smoothing (35), has
a unique solution q ∈ [H2(0, T )]2 and u ∈ L∞(0, T ;W 3,p(Ω∗)) for any p > 3.

Our strategy is inspired by Algorithm 4.1: We solve alternately for u and the mean
values ū, then the result is used for the right-hand side of the ODE. The ODE
solution q is inserted into the PDE and a fixed point iteration is invoked. The idea
of proof, relying on the Banach fixed point theorem and the estimate (38) yielding
a factor proportional to

√
T in the contraction constant, has been described for

example by Niethammer [28] for a coupled ODE-Laplace PDE problem. A similar
proof as needed for our problem is given in [29] for a coupled problem consisting
of a single ODE for a free boundary, a quasilinear diffusion PDE, and the PDE of
linear elasticity. Both cited proofs consider free boundary problems with a time-
dependent domain and require beforehand a transformation to a fixed domain that
is not needed here.

Proof. We would like to apply the Banach fixed point theorem in the space

M =Mk
T ×MK

T ,

where

Mk
T :=

{
q ∈ [H2(0, T )]2

∣∣ sup
j
‖q̇j‖L∞(0,T ) ≤ k

}
,

MK
T :=

{
u ∈ L∞H2

∣∣ sup
l
‖ūl‖L∞(0,T ) ≤ K

}
,

to the map

G :M→ [H2(0, T )]2 × L∞H2,

(q,u) 7→ (q+,u+) := (L1(M−1F )(q, q̇, ū+, U), L2R
ε(q, ū, U)),

where the operators L1 : L2(0, T ) → H2(0, T ) and L2 : W 2,∞(ΓN) → H2(Ω) map
onto the solution of the ODE with right-hand side M−1F and onto the solution of
the elasticity problem with right-hand side Rε on ΓN, respectively.

I. Strict contraction:
We consider two pairs of time trajectories (q(1),u(1)) and (q(2),u(2)). Define
q∆ = q(1) − q(2) and u∆ = u(1) − u(2). The main ingredient is the following
Poincaré inequality:

‖qj − q0
j ‖L∞(0,T ) =

∥∥∥∥∫ T

0
q̇j dt

∥∥∥∥
L∞(0,T )

≤
√
T‖q̇j‖L2(0,T ) (38)

13
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that follows by applying Hölder’s inequality. Thus

‖qj − q0
j ‖L2(0,T ) =

√∫ T

0
(qj − q0

j )
2 dt ≤

√
T ‖qj − q0

j ‖L∞(0,T ),

‖qj − q0
j ‖H1(0,T ) ≤

√
T 2 + 1 ‖q̇j‖L2(0,T ).

This procedure is repeated:

‖q̇j‖L2(0,T ) =

√∫ T

0
q̇2
j dt ≤

√
T‖q̇j‖L∞(0,T ) ≤ T‖q̈j‖L2(0,T ).

Thus

‖qj − q0
j ‖H1(0,T ) ≤ T

√
T 2 + 1 ‖q̈j‖L2(0,T ), (39)

‖qj − q0
j ‖H2(0,T ) ≤

√
T 4 + T 2 + 1 ‖q̈j‖L2(0,T ).

We write q+
∆ = q(1),+ − q(2),+ and u+

∆ = u(1),+ − u(2),+. Applying this to the
map G yields

‖q+
∆,j‖H2(0,T ) ≤

√
T 4 + T 2 + 1×

× ‖(M−1F )(q(1), q̇(1), ū(1),+, U)− (M−1F )(q(2), q̇(2), ū(2),+, U)‖L2(0,T ),

and together with Lemma 3.1 we have

‖q+
∆,j‖H2(0,T ) ≤

√
T 4 + T 2 + 1 Const(k,K)

(
‖q∆‖H1(0,T ) + ‖ū+

∆‖L2(0,T )

)
.

(40)
For the PDE we estimate for fixed ε and ε̃

‖Rε(q(1), ū(1), U)−Rε(q(2), ū(2), U)‖L2(ΓN)

≤ const(k,K) |ΓC|
1

2

 ∑
j=1,2,5,6

|ū(1)
j − µ̄

(2)
j |+ |q

(1) − q(2)|


where, for instance, µ̄

(2)
1 = |ΓC|−1

∫
ΓC(q

(1)
1 ) ∂1u

(2)
1 dx. The other µ̄j are defined

analogously. By using ū1 = |ΓC|−1
∫

ΓC
∂1u1 dx, the Hölder inequality and the

trace theorem [30, Th. 5.22] in 3d

|ΓC(q
(1)
1 )|

1

2 |ū(1)
1 − µ̄

(2)
1 | ≤ |ΓC|−

1

2

∫
ΓC(q

(1)
1 )
|∂1u

(1)
1 − ∂1u

(2)
1 | dx

≤ |ΓC|−
1

2
+ 5

6 ‖∇u(1) −∇u(2)‖L6(ΓC(q
(1)
1 ))

≤ |ΓC|
1

3C(Ω∗) ‖u(1) − u(2)‖H2(Ω∗;R3), (41)

where the constant does not depend on |ΓC|. Analogously the proof follows
for j = 2, 5, 6. Using the estimate corresponding to (34) for the difference u+

∆

14
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and for ∂iu
+
∆, i = 1, 2, 3, we end up with

‖u+
∆‖L∞H2 ≤ C̃(k,K,Ω∗)

(
|ΓC|

1

3 ‖u∆‖L∞H2 + ‖q∆‖L∞(0,T )

)
. (42)

We use the regularity result (36) for u in order to get that ū3, ū4 are well-
defined, then we combine the estimates (38) and (42), yielding

‖u+
∆‖L∞H2 ≤ Ĉ(k,K,Ω∗)

(
|ΓC|

1

3 ‖u∆‖L∞H2 +
√
T ‖q∆‖H2(0,T )

)
.

This estimate is inserted into (40) and we use (39) and (41), yielding

‖q+
∆‖H2(0,T ) ≤

√
T 4 + T 2 + 1 Č(k,K,Ω∗)×

×
((
T
√
T 2 + 1 + |ΓC|−

1

6

√
T
)
‖q∆‖H2(0,T ) + |ΓC|

1

6 ‖u∆‖L∞H2

)
.

Now choosing |ΓC| and T (depending on |ΓC|) sufficiently small guarantees
that G is a strict contraction. From the strict contraction we also get directly
that the local-in-time solution is unique.

II. Self-mapping:
In order to check that G maps M into itself, we use that the estimates from
Part I carry over. So the self-mapping property follows analogously for suffi-
ciently small T and |ΓC|.

This shows that there exists a unique solution (q,u) with the stated regularity. From
the estimates in Part I of the proof, we see that the solution depends continuously
on the data.

Since we do not know from the last lemma whether the time T guaranteed by the
fixed-point method is larger then the total time obtained by the optimal control,
global existence of a solution for our problem is not guaranteed and cannot be
expected for arbitrary data and control. However, when minimizing our objective
function we may hope that the control U is determined in such a way that no blow
up for q1 or q2 may happen in finite time.

4. Discretized problem and optimal control method

Due to the complicated model we follow here a first-discretize-then-optimize
(FDTO) approach for solving our optimal control problem. Furthermore we work
with a sensitivity-based approach since the adjoint optimality system cannot be de-
rived by standard methods. The reason for this is the averaging over u that appears
in the integral equation (20).

Since in our numerical example we consider ν1 > 0 in (21), we perform a time
transformation onto a fixed time interval, mapping t ∈ [0, T ] to τ ∈ [0, 1]. This
provides an easy way to determine the control parameter T in the sequel. According
to the time transformation, time derivatives have to be scaled with the factor T .
We consider from now on time-transformed functions but denote them again with
the same symbol in order to keep the notation simple.
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4.1. Time integration

The PDE problem for u and ū is solved by a finite element method (FEM). In
order to avoid locking effects [31, Ch. VI, §3] we use Lagrange P2-elements and a
vertically refined layered mesh. The spatially discretized problem may be considered
as a semi-explicit DAE of index 1 with u being the algebraic variable. We solve in
time by means of the explicit Heun method with respect to q = (xT, α)> and v = q̇.
This second-order method allows to solve the 2-dimensional ODE system accurately
enough.

By dividing the time interval [0, 1] into N ∈ N intervals of length h := 1/N ,
we define the time steps τk := kh, k = 0, . . . , N . We abbreviate q(k) := q(τk),
v(k) := v(τk), ū(k) := ū(τk), u(k)(·) := u(·, τk), U(k) = U(τk), and for the predictor
step of the Heun method we introduce the values q̃(k) and ṽ(k), k = 1, . . . , N .
Furthermore we write, for instance,

M(k) = M(q(k), ū(k)), F (k) = F (q(k),v(k), ū(k), U(k)),

M̃(k+1) = M(q̃(k+1), ū(k)), F̃ (k+1) = F (q̃(k+1), ṽ(k+1), ū(k), U(k)),

R(k) = Rε(q(k), ū(k), U(k)).

The discretized version of the set of admissible controls is

Uad := {V ∈ RN+1
∣∣V(j) ∈ Uad := [Umin, Umax] ∀ j = 0, . . . , N}.

Thanks to Theorem 3.2 we may expect that the following algorithm, including a
fixed-point iteration for u and ū, works out well.

Algorithm 4.1: (Simulation procedure with Heun method in time)

(0) Init: Let T = T (0) be given, k := 0, ū−1 ≡ 0. Let control input U(·) ∈ Uad and

initial values q0 = q0 and v0 = v0 be given.
(1) (o) ū(k) = ū(k−1).

(i) At time τk solve

−divσ(u(k)) = H in Ω× {τk},
u(k) = 0 on ΓD × {τk},

−σ(u(k)).n = R(k) on ΓN × {τk}.

(ii) ūold(k) := ū(k). Compute ū(k).

(iii) If ‖ū(k)− ūold(k)‖ > err0 for a suitable norm and given error tolerance err0

go to (i).
(2) Set

M(k)ṽ(k+1) = M(k)v(k) + hTF (k), (43)

q̃(k+1) = q(k) + hTv(k), (44)

M̃(k+1)v(k+1) = M̃(k+1)
1

2
(v(k) + ṽ(k+1)) +

hT

2
F̃ (k+1), (45)

q(k+1) =
1

2

(
q(k) + q̃(k+1)

)
+
hT

2
ṽ(k+1). (46)
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(3) Set τk+1 = τk + h, k := k + 1.
If τk < 1 go to (1), otherwise Stop.

In order to avoid technical issues with the size of finite elements, we replace the
characteristic function χΓC

, appearing in the definition (31) of R, by an approxima-
tion with a version χ̃εΓC

smoothed in x1-direction, where ε > 0 is a small, but fixed
parameter:

χ̃εΓC
(x) := 1− tanh2

(
((x1 − q1)/δ1)L

)
(47)

with L ∈ N, δ1 > 0 such that

|χΓC
(x)− χ̃εΓC

(x)| ≤
{

1/2 ; for |x1 − q1 ∓ lT/2| < ε,
ε ; otherwise.

Abbreviating A1 := ln(atanh(
√

1− ε)), A2 := ln(atanh(
√
ε)) and B1/2 = ln(lT/2±

ε), we have L = d(A1 −A2)/(2(B1 −B2)) + 1e (d·e denoting the ceiling function)
and δ1 = exp((A1B2 −A2B1)/(A1 −A2)). For our numerics we work with ε = 0.1,
yielding L = 4 and δ1 ≈ 0.314, whereas we do not consider any corner and edge
smoothing for the simulations.

For small η = mT/mL, which is realistic in applications, the matrix M is ill-
conditioned. But this issue may be overcome by a left preconditioning of the equa-
tions (43) and (45), respectively, with the matrix M(q = qpc, ū = ūpc)

−1, where,

for example, qpc = (x0
T,−1/(2π))> and ūpc = (0,−0.1, 0, 0, 0, 0)>.

We remark that in Algorithm 4.1, Step (1)(o), we could set alternatively ū(k) ≡ 0,
but the choice above turns out to yield fewer iterations in Step (1).

4.2. Projected gradient method with BFGS update

We consider a projected gradient method [11, Algorithm 2.2] using a sensitivity-
based approach (cf. [14, p. 58] within the context of Banach spaces). We prefer to
project onto the set of admissible controls within the line search, instead of project-
ing first and then performing a line search. We discretize the integrals appearing
in the reduced objective function by the trapezoidal rule, according to our second-
order time integration. Then we calculate a discretized reduced gradient (cf. [17,
Ch. 4] for a full discretization approach).

Note that due to our modelling ansatz u and ū do not enter the reduced objective
function. Thus our OCP comes down to finding a time-optimal parameter T and
control U of a discretized optimal control problem for a DAE with index 1 that
may be solved with respect to u. It is an open question whether for this class of
problems we may expect the existence of optimal controls (U, T ). The objective
exhibits a quadratic term in U and additional nonlinear terms with respect to T
and U .

We use the notation q
(n)
(k) = q(U (n), T (n))(tk), F (n) = F(U (n), T (n)) and J (n) =

J(q(n),v(n), U (n), T (n)) to indicate the dependence on the control (U (n), T (n)) in the
optimization iteration n ∈ N. For brevity we write S(i) = 1 for i = 1, . . . , N − 1
and S(i) = 1/2 for i = 0 or N . The discretized time-scaled version of the objective
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function (21) reads according to the trapezoidal rule

F (n) = ν1T
(n) +

ν2

2
hT (n)

N∑
k=0

S(i)|v
(n)
(k),2|

2 +
ν3

2
hT (n)

N∑
i=0

S(i)|U
(n)
(i) |

2

+
ν4

2
|q(n)

(N),1 − q
f
1 |

2 +
ν5

2
|q(n)

(N),2|
2 +

ν6

2
|v(n)

(N),1|
2 +

ν7

2
|v(n)

(N),2|
2. (48)

As usual we write δU (n)

(i)

q
(n)
(i) for the sensitivity of the discretized states q with

respect to the discretized control U (at time step i and optimization iteration n).
Other sensitivities are defined analogously.

Algorithm 4.2: (Projected gradient method with BFGS update,
sensitivity-based approach)

(i) Initialize U
(0)
(k) ∈ Uad, k = 0, . . . N , T (0) ≥ Tmin, H(0) = 1, n = 0.

(ii) For k = 0, . . . , N − 1 solve the state equations for q
(n)
(k+1),u

(n)
(k) , ū

(n)
(k) by Algo-

rithm 4.1, given a control U
(n)
(k) and a parameter T (n) .

(iii) For k = 0, . . . , N − 1 compute the sensitivities for u
(n)
(k) , ū

(n)
(k) by iterations,

then solve the sensitivity equations for q
(n)
(k+1), v

(n)
(k+1), the latter are,

M
(n)
(k)δU (n)

(i)

v
(n)
(k+1) = M

(n)
(k)δU (n)

(i)

v
(n)
(k) + hT (n)δU (n)

(i)

F
(n)
(k)

− δU (n)
i

M
(n)
(k)(v

(n)
(k+1) − v

(n)
(k)), i = 0, . . . , N, (49)

M
(n)
(k)δT (n)v

(n)
(k+1) = M

(n)
(k)δT (n)v

(n)
(k) + h (T (n)δT (n)F

(n)
(k) + F

(n)
(k))

− δT (n)M
(n)
(k)(v

(n)
(k+1) − v

(n)
(k)), (50)

and set

δU (n)

(i)

q
(n)
(k+1) = δU (n)

(i)

q
(n)
(k) + hT (n)δU (n)

(i)

v
(n)
(k) , i = 0, . . . , N, (51)

δT (n)q
(n)
(k+1) = δT (n)q

(n)
(k) + h (T (n)δT (n)v

(n)
(k) + v

(n)
(k)). (52)

(iv) Determine D(n) as quasi-Newton direction, solving

H(n)D(n) = −δ(U (n),T (n))F (n),

where the approximated Hessian H(n) is determined by the modified BFGS
update [32] and the anti-gradient of F with respect to the scalar product in
L2(0, T )× R is calculated using the sensitivities:

δU (n)

(i)

F (n) = δq(n)J (n) · δU (n)

(i)

q(n) + δv(n)J (n) · δU (n)

(i)

v(n) + δU (n)

(i)

J (n),

i = 0, . . . , N,

δT (n)F (n) = δq(n)J (n) · δT (n)q(n) + δv(n)J (n) · δT (n)v(n) + δT (n)J (n).
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(v) If a stopping condition is fulfilled, then Stop.
(vi) Determine the step size s(n) by an Armijo line search (see Algorithm 4.3)

F(PA((U (n), T (n))> + s(n)D(n))) = min
s∈(0,1]

F(PA((U (n), T (n))> + sD(n))),

where PA is the Euclidean projection onto the set A := Uad × {T ≥ Tmin}.
(vii) Update control and parameter (U (n+1), T (n+1))> = PA((U (n), T (n))>

+s(n)D(n)).
(viii) Set n := n+ 1 and go to Step (i).

For the ease of presentation we have stated the last algorithm with Euler steps
in (49)–(52), instead of Heun steps. Actually, we implemented a Heun method
being consist with Algorithm 4.1. For further information and the formulas for

derivatives of F
(n)
(k) and M

(n)
(k) with respect to controls and for the derivatives

δ(q(n),v(n),U (n),T (n))J
(n), see [24, B]. Since ū and u do not appear in the objective

function, the sensitivities for ū only enter in δU (n)

(i)

F
(n)
(k) , δT (n)F

(n)
(k) , δU (n)

(i)

M
(n)
(k) , and

δT (n)M
(n)
(k) .

The Armijo line search in Step (vi) of the Algorithm 4.2 is performed as follows

Algorithm 4.3: (Projected Armijo line search)

(i) Let βA ∈ (0, 1), σA ∈ (0, 1/2), l ∈ N∗ and let φ(s) = F(PA((U (n), T (n)) +

sD(n))) be given.
(ii) Find maximal s = βlA such that

φ(s) ≤ φ(0) + σA s φ
′(0) (53)

with φ′(0) = δ(U (n),T (n))F (n) · D̃(n)
, where for i = 0, . . . , N

D̃
(n)
(i) =


0 ; U

(n)
(i) 6∈ Uad = [Umin, Umax] or

(U
(n)
(i) = Umax ∧D(n)

(i) ≥ 0) or (U
(n)
(i) = Umin ∧D(n)

(i) ≤ 0),

D
(n)
(i) ; else,

and

D̃
(n)
(N+1) =

{
0 ; T (n) < Tmin or (T (n) = Tmin ∧D(n)

(N+1) ≤ 0),

D
(n)
(N+1) ; else.

(iii) Set s(n) := s.

For the choice βA = 0.9 and σA = 10−4 we observe a good performance of the line
search within our numerical experiments. For the Armijo line search it turns out to
be crucial to solve for the new states, when computing φ(s) in the Armijo condition
(53), to sufficient precision, requiring a finite element (FE) solution of the PDE for
every βlA. Otherwise the algorithm might terminate since an admissible step size
cannot be found.
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Our reduced gradient reads,

δU (n)

(i)

F (n) = ν2 hT
(n)

N∑
k=i+1

S(k)v
(n)
(k),2 δU(i)

v
(n)
(k),2 + ν3 hT

(n)S(i)U
(n)
(i)

+ ν4 (q
(n)
(N),1 − q

f
1 ) δU(i)

q
(n)
(N),1 + ν5 q

(n)
(N),2 δU(i)

q
(n)
(N),2

+ ν6 v
(n)
(N),1 δU(i)

v
(n)
(N),1 + ν7 v

(n)
(N),2 δU(i)

v
(n)
(N),2

for the components i = 0, . . . , N , and

δT (n)F (n) = ν1 +
ν2

2
h

N∑
k=0

S(k)|v
(n)
(k),2|

2 + ν2 hT
(n)

N∑
k=1

S(k)v
(n)
(k),2 δT (n)v

(n)
(k),2

+
ν3

2
h

N∑
k=0

S(k)|U
(n)
(k) |

2 + ν4 (q
(n)
(N),1 − q

f
1 ) δT (n)q

(n)
(N),1 + ν5 q

(n)
(N),2 δT (n)q

(n)
(N),2

+ ν6 v
(n)
(N),1 δT (n)v

(n)
(N),1 + ν7 v

(n)
(N),2 δT (n)v

(n)
(N),2.

Clearly, for i ≥ k we find δU (n)

(i)

q
(n)
(k) = 0 and δU (n)

(i)

v
(n)
(k) = 0. Thus we can simplify

δU (n)

(N)

F (n) = ν3(hT (n)/2)U
(n)
(N). We conclude that if the control cost parameter ν3 = 0,

then U
(n)
(N) is arbitrary. For uniqueness, we set U

(n)
(N) = 0.

For small trolley/load mass ratios η = mT/mL, our ODE system turns out to
be stiff and a semi-explicit method [33] is applied by using on the right-hand side
of (44) ṽ(k+1) instead of v(k) and on the right-hand side of (46) v(k+1) instead of
ṽ(k+1).

A suitable algorithm for determining the weights νi, i = 4, . . . , 7, is crucial in order
to avoid a breakdown of the Armijo line search and to obtain feasible computing
times. Within this framework our objective function can be interpreted as an exact
penalty function [34, Sect. 5.4]. The optimal penalty weights νi, i = 4, . . . , 7 are
unknown, but we may expect that we approximate the optimal weights numerically
sufficiently well.

Algorithm 4.4: (Penalty method)

(i) Set initial weights νi = ν0
i , i = 4, . . . , 7.

(ii) Run Algorithm 4.2.

(iii) If |q(n)
(N),j − q

f
j |, |v

(n)
(N),j | < err1 for j = 1, 2 and a given error tolerance err1,

then Stop.
(iv) Increase the weights νj := ρ̃ νj (where ρ̃ > 1) for indices j corresponding to

violated terminal conditions. Go to (ii).

Typically we consider the factor ρ̃ = 10. We remark that the initial value of ν4

has to be chosen such that the trolley remains within the feasible area of the crane

beam for the first run of Algorithm 4.2. We start with ν0
4 = 1/(qf1 −q0

1)2, ν0
5 = 10 ν0

4 ,

ν0
6 = 5000 ν0

7 , and ν0
7 = 1/(T (0))2.

20



November 27, 2017 Mathematical and Computer Modelling of Dynamical Systems KimmerleEtAl˙ExtendedVersion

5. Numerical results

We solve our optimal control problem by means of Algorithm 4.2. This algorithm has
been implemented in the open-source software package FEniCS v1.4 (API Python
2.7.3 with PETSc v3.2 as linear algebra package). It has been executed on a worksta-
tion, equipped with Intel(R) Xeon(R) CPU E5640 @2.67GHz × 16 processors and a
memory of 23.6 GiB, under Ubuntu Linux. For data considered in our simulations,
see Table 1.

Table 1. Typical data for a large crane (see, e.g., [35]) and further used parameters.

Description Symbol Value Unit

Width crane beam b2 0.80 m
Height crane beam b3 = b2 0.80 m
Length crane beam l2 45.80 m
Width trolley bT 0.80 m
Height trolley hT 0.10 m
Length trolley lT 0.60 m
Mass trolley mT 150 kg
Mass load mL 3340 kg
Length pendulum l 17.5 m
Scaled maximal accelerating force Umax 0.006 s−2

Scaled minimal accelerating force Umin −0.006 s−2

Scaled mass density crane beam ρ 0.0104 m−3

Scaled Lamé parameter 1 λ 1.76 · 106 N kg−1 m−3

Scaled Lamé parameter 2 µ 1.33 · 106 N kg−1 m−3

Standard gravity earth ge 9.81 N kg−2

Initial angle trolley q02 0 rad

Terminal angle trolley qf2 0 rad
Initial velocities v0 0 = (0, 0)> (m s−1, rad s−1)>

Terminal velocities vf 0 = (0, 0)> (m s−1, rad s−1)>

In the following we present the results for a mesh that has been refined adaptively

on {ΓC(q1) | q0
1 ≤ q1 ≤ qf1} beforehand by solving an auxiliary Poisson problem and

refining recursively cells with a residual error larger than 10−4. This procedure
yielded about 10 500 vertices and 43 200 3d-cells. We consider N = 100 time steps
on the normalized time interval [0, 1], the error tolerance err0 = 2.0 · 10−5 for the
u-iteration, the error tolerance err1 = 5.0 · 10−2 for the terminal conditions, and
the relative error tolerance err = 10−8 for the optimization. As stopping condition
we work with

F (n) −F (n+1)

1 + F (n+1)
< err. (54)

As initial guess we start with

U0(t) =

 Umax ; 0 ≤ t < 0.4,
−Umax; 0.4 ≤ t < 0.8,
0 ; 0.8 ≤ t ≤ 1,

for the control, motivated by the intuitive strategy to (i) accelerate, then (ii) brake,
and (iii) wait until the system swings out. As initial guess for the total time we take
T (0) = 18.5 [s].

For the weights ν we consider ν1 = 10/T (0), ν2 = 500 and we focus here on the
situation ν3 = 0, though the algorithm clearly can handle ν3 > 0 as well. According
to Algorithm 4.4, a suitable choice for the weights νi, i = 4, . . . , 7 is obtained by
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successively increasing the weights according to violated terminal conditions and
restarting with the control and final time determined so far, until the terminal
conditions are fulfilled to sufficient accuracy. It turns out to be crucial that the
weights are scaled such that the reduced objective function is approximately of
order 1.

5.1. Numerical time-optimal control

In a first study we consider a projected gradient method as obtained from Algo-
rithm 4.2 by fixing H(n) = H(0). Fig. 2 (left) shows the descent in the reduced
objective function versus optimization iterations. Tab. 2 shows the stages of the
penalty method and the violation of terminal conditions. The optimization of the
final time T is illustrated in Tab. 2. Here we consider as initial position of the trol-

ley q0
1 = 11.7 [m] and as terminal position qf1 = 17.0 [m]. The resulting control and

states are depicted in Fig. 2, right, and in Fig. 3, where the final penalty weights
are ν4 = 104ν0

4 , ν5 = ν0
5 , ν6 = 102ν0

6 , and ν7 = 104ν0
7 .

Table 2. Numerical results for the number of optimization iterations, violation of terminal condi-

tions and final time T (n) for each stage of the penalty method.

Stage # It. |q(n)
(N),1

− qf1 | |q(n)
(N),2

| |v(n)
(N),1

| |v(n)
(N),2

| T (n)

1 18 0.4710181849 0.0342489553 0.0112566293 0.1530321823 18.49935459
2 2 0.4710181849 0.0342489553 0.0112566293 0.1530321823 18.49935459
3 184 0.0564336136 0.0166066948 0.0018213617 0.1608312973 18.49840484
4 2 0.0564336136 0.0166066948 0.0018213616 0.1608312973 18.49840484
5 998 0.0475493891 0.0451017689 0.0046039452 0.0354990300 18.49836286
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Figure 2. Reduced objective function F(U, T ) (left), and optimization of the control U (right). On the left-
hand side we show the decrease of F over all 5 stages (separated by vertical lines) of the penalty method

yielding 1204 optimization iterations in total. F is normalized to the initial value or to the last value of

the preceeding stage of the penalty method, respectively. On the right-hand side we see the initial control
(red dotted line) versus time steps, the computed control after 1 stage (blue dashed line) and the computed

optimal control (green continuous line) after 5 stages. The objective F is dimensionless and the control U

is given in s−2.

From this simulation, we find as optimal total time T = 18.49836 [s]. In Fig. 2
(right) we see that the initial guess of bang-bang type is quite good already, but
the obtained optimal control for the final values of the weights is not of bang-bang
type, though we omit a regularization term for the control by setting ν3 = 0. If we
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Figure 3. States q = (xT, α)> (top/center left), v = q̇ (top/center right), ū (bottom left/right) versus
time step number on the interval [0, T ] with T = 18.49836 [s]; bottom left: ū1 brown continuous line, ū3
magenta upper dashed line, ū4 blue lower dashed line, ū6 orange central dashed line; bottom right: ū2 red

continuous line; ū5 green dashed line. The quantities q1, v1 are given in m, q2, v2 in degree, ūj , j = 1, 2, 5, 6,
are dimensionless and ū3, ū4 are given in m−1.

start with an arbitrary initial guess, then the computing times are increased and not
for any initial guess convergence is obtained. By Fig. 3 we convince ourselves that

the terminal conditions q0
1 = 17.0, qf2 = vf1 = vf2 = 0.00 are respected within good

approximation. In Fig. 3, bottom left, we see ū2 + ū5 = |ΓC|−1
∫

ΓC
∂1u3 + ∂3u1 ≈ 0,

this reflects the observation that the (orthogonal) shear stress τ13 = τ31 = µ(∂1u3 +
∂3u1) vanishes on the trolley-beam contact surface, representing a mainly isotropic
compression or tension on the surface. Fig. 3, bottom right, shows ū3 + ū4 ≈ 0,
corresponding to ∂1 trace(∇u) ≈ 0, that is, the average pressure on ΓC is constant
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in x1-direction. Keep in mind that displacements in x2-direction are very small due
to the non-rotating crane.

By increasing the fineness of the mesh, we checked that our choice of Lagrange P2-
elements and the applied spatial discretization avoid the well-known locking effects
for Timoshenko beams [31, Ch. VI, §3]. For a mesh with about twice the number of
cells, we obtain almost identical results. By the penalty method, Algorithm 4.4, we
are able to obtain a lower value of the objective F (n) than by solving directly for a
fixed choice of weights. Furthermore, using the Euler method for time discretization
requires several thousands of iterations while by the Heun method our algorithm
terminates within several hundreds of iterations.

5.2. Numerical time-optimal control using a modified BFGS update

It turns out that time-optimal control of our problem works faster, when applying a
projected quasi-Newton method relying on the BFGS update. However, decreasing
optimality and feasibility tolerances further for time-optimal control, yields Armijo
steps close to the computing precision and long computing times. Therefore we focus
on the case of a fixed terminal time in the following.

5.3. Numerical optimal control for fixed terminal time

Our numerical optimal control presented in Subsection 5.1 turns out to require
large computing times for a decreased feasibility tolerance err1. We examine this
phenomenon by considering the optimal control of the problem but now with ν1 = 0,
ν3 = 0.1, a fixed terminal time T = 19.0 [s], and N = 500 time steps. Our results are
depicted in Fig. 4 for same data as in Subsection 5.1, except for err1 = 10−8, and
absolute error tolerance err0 = 10−7 for the optimality, where as stopping criterion
we use

|T (n+1) − T (n)|+ ‖U (n+1) − U (n)‖∞ < err0

instead of (54). Contrary to the last subsection, we consider q0
1 = 12.0 [m] and

qf1 = 18.0 [m], in order to demonstrate that our algorithm does not work only for
particular initial and terminal conditions of the trolley. Since the computed states
and control show a qualitative behavior similar to Fig. 3, we omit them here.

We see that our combined Algorithms 4.2 and 4.4 perform more accurately in
case of a fixed terminal time. This suggests that the convergence issues in Subsec-
tion 5.1 are due to the nonlinear time-optimal control. Other explanations for this
observation could be the non-existence of a time-optimal control or that a further
time grid refinement, turning out to be a computational challenge, is required in
case of a free terminal time. Typically the precise resolution of switching points of
controls is numerically expensive.

5.4. Observations from simulations

For the solution of the linear 3d FE systems of moderate size (43 200 cells, 21 100
degrees of freedom) for this initial study, it turned out to be sufficient to employ a
direct method which re-uses the factorization of the stiffness matrix.
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Figure 4. Reduced objective function F(U, T ) (left), and convergence of q1(T ) vs. qf1 (right) for fixed

terminal time T . On the left-hand side we show the decrease of F over all 8 stages (separated by vertical

lines) of the penalty method yielding 38 optimization iterations in total. F is normalized to the initial value
or to the last value of the preceeding stage of the penalty method, respectively. On the right-hand side

we see the approach to the terminal trolley position qf1 vs. the optimization iteration. The objective F is

dimensionless and the terminal trolley position q1(T ) is given in m.

From further simulations we noticed the following coupling effects and dependen-
cies:

• For heavier crane beams, that is, larger values of the mass density ρ, the
trolley position q1 moves faster to the free end and it may happen that the
mass matrix M becomes singular.
• The longer the pendulum, that is, the larger the value of l, the smaller

maxΩ ‖u‖. Then the faster q1, the more q2 deviates from 0 and det(M) tends
to zero.
• For a crane beam of half the length, maxΩ ‖u‖ becomes smaller and det(M)

is very close to 1.
• The typical ratio of trolley and load masses is η = mT/mL ≈ 0.05. For η →∞

while the scaled total mass m remains constant, the values of q̇1 decrease and
maxΩ ‖u‖ becomes smaller. In the opposite case, for lower values of η such as
0.01, q1 is faster and larger angles q2 appear.
• The inclusion of mechanical displacements has a significant impact on the

speed of the trolley, for example, considering ū terms yields a slowdown of the
trolley of about 10% compared to an inelastic (ū ≡ 0) trolley system.
• Adding a damping term to the ODEs for the trolley and for the load, re-

spectively, yields that the amplitudes of the oscillations decay faster, but the
qualitative effect is neglectable on the optimal control of the whole coupled
system (see [23]).

In particular, the latter observation underlines the importance of taking elastic
deformations into account, represented by the terms involving ū in the ODE.

5.5. Discussion

With the beam fixed on both sides, that is, homogeneous Dirichlet b.c. for u on ΓD

as well as on ΓD,r = ∂Ω ∩ {x1 = l2 − b1/2}, our situation can be thought of as an
overhead gantry crane as used frequently in environments as different as high rise
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racks or seaports. For mL → 0 one might think of a train or truck (”trolley”) on a
very long beam bridge (“elastic structure”) that might easily tend to vibrate, see
[36] for the model and simulations. The considerations of this article could be easily
applied to these elastic crane bridge-trolley-load or elastic bridge-vehicle situations.

Our results of Section 5.4 underline the necessity to incorporate elastic deforma-
tions into the standard trolley-load system. We compare with the optimal controls
obtained by Chen and Gerdts [4, 5] for such a trolley-load system without elasticity.
They have applied smoothed Newton methods for the optimal control. Most data is
of same order as in our case, but they simulate for a significantly larger mass ratio
η = 0.6 and for the case ν1 = ν2 = 0 and ν3 > 0. The numerical results resemble our
figures, but we observe more oscillations after a change in the control. This might be
due to mechanical effects and to the lower value for η. In particular, when no control
costs enter the objective function, we do not necessarily end up with a bang-bang
control (see Fig. 2, right). It is not clear so far whether the “bang-bang-principle”,
known for optimal control of ODE and of semilinear elliptic PDE apart, does not
hold for this kind of ODE-PDE-constrained OCP or whether our observation is only
a numerical artefact. A possible explanation for this new phenomenon might be that
the crane beam constitutes an infinite-dimensional system of states. From the work
of Pesch et al. [8, 20, 21], we see that they encounter also controls that are not of
bang-bang type. Please note that our situation differs from the Neumann boundary
control of semilinear elliptic PDE, where a bang-bang result holds [37], since we
consider a control in time acting by a shift on the Neumann boundary condition.

We give some reflections over coupled ODE-PDE control problems. Although this
class of problems has many real-life applications, only few results exist as discussed
in the introduction. This study shows a typical case study for this class of OCP,
yielding a richer variety of controls than OCP with ODE, DAE or PDE constraints
alone. We remark that the coupled ODE-PDE system could be regarded as a partial
differential algebraic equation system (PDAE) with differential time index 1 and
differential space index infinity [38]. However, the literature on PDAE, even on
basic definitions, seems to be small.

6. Conclusion & Outlook

We have formulated an OCP for a coupled elastic crane-trolley-load system, proved
analytically the local-in-time well-posedness of the coupled ODE-PDE problem,
presented a solution algorithm and computed a first numerical optimal control for
typical data. The following challenges had to be overcome:

• the complexity of the model and the involved scales,
• a special algorithm had to be developed for this non-standard problem, in-

volving ODE and PDE constraints and possibly a lack of differentiability of
u with respect to q1,
• the trolley-load ODE system resembles a double pendulum system, exhibiting

i) exponential reaction on perturbations and ii) possibly chaotic behaviour,
• the solution times for the PDE (yielding a large number of degrees of freedom)

are an issue.

However, the computation of the numerical optimal control could still be improved
with respect to computing times and resolution (the latter could be improved, e.g.,
by use of suitable variational integrators), in particular in the case of time-optimal
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control. Provided an improved algorithm, the optimal control problem of a crane
rotating as well could be tackled numerically.

Finally, we would like to close with an outlook. It might be useful to employ au-
tomatic differentiation for the calculation of sensitivities. Work-in-progress includes
(i) modelling and numerics of the pendulum in 3d, (ii) possibly faster and more
accurate first-optimize-then-discretize methods, and (iii) to examine whether we
might guarantee terminal conditions by Newton-type methods instead of penalty
techniques. However, it is not obvious whether a Newton method can be applied
to our problem as in Chen and Gerdts [4, 5]. This depends on the smoothness of
the necessary optimality conditions that is not clear, since we need the Fréchet dif-
ferentiabilty of u with respect to moving boundary conditions. The corresponding
Fréchet derivative turns out to involve line measures, see [23]. Furthermore, it cannot
be guaranteed that a Newton-based method is at all faster than a projected gradi-
ent method combined with exact penalty techniques, because the coupling of the
problem might yield a dense Hessian matrix. In particular, open questions comprise
theoretical results for ODE-PDE constrained optimal control.
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Appendix A. Right-hand side of ODE system

Within the proof of Th. 3.2 we have to estimate the following term, appearing on
the right-hand side of the ODE after inverting M,

M−1F =
1

det(M)

(
l ,−((1 + ū1) cos q2 + ū2 sin q2)
∗, m(1 + 2ū1)

)
×(

−mū3q̇
2
1 + ((1 + ū1) sin q2 − ū2 cos q2) q̇2

2 + U
−(ū3 cos q2 + ū4 sin q2)q̇2

1 − ge sin q2

)
with

det(M) = lm(1 + 2ū1)− ((1 + ū1) cos q2 + ū2 sin q2)2

≈ lm(1 + 2ū1)− ((1 + 2ū1) cos q2 + 2ū2 sin q2) cos q2

= (lm− cos2 q2)

(
1 + 2ū1 − 2

ū2 sin q2 cos q2

lm− cos2 q2

)
.

Note that lm = (mT +mL)/mL > cos2 q2 if mT > 0 or |q2| < qmax2 ≤ π/2. Thus

1

det(M)
≈ 1

lm− cos2 q2

(
1− 2ū1 + 2

ū2 sin q2 cos q2

lm− cos2 q2

)
and we get

M−1F ≈ 1

det(M)

((
−ū3(lm− cos2 q2) + ū4 sin q2 cos q2

m(ū3(1− cos q2)− ū4 sin q2)

)
q̇2

1

+

(
l ((1 + ū1) sin q2 − ū2 cos q2)

−(1 + 2ū1) cos q2 sin q2 + ū2 cos(2q2)

)
q̇2

2

+

(
l

−(1 + ū1) cos q2 − ū2 sin q2

)
U +

(
(1 + ū1) cos q2 + ū2 sin q2

−m(1 + 2ū1)

)
ge sin q2

)
.
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Putting in 1/ det(M), we end up with

M−1F ≈ 1

lm− cos2 q2

(
−ū3(lm− cos2 q2) + ū4 sin q2 cos q2

m(ū3(1− cos q2)− ū4 sin q2)

)
q̇2

1

+
1

lm− cos2 q2

(
l
(

(1− ū1 + 2 ū2 sin q2 cos q2
lm−cos2 q2

) sin q2 − ū2 cos q2

)
−(1 + 2 ū2 sin q2 cos q2

lm−cos2 q2
) cos q2 sin q2 + ū2 cos(2q2)

)
q̇2

2

+
1

lm− cos2 q2

(
l(1− 2ū1 + 2 ū2 sin q2 cos q2

lm−cos2 q2
)

−(1− ū1 + 2 ū2 sin q2 cos q2
lm−cos2 q2

) cos q2 − ū2 sin q2

)
U

+
1

lm− cos2 q2

(
(1− ū1 + 2 ū2 sin q2 cos q2

lm−cos2 q2
) cos q2 + ū2 sin q2

−m(1 + 2 ū2 sin q2 cos q2
lm−cos2 q2

)

)
ge sin q2

within our approximation of small displacement gradients.

Appendix B. Calculation of sensitivities and gradient for the projected
gradient method

For completeness, we state here how the sensitivity equations are solved by the
implemented Heun method. The first Heun step yields

M
(n)
(k)δU (n)

(i)

ṽ
(n)
(k+1) = M

(n)
(k)δU (n)

(i)

v
(n)
(k) + hT (n)δU (n)

(i)

F
(n)
(k)

− δU (n)
i

M
(n)
(k)

(
ṽ

(n)
(k+1) − v

(n)
(k)

)
, i = 0, . . . , N,

M
(n)
(k)δT (n) ṽ

(n)
(k+1) = M

(n)
(k)δT (n)v

(n)
(k) + h

(
T (n)δT (n)F

(n)
(k) + F

(n)
(k)

)
− δT (n)M

(n)
(k)

(
ṽ

(n)
(k+1) − v

(n)
(k)

)
,

δU (n)

(i)

q̃
(n)
(k+1) = δU (n)

(i)

q
(n)
(k) + hT (n)δU (n)

(i)

v
(n)
(k) , i = 0, . . . , N,

δT (n) q̃
(n)
(k+1) = δT (n)q

(n)
(k) + h

(
T (n)δT (n)v

(n)
(k) + v

(n)
(k)

)
and the second Heun step reads

M̃
(n)
(k+1)δU (n)

(i)

v
(n)
(k+1) = M̃

(n)
(k+1)

1

2

(
δU (n)

(i)

v
(n)
(k) + δU (n)

(i)

ṽ
(n)
(k+1)

)
+
hT (n)

2
δU (n)

(i)

F̃
(n)
(k+1)

− δU (n)
i

M̃
(n)
(k+1)

(
v

(n)
(k+1) −

1

2

(
v

(n)
(k) + ṽ

(n)
(k+1)

))
,

i = 0, . . . , N,

M̃
(n)
(k+1)δT (n)v

(n)
(k+1) = M̃

(n)
(k+1)

1

2

(
δT (n)v

(n)
(k) + δT (n) ṽ

(n)
(k+1)

)
+
hT (n)

2
δT (n)F̃

(n)
(k+1)

+
h

2
F̃

(n)
(k) − δT (n)M̃

(n)
(k+1)

(
v

(n)
(k+1) −

1

2

(
v

(n)
(k) + ṽ

(n)
(k+1)

))
,
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and

δU (n)

(i)

q
(n)
(k+1) =

1

2

(
δU (n)

(i)

q
(n)
(k) + δU (n)

(i)

q̃
(n)
(k+1)

)
+
hT (n)

2
δU (n)

(i)

ṽ
(n)
(k+1), i = 0, . . . , N,

δT (n)q
(n)
(k+1) =

1

2

(
δT (n)q

(n)
(k) + δT (n) q̃

(n)
(k+1)

)
+
h

2

(
T (n)δT (n) ṽ

(n)
(k+1) + ṽ

(n)
(k+1)

)
.

Within Algorithm 4.2 the following terms appear in the ODEs for sensitivities,

derivatives of F
(n)
(k)

δU (n)

(i)

F
(n)
(k) =

(
1
0

)
+ 2

 −mū(n)
(k),3v

(n)
(k),1

−
(
ū

(n)
(k),3 cos q

(n)
(k),2 + ū
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(k),4 sin q
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(k),2
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v

(n)
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2
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v
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(n)
(k),2
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|v(n)
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2 − ge cos q

(n)
(k),2

 δU (n)
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)
|v(n)
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(n)
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 δT (n)q
(n)
(k),2,

and the symmetric derivatives of the mass matrices

δXM
(n)
(k) =

(
0, −(1 + ū

(n)
(k),1) sin q

(n)
(k),2 + ū

(n)
(k),2 cos q

(n)
(k),2

∗, 0

)
δXq

(n)
(k),2

where X ∈ {U (n)
(i) , T

(n)}. Note that for ease of presentation, we have neglected terms

of the form δX ū
(n)
(k) here (corresponding to (9)). The additional terms read:

δXF
(n)
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(
sin q

(n)
(k),2|v

(n)
(k),2|

2

0

)
δX ū

(n)
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(
cos q
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2
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2
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and

δXM
(n)
(k) = . . .+

(
2m, cos q

(n)
(k),2

∗ , 0

)
δX ū

(n)
(k),1 +

(
0, sin q

(n)
(k),2

∗, 0

)
δX ū

(n)
(k),2.

For computing δU (n)

(i)

ū
(n)
(k) and δT (n)ū

(n)
(k) it is required to solve partial differential

equations for sensitivities of ∂1u
(n)
(k) , ∂3u

(n)
(k) , and D1u

(n)
(k) :

−divσ(δX∂1u
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where according to (47)

δX∂1R
(n)
(k) =

1

|ΓC|

(
δXR

(n)
0,(k) ∂1χ̃

(n)
ΓC,(k) +R

(n)
0,(k)

(
δq(n)

(k),1

∂1χ̃
(n)
ΓC,(k)

)
δXq

(n)
(k),1

)
, (B1)

with
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(n)
(k),2 g sin q

(n)
(k),2 δT (n)q

(n)
(k),2)

0

ū
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and

∂1χ̃
(n)
ΓC,(k) = −2L

δ1

x1 − q(n)
(k),1

δ1

L−1

tanh


x1 − q(n)

(k),1

δ1

L
×

×

1− tanh2


x1 − q(n)

(k),1

δ1

L

 .

We see that δX∂3u
(n)
(k) ≡ 0, yielding δX ū

(n)
(k),5 = δX ū

(n)
(k),6 ≡ 0. This allows to simplify

(B2) and (B3).

We observe δXD1u
(n)
(k) = δX∂

2
1,1u

(n)
(k) , thus

−divσ(δX∂1u
(n)
(k)) = 0 in Ω× {τk},

δX∂1u
(n)
(k) = 0 on ΓD × {τk},

−σ(δX∂1u
(n)
(k)).n = δX∂1,1R

(n)
(k) on ΓN × {τk}

where according to (B1)

δX∂1,1R
ε
(k) =

1

|ΓC|

(
δXR

(n)
0,(k)∂1,1χ̃

(n)
ΓC,(k) +R

(n)
0,(k)

(
δq(n)

(k),1

∂1,1χ̃
(n)
ΓC,(k)

)
δXq

(n)
(k),1

)
.

We have

∂1,1χ̃
(n)
ΓC,(k) = −2L2

δ2
1

x1 − q(n)
(k),1

δ1

L−2 [
L− 1

L
tanh


x1 − q(n)

(k),1

δ1

L
+

+

x1 − q(n)
(k),1

δ1

L
1− 3 tanh2


x1 − q(n)

(k),1

δ1

L

]×

×

1− tanh2


x1 − q(n)

(k),1

δ1

L

 .

Both involved PDE for sensitivities with respect to ū
(n)
(k) are solved by a fixed point

iteration over δX ū
(n)
(k) .

When computing the gradient of the reduced objective function (48) the following

intermediate terms appear. We get as derivatives with respect to states q
(n)
(k)

δq(n)

(N),1

J (n) = ν4 (q
(n)
(N),1 − q

f
1 ), ∂q(n)

(N),2

J (n) = ν5 q
(n)
(N),2,
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with respect to velocities v
(n)
(k)

δv(n)

(N),1

J (n) = ν6 v
(n)
(N),1, δv(n)

(k),2

J (n) = ν2 hT
(n)v

(n)
(k),2, k = 1, . . . N − 1,

δv(n)

(N),2

J (n) = ν2 hT
(n) 1

2
v

(n)
(N),2 + ν7 v

(n)
(N),2,

and with respect to controls

δU (n)

(i)

J (n) = ν3 hT
(n)S(i)U

(n)
(i) , i = 0, . . . N,

δT (n)J (n) = ν1 +
ν2

2
h

N∑
k=0

S(k)|v
(n)
(k),2|

2 +
ν3

2
h

N∑
i=0

S(i)|U
(n)
(i) |

2.
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