
An Optimal Control Problem for a Rotating
Elastic Crane-Trolley-Load System

Sven-Joachim Kimmerle ∗,∗∗ Matthias Gerdts ∗,∗∗∗

Roland Herzog ∗∗∗∗

∗ Bundeswehr University Munich, Institute of Mathematics and
Computer Applications (LRT-1), 85577 Neubiberg/München,

Werner-Heisenberg-Weg 39, Germany
∗∗ (e-mail: sven-joachim.kimmerle@unibw.de)
∗∗∗ (e-mail: matthias.gerdts@unibw.de)

∗∗∗∗ Technical University Chemnitz, Faculty of Mathematics,
Reichenhainer Str. 41, 09107 Chemnitz, Germany

(e-mail: roland.herzog@mathematik.tu-chemnitz.de)

Abstract: In this study we present an extension of a model of an elastic crane transporting
a load by means of controlling the crane trolley motion and the crane rotation. In addition
to the model considered in Kimmerle et al. (2017), we allow for rotations of the crane and
include damping of the trolley and moments of inertia as well. We derive a fully coupled
system of ordinary differential equations (ODE), representing the trolley and load (modelled
as a pendulum), and partial differential equations (PDE), i.e. the linear elasticity equations
for the deformed crane beam. The objective to be minimized is a linear combination of the
terminal time, the control effort, the kinetic energy of the load, and penalty terms for the
terminal conditions. We show the Fréchet-differentiability of the mechanical displacement field
with respect to the location of the boundary condition that is moving. This is a crucial point
for a further mathematical analysis on the existence of optimal controls and the derivation of
necessary optimality conditions. Finally we present first results for the full time-optimal control
of the extended model.

Keywords: Time-optimal control, coupling models, coupled ODE-PDE system, partial
differential equations, ordinary differential equations, numeric control, numerical simulation,
crane-trolley-load system, ODE-PDE constrained optimization, Fréchet-differentiability

1. INTRODUCTION

The optimal control problem for a trolley-load system
without elastic deformations has been examined by Chen
and Gerdts (see Chen et al. (2012) and the references
therein). For the need and the challenges of the control
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Fig. 1. Configuration of the elastic crane (within La-
grangian coordinates).

of a real crane system see, e.g., Aschemann (2009) in the
context of large overhead cranes. The optimal control of an
elastic crane-trolley-system without (i) rotations around
the vertical axis, (ii) damping of the trolley, and (iii)
moments of inertia has been considered in Kimmerle et al.
(2017). In the latter paper the problem is derived for
the special case, where the pendulum modelling a load
is restricted to the 2D plane; the well-posedness of the
coupled ODE-PDE system is demonstrated; and results
for numerical optimal control for a fixed terminal time
are presented. For an overview on other coupled ODE-
PDE systems, their relevance, and their optimal control,
we refer also to the mentioned study.

2. MODEL OF A ROTATING ELASTIC CRANE

2.1 Geometry

The bending torque of the vertical crane structure is usu-
ally reduced by additional ropes fixed to the vertical beam
and is assumed to be negligible. At first we consider a
crane without any deformation and any rotation (β = 0),
see Fig. 1. Due to the complexity of the problem, our
model should be considered as a first approach. Therefrom,
we model the extension arm of the crane as a homoge-
neous beam that is described, when undeformed, by the



domain Ω := {x := [x1, x2, x3] ∈ R3 | b1/2 ≤ x1 ≤ `2 −
b1/2, |x2| ≤ b2/2, `1 − b3 ≤ x3 ≤ `1}. On ΓD := ∂Ω ∩
{x ∈ R3|x1 = b1/2} the extension arm is fixed, yielding
a homogeneous Dirichlet boundary condition (b.c) for the
mechanical displacement field. The remaining boundary
ΓN := ∂Ω \ ΓD is subject to Neumann b.c. prescribing
traction by area forces. The time interval [0, T ] ⊂ R,
T > 0, is nonempty and compact.
The trolley may be moved on rails, modelled by translating
the x1-position xT (t) of its center of mass. In good approx-
imation we consider here a flat trolley with hT = 0. Let ei,
i = 1, 2, 3, denote the unit vectors. On the contact bound-
ary ΓT (xT (t)) := {x ∈ ΓN | |x1 − xT (t)| ≤ `T /2, |x2| ≤
bT /2, x3 = `1 − b3} = xT (t) e1 + ΓT (xT (0)) varying with
time, a force is exerted by the trolley on the extension arm.
By a load, a force is applied on the trolley at its center
of mass, located at rM (t) := [xT (t), 0, `1 − b3]> in the
undeformed beam. This load is modelled as a pendulum
of length ` with mass mL.
Application of a force U1 at the trolley’s center of gravity
allows to control the trolley. Application of a torsional
moment U2 around the x3-axis at the bearing of the crane
beam allows to rotate the crane by an angle β. We impose
the state constraints

(b1 + `T )/2 ≤ xT ≤ `2 − (b1 + `T )/2, (1)

modelling that the trolley is fixed to rails (on the crane
beam with a finite extension), and

|α| ≤ const < π/2 (2)

for some constant, since the load is connected by a massless
cable (and not by a rigid rod) to the trolley.

2.2 Strains and Stresses in a Beam

Within the domain of the crane we wish to solve for
the mechanical displacement field u. For a realistic crane
we may assume small displacement gradients and, hence,
model the elastic deformations of the crane beam in linear
elasticity. In the approximation of linear elasticity the
representation of strains and stresses within the refer-
ence (undeformed) configuration Ω ⊂ R3 (in Lagrangian
coordinates x) and the current (deformed) configuration

Ω̂ ⊂ R3 (in Eulerian coordinates x̂) coincide. We assume
a bijective smooth mapping between the coordinates of
both descriptions. Without loss of generality (w.l.o.g.) we
work in the reference configuration whenever it makes a
difference. As reference configuration we consider the crane
that is without any strains or stresses. The deformation
depends by means of the control on time. Thus the me-
chanical displacement field reads u : Ω × [0, T ] → Ω̂,
(x, t) 7→ u(x, t) = x̂(x, t) − x, where we do not consider
rigid body rotations or translations for the moment. The
symmetrized strain is ε(u) := (∇u + ∇u>)/2 and as a
constitutive assumption we work with the Cauchy stress
tensor σ(u) := λtr(ε(u))1+ 2µε(u), where λ, µ > 0 are the
Lamé constants that are related to the Young modulus
E and the Poisson ratio ν of the material. tr denotes the
trace of a matrix and 1 is the unity matrix. We make the
assumption that the crane has a constant density ρ > 0.

2.3 Governing Equations for the Crane

In this subsection we derive the equations of motion for
the trolley, the load, and for the deformed crane.

ODE for the Trolley-Load System. In this subsection we
formulate all equations and quantities within the reference
configuration. From here on we include clockwise rotations
of the crane by β into our considerations. The correspond-
ing rotation matrix w.r.t. the x3-axis is

S3(β) :=

[
cosβ − sinβ 0
sinβ cosβ 0

0 0 1

]
and has the inverse S−1

3 (β) = S3(−β). Consequently, we
consider then as reference configuration (from here on
depending on t)

Ω(t) := S3(β(t))Ω = {x ∈ R3 |S−1
3 (β(t))x ∈ Ω}

and redefine analogously ∂Ω(t), ΓD(t), ΓN (t), ΓT (t, xT (t))
by incorporating β. We assume that we may neglect the
deformation of the trolley, since hT = 0 � b3, and of the
cable between trolley and load.
The trolley’s center of gravity at time t is given by

rT (t) := S3(β(t))
(
rM (t) + u(rM (t), t)

)
,

the load’s center of gravity at time t is given by

rL(t) := rT (t)− S3(β(t))S3(γ(t))S2(α(t)) ` e3

with the rotation matrix

S2(α) :=

[
cosα 0 − sinα

0 1 0
sinα 0 cosα

]
,

where α is positive for a counterclockwise rotation around
the x2-axis. Since S3(β)S3(γ) = S3(β + γ) holds, we
substitute γ̃ := β + γ, γ̃ being positive for a clockwise
rotation around the x3-axis.
Let ωT := [0, 0, β̇, 0]> and ωL := [0, α̇, β̇, ˙̃γ]> be the
vectors of generalized angular velocities of the trolley and
the load. The kinetic energy of the mechanical system with
the generalized coordinates q = [xT , α, β, γ̃]> is given by

T (q, q̇, u) =
1

2

(
mT ‖ṙT ‖2 +mL‖ṙL‖2

)
+

1

2

(
ω>T JTωT + ω>LJLωL

)
, (3)

where mT and mL denote the masses of the trolley and
the load and the diagonal matrices JT = [JT,α, JT,β , JT,γ̃ ]
and JL = [JL,α, JL,β , JL,γ̃ ] denote the principal moments
of inertia of trolley and load, respectively. Since the trolley
is fixed to rails JT,α = 0 and since it is assumed to be flat,
i.e. hT = 0, we may neglect JT,β and JT,γ̃ as well.
The vector of the external generalized forces, i.e. the
control acting along the (deformed) rail of the trolley, the
gravitation, and the control moment rotating the crane
around the z-axis, is

fE(q, U) := [U1,−`mLg sinα,U2, 0]
>
. (4)

Thus the generalized potential V, fulfilling fE = −∇qV, is

V(q, U) = −U1xT − `mLg cosα− U2β,

uniquely determined up to a constant. From the Euler-
Lagrange equation the equations of motion follow as

M(q, u) q̈ =
(
fC(q, q̇, u) + fE(q, U)−Kq̇

)
, (5)

where M(q, u) := ∇2
q̇,q̇T (q, q̇, u) denotes the symmetric

and positive semi-definite mass matrix and fC(q, q̇, u) :=

∇qT (q, q̇, u)−∇2
q̇,qT (q, q̇, u) q̇ denotes the generalized Co-

riolis forces. The diagonal matrix K :=mL` [κT ,κL,κL,κL]
represents the (specific) damping coefficient for the trolley



and the pendulum, respectively. For the derivation of the
equations of motion with further details, but for the special
case β = γ̃ = 0 and JL = 0 (0 being the null matrix), see
Kimmerle et al. (2017), .
For brevity, we abbreviate m := (mT + mL)/(mL`). Fur-
thermore, we introduce the differential operators D1ui :=
∂2

1,1ui+∂
2
2,1ui+∂

2
3,1ui, i = 1, 2, 3, where we write ∂i := ∂xi

for the partial derivative w.r.t. xi. We abbreviate J̃L :=
JL/(mL`). Within our approximation of small displace-
ment gradients we find for the symmetric mass matrix

M = mL`


m(1 + 2∂1u1) M12 M13 M14

... `+ J̃L,α M23 0

... ... M33 M34

... ... ... ` sin2 α+ J̃L,β


withM12 := ((1+∂1u1) cos γ+∂1u2 sin γ) cosα+∂1u3 sinα,
M13 := m ((xT + u1)∂1u2 − (1 + ∂1u1)u2), M14 := (−(1+
∂1u1) sin γ + ∂1u2 cos γ) sinα, M23 := ((xT + u1) sin γ −
u2 cos γ) cosα, M33 := m((xT + u1)2 + u2

2) + J̃L,β , and
M34 := ((xT + u1) cos γ + u2 sin γ) sinα, where we write
again γ = γ̃ − β for brevity. Furthermore we have

fC(q, q̇, u) =

−m(D1u1|ẋT |2 − ((xT + u1)(1 + ∂1u1) + u2∂1u2)

×|β̇|2) + (((1 + ∂1u1) cos γ + ∂1u2 sin γ) sinα
−∂1u3 cosα)|α̇|2
+((1 + ∂1u1) cos γ + ∂1u2 sin γ) sinα | ˙̃γ|2
+2((1 + ∂1u1) sin γ − ∂1u2 cos γ) cosα α̇ ˙̃γ,
−((D1u1 cos γ +D1u2 sin γ) cosα+D1u3 sinα)|ẋT |2

+((xT + u1) cos γ + u2 sin γ) cosα |β̇|2
+` sinα cosα | ˙̃γ|2
−2((1 + ∂1u1) sin γ − ∂1u2 cos γ) cosα ẋT β̇,
−m ((xT + u1)D1u2 −D1u1u2) |ẋT |2

+((xT + u1) sin γ − u2 cos γ) sinα |α̇|2
+((xT + u1) sin γ − u2 cos γ) sinα | ˙̃γ|2
−2m((xT + u1)(1 + ∂1u1) + u2∂1u2) ẋT β̇
−2((xT + u1) cos γ + u2 sin γ) cosα α̇ ˙̃γ,

sinα ((D1u1 sin γ −D1u2 cos γ)|ẋT |2
−((xT + u1) sin γ − u2 cos γ)|β̇|2 − 2((1 + ∂1u1)

× cos γ + ∂1u2 sin γ) ẋT β̇ − 2` cosα α̇ ˙̃γ)



.

PDE for the Elastic Crane Beam. Let n denote the outer
normal to Ω. For the domain of the crane we have the
following elastodynamical problem

ρ ∂ttu− div σ(u) = h in Ω× (0, T ), (6)

u = 0 in Ω× {t = 0}, (7)

∂tu = 0 in Ω× {t = 0}, (8)

u = 0 on ΓD × (0, T ), (9)

−σ(u).n− g = 0 on ΓN × (0, T ) (10)

where g : ΓN × [0, T ] → R3 is a boundary force (in

N/m2). Note that friction of elastic waves might be caused
e.g. by cracks in the material, electromagnetic effects
or by porosity of the media. However, a friction term,
proportional to ∂tu, that could enter in (6), may be
neglected in our situation. The term h := −ρ g e3 in (6)
models the gravity of the dead load of the crane arm.
According to (4), the gravitational force exerted by the
load alone (by means of the trolley) plus the control forces
(exerted by the trolley, too) acting on the deformed beam
reads

f
(C)
E (t) =

[
U1 +mLg sinα cos γ

U2/xT (t)−mLg sinα sin γ
−mLg cosα

]
expressed in Cartesian coordinates (where β does not
appear since the reference configuration rotates with β).
In order to transform a surface element from the reference
to the deformed configuration we use Nanson’s relation.
Let FD = 1+∇u be the deformation gradient, thus in the
approximation of small displacement gradients

det(F−1
D )F>D ≈ (1− tr(∇u(x, t)))1 +∇u(x, t)>.

In our situation g0 : ΓN × [0, T ]→ R3,

g0(x, t) := ((1− tr(∇u(x, t)))1 +∇u(x, t)>)×
× [U1(t) +mLg sinα(t) cos γ(t), U2(t)/xT (t)

−mLg sinα(t) sin γ(t),−mLg cosα(t)−mT g]>

models the force of the trolley onto the crane by means of
the boundary pressure

g(x, t) :=

{
g0(x, t)/|ΓT (·)| for x ∈ ΓT (xT ),
0 for otherwise.

We may decompose the elastodynamical PDE (6) – (10)
into an equation for the longitudinal effects, div u, that
yields the acoustic wave equation, and an equation for the
transversal part, rotu (yielding the so-called shear wave
equation), respectively. By a dimensionalization analysis,
it turns out that the speed of longitudinal acoustic waves
(speed of sound) is given by ((λ+ 2µ)/ρ)1/2 ≈ 6.10 km/s,
whereas the speed of transversal waves is (µ/ρ)1/2 ≈
3.35 km/s, using the values for steel. For a grid-like struc-
ture of the crane the speed of elastic waves might be
even higher, hence the time derivatives in (6) may be
safely neglected in a first approximation. Consistently, we
may neglect terms like ∂tu as we do in (3) as well. Thus
we consider the quasi-static situation. The corresponding
elastostatic problem, where time enters as a parameter due
to g, reads

−div σ(u) = h in Ω× (0, T ), (11)

u = 0 on ΓD × (0, T ), (12)

−σ(u).n− g = 0 on ΓN × (0, T ). (13)

This elliptic PDE for u depends on q by means of g and
g0, respectively, whereas the ODE system for q depends
on first and second derivatives of u. Since the coupling
effect, that is not negligible in our model, takes place on
ΓT , that has a small surface area |ΓT |, we introduce the
mean values

ū(t) :=
1

|ΓT |

∫
ΓT (xT (t))

D̃u(x, t) dx, (14)

in the coupling terms, where we average over each compo-
nent of D̃u := [∂1u1, ∂1u2, ∂1u3, D1u1, D1u2, D1u3, ∂1u2,
∂2u2, ∂3u3, ∂3u1, ∂3u2, ∂3u3, u1, u2]>. Otherwise, a PDE
problem for the trolley with a point force would have to be
solved. We will consider ū as an independent state variable
in the following. Consequently, we modify the b.c. (13) by
replacing g by a version with mean values of ∂iuj over ΓT .

2.4 Optimal Control Problem

We would like to transport a load at rest from an initial
position x0

T to a terminal position xf
T

, where the load
should be at rest at the terminal time T , i.e.

η(q(T ), q̇(T )) = 0, (15)



where we write η(q(T ), q̇(T )) := [xT (T )− xfT , α(T ), β(T ),

γ̃(T ), ẋT (T ), α̇(T ), β̇(T ), ˙̃γ(T )]>. We would like to achieve
this in minimal time T , while minimizing the swinging of
the load, i.e. its kinetic energy.
The standard part of the objective, consists of a linear
combination of the terminal time, a kinetic energy term,
and the control efforts (acting as a regularization smooth-
ing bang-bang controls as well)

J1(q, U, T ) := λ1T +
λ2

2

(
‖α̇‖2L2(0,T ) + ‖ ˙̃γ sinα‖2L2(0,T )

)
+
λ3

2
‖U1‖2L2(0,T ) +

λ4

2
‖U2‖2L2(0,T )

with the weights λj ≥ 0, j = 1, . . . , 4, where at least one
weight is strictly positive. We add terms penalizing the
violation of terminal conditions

J2(q(T ), q̇(T ))) :=
1

2
η(q(T ), q̇(T ))>diag(ν) η(q(T ), q̇(T ))

+ µ>η(q(T ), q̇(T ))

with the multipliers νj ≥ 0, µj ∈ R, j = 1, . . . , 8. By
adding the linear terms with the Lagrange multipliers µj
we achieve that J2 is a multiplier-penalty-function that is
exact (Geiger et al., 2002, Kap. 5.4). We will compute the
multipliers νj and µj by means of the multiplier-penalty-
method.
Our objective is the Lagrangian

J (q, U, T ) := J1(q, U, T ) + J2(q(T ), q̇(T )).

Please note that neither u nor ū does enter explicitly into
the objective. If λ1 > 0, then we consider a time-optimal
control. We perform a transformation onto a fixed time
interval, mapping t ∈ [0, T ] to τ ∈ [0, 1], thus the domain
is independent of the control (parameter) T . According to
the time transformation, e.g., time derivatives have to be
scaled with a factor T .
Our optimal control problem is to minimize F(U, T ) :=
J (q(U, T ), U, T ) for a U ∈ U := [W 1,∞(0, T )]2 and
T ∈ [0,∞) under the following constraints:

• the PDE (11) where we have put in the mean values
in g

0
and with boundary conditions (12) & (13) ,

• the ODE system (5) where we have employed the
mean values introduced in (14) (e.g. ū1 instead of
∂1u1) in M and G, together with initial conditions,
e.g., xT (0) = x0

T , ẋT (0) = α(0) = α̇(0) = β(0) =

β̇(0) = γ̃(0) = ˙̃γ(0) = 0,
• the state equation (14) for ū,
• the control constraints Umin,i ≤ Ui ≤ Umax,i, i = 1, 2,

pointwise for all t ∈ [0, T ].

In principle, we have to require:

• the terminal conditions (15),
• the state constraints (1) for the trolley position and

(2) for the angle α of the load.

However, for the moment we neglect the terminal condi-
tions (assuming that they are sufficiently accomplished by
the objective J2) and the state constraints (as they never
get active for suitable initial controls).

3. DIFFERENTIABILITY OF THE
CONTROL-TO-STATE OPERATOR

We consider an abstract problem for u ∈ Rd of the type

Au = h in Ω (16)

with an arbitrary right hand side h ∈ [Lq̃(Ω)]d :=
Lq̃(Ω;Rd), 1 ≤ q̃ < ∞, on an open bounded, simply
connected, Lipschitz domain Ω ⊂ Rd with d ≥ 2 (typically
d = 3 in our application). Let Aφ := −div (A∇φ) be
a weakly elliptic operator in divergence form, i.e. Korn’s
inequality holds (coercivity) and A is linear, continuous,
and self-adjoined, mapping an arbitrary function φ from
[W 2,q̃(Ω)]d → [Lq̃(Ω)]d.
We are interested in the differentiability of the solution u
with respect to the location of boundary conditions. More
precisely, we consider the boundary conditions

u = 0 on ΓD, (17)

−A∂nu = g(·; p) on ΓN , (18)

where ∂n denotes the normal derivative. The boundary
data has the following structure:

g(x; p) =

{
g0(x− p) where x ∈ p+B,

0 elsewhere.
(19)

For our purpose, we may neglect local singularities of u at
ΓD∩ΓN (Kimmerle et al., 2017, Sect. 3.1). Let us suppose
that the boundary ΓN has a flat part, i.e., a part which
lies in a hyperplane. In (19), p is a point on the boundary

ΓN and B ⊂ Rd−1 is a fixed flat shape with a smooth
(relative) boundary. It is reasonable (but not necessary)
to suppose that 0 ∈ B. The function g0 : B → Rd is
supposed to be smooth, bounded, and differentiable. We
suppose that p+B belongs to ΓN for all values of p ∈ Γ′N
near a nominal vector p0. The boundary part Γ′N ⊂ ΓN is
defined s.t. p+B ∈ ΓN for all p ∈ Γ′N . As usual we define

H1
D(Ω) := {ψ ∈ H1(Ω) |ψ = 0 on ΓD}. We consider the

operator S defined by the mapping

Γ′N 3 p 7→ S(p) := u ∈ [H1
D(Ω)]d (20)

and wish to show its differentiability at the point p0. S is
called the control-to-state operator for problem (16)–(19),
where p is the control and u the sought-after state.

3.1 Fréchet-differentiability with respect to the location of
the boundary condition

In this subsection we examine the F-differentiability
(Fréchet-differentiability) of the control-to-state map. We
remark that our approach is related partially to Hettlich
(1995).

Hypothesis 1. Geometry of the shift of the boundary con-
dition
We consider an one-dimensional Γ′N with box constraints,
w.l.o.g. let p = p ξ, where ξ ∈ Rd is a fixed direction and
p ∈ Ip := (pmin, pmax) for some values pmin and pmax
(corresponding, e.g., to (1)).
For simplicity, assume B to be simply connected and
convex, and that we may split ∂B = ∂Br ∪ ∂Bf ∪ ∂Bp
into disjoint boundary parts. According to the positive
direction of motion of p, the boundary part ∂Br is on the
rear side, ∂Bf on the front side, and ∂Bp is a possible part
of the boundary moving parallel to p. For the boundary
with the wall, we assume ∂B ∩ ΓD = ∅.

Lemma 2. Fréchet-differentiability of S w.r.t. p
Let Ω ⊂ Rd be an open bounded, simply connected Lip-
schitz domain and let Hypothesis 1 for p, Γ′N , and B hold.



For p, we consider S, analogously as defined for p = p ξ in
(20), for the problem (16) – (19), where Aφ = −div (A∇φ)
is a weakly elliptic operator in divergence form. For the
data let h ∈ [Lq̃(Ω)]d, where d ≤ q̃ < ∞, and g0 ∈
[C0(B)]d hold. Then the operator S ∈ L(Ip, [C

0(Ω)]d) is
F-differentiable. The F-derivative S′ ∈ L(Ip, [rca(Ω)]d),
where rca(Ω) denotes the set of regular additive measures
on Ω with real values, may be identified at p by the solution
of a problem of type (16) – (19) with h ≡ 0 and

g = λp,Bg0 :=
(
δp ξ+∂Bf

− δp ξ+∂Br

)
g0,

with line measures δD on ∂Ω, being one on the correspond-
ing set D and zero elsewhere.

Proof.
Step 1) The difference equation

For the moment we fix p = p0. Let S(p) and S(p + δp)
denote two solutions corresponding to compact supports
B0 := p+B = p ξ +B and B+ := (p+ δp)ξ +B, resp., of
g on the Neumann boundary part. The problem for their
difference δu := S(p + δp) − S(p) reads according to (16)
– (19)

−div(A∇ δu) = 0 in Ω,

δu = 0 in ΓD,

−A∂nδu = δg(·; p, δp) on ΓN ,

where the Neumann boundary data δg(x; p, δp) := g(x; (p+
δp) ξ)− g(x; p ξ) is

δg(x; p, δp ξ) =


−g0(x− p ξ) ; x ∈ B0 \B+,

g0(x− (p+ δp) ξ) ; x ∈ B+ \B0,

0 ; elsewhere.

By standard techniques, involving Korn’s inequality (Ω is
simply connected), the Hölder inequality, the trace theo-
rem and the Sobolev embedding, we obtain the existence of
a unique solution satisfying the estimate ‖δu‖[W 1,q̃(Ω)]d ≤
C|δp| ‖g0‖[L∞(B)]d . The constant C depends on Ω, q̃, the
space dimension d, and Korn’s constant, but not on δp.

Step 2) Existence of a F-derivative

Thus δS := δu/|δp| is uniformly bounded in [W 1,q̃(Ω)]d

and we may deduce from the Banach-Alaoglu theorem (Alt
(2016)) the existence of a weak-∗-convergent subsequence
with a weak-∗-limit, that we denote by S′(p). Since p0 is
arbitrary, this holds for all p ∈ Ip. So far we have S′(p) ∈
[W 1,q̃′(Ω)]d with q̃′ = q̃/(q̃ − 1). By using the Sobolev
embedding for q̃ ≥ d we find [W 1,q̃(Ω)]d ↪→ [C0(Ω)]d

and S′ ∈ L(Ip, [rca(Ω)]d) with the topological dual space
C0(Ω)∗ = rca(Ω) (see Alt (2016) for further details).

Step 3) Identification of the limit S′

For an arbitrary part Ω∗ ⊂ Ω and for any ψ ∈ [C∞c (Ω∗)]
d

with compact support on Ω∗, there holds∫
Ω∗

A∇δS(p)(x) · ∇ψ(x) dx

=
1

|δp|

∫
Ω∗∩(B+\B0)

δg(x; p, δp) · ψ(x) dx

− 1

|δp|

∫
Ω∗∩(B0\B+)

δg(x; p, δp) · ψ(x) dx.

Exploiting the assumptions on B, we see that for suffi-
ciently small |δp|, δS fulfills a problem with the limit

−div(A∇S′(p)) = 0 in Ω,

S′(p) = 0 in ΓD,

−A∂nS′(p) = λp,B g0 on ΓN ,

where λp,B is a line measure on Ω, defined as

λp,B(x) g0(x) =


−g0(x− p) where x ∈ p+ ∂Br,

g0(x− p) where x ∈ p+ ∂Bf ,

0 elsewhere.

Thus the limit problem has a unique solution S′ and we
have a strongly convergent sequence. 2

Note that in the corresponding problem for a 1D crane
beam that is not discussed in this study, the F-derivative
has to be considered w.r.t. the volume force h, where the
location of the support of the trolley enters and we find a
limit problem with h = λp,B and g = 0 (relevant only at
one point at the right end of the beam).
For a proof of the well-posedness of our coupled ODE-
PDE system in d = 3 for sufficiently small times T > 0, for
sufficiently small contact areas |ΓT |, and a domain Ω ⊂ R3

with smooth corners, see Sect. 3 in Kimmerle et al. (2017),
where we find for the states

y := [q, u] ∈ Y := [H2(0, T )]2 × L∞(0, T ; [W 3,p̃(Ω)]3),

for p̃ > 3. In this case, S is F-differentiable w.r.t. U1 and
U2, that enter linearly into the ODE and then by means
of g into the PDE. Since ū appears only linearly in the
ODE for q, this motivates that we may expect that the
(full) control-to-state operator S̃ : U 3 U → y ∈ Y is
F-differentiable. However, the latter has not been proved
rigorously, yet. Furthermore, then F , not being explicitly
dependent of u and ū, is F-differentiable w.r.t. U1 and U2

for sufficiently small T and |ΓT |.

4. NUMERICAL METHODS

For the numerical optimal control, we follow a first-
discretize-then-optimize strategy (FDTO), since the first-
optimize-then-discretize (FOTD) strategy requires the for-
mulation of necessary optimality conditions that are not
straight-forward for our coupled problem. The PDE is
discretized by the finite element method and for the time-
stepping scheme we use a semi-explicit method that is
second-order in time. For the computation of a descent
direction, sensitivity- and adjoint-based methods are, in
principle, available. An adjoint-based approach might be
faster in the case where the number of discretized equa-
tions is larger than the number of discretized constraints.
However, due to the complicated structure of the coupled
ODE-PDE model, the adjoint system has a complicated
structure involving, e.g., non-standard integro-differential
equations that are due to the averages ū on ΓT . Therefore
we follow a sensitivity-based FDTO approach. The descent
direction is computed by a projected gradient method
with a modified BFGS update for the Hessian. The BFGS
method is a quasi-Newton method that may be used when
the exact second-order derivatives are not available, as it
is here the case due to the averaging on ΓT . We stop our
optimization, when the scaled updates of U and T are
smaller than a certain tolerance tolopt. However, for any
given set of weights λ, the feasibility could be still violated.



Fig. 2. Left-hand side: convergence of T (s) vs. inner (op-
timization) iteration. Right-hand side: scaled optimal
control U1 (1/s2) as function of the time step (1,
i.e. w/o units) after 0 (red), 1 (yellow), 2 (green), and
99 (blue) outer (multiplier-penalty) iterations.

In an outer iteration k, we take care of the violation of the
terminal conditions (15) by applying a multiplier-penalty-
method. We update the multipliers by

µ
(k)
j := µ

(k)
j + ν

(k)
j ηj(q

(k)(T ), (q̇)(k)(T )), j = 1, . . . , 8.

If a feasibility ηj has not been reduced by a certain factor

cM,(j), j = 1, . . . , 8, we multiply ν (k)
j by a suitable update

factor cW . Then we restart our optimization loop, until the
feasibility constraints are satisfied up to a given tolerance
tolfeas. By this means we compute a numerical optimal
control. For further details for the numerical simulation
and optimal control, see Kimmerle et al. (2017).

5. NUMERICAL RESULTS

For ease of presentation and computational issues, we ex-
amine in this study only the 2D situation with U2 ≡ 0 fixed
(implying β ≡ γ ≡ 0). However, we start with an initial
guess for the terminal time T far away from the solution.
Here we consider ` = 25 m for the pendulum length and
(a relatively small) E = 109 N/m2 for the unscaled Young
modulus. As scaled damping coefficients we consider κT =
10−3/s and κL = 1 m2/s. When the pendulum is restricted
to a plane the required principal moment of inertia is,
assuming a spherical load, JL,α = 2.09 · 106 kg m2. Please
note that the system with inertia, i.e. a physical pendulum
with length `, corresponds mathematically to a system
with the so-called reduced length ` + J̃L,α. For further
technical data for the crane see Table 1 in Kimmerle et al.
(2017).
In particular, we present here results for time-optimal
control, see Fig. 2 for the controls and its numerical con-
vergence, Fig. 3 for the ODE states q, and Fig. 4 for the
PDE state u. By a further optimization of the code and
using a suitable rescaling of the weights and multipliers,
the computing times could be significantly decreased in
comparison to the results presented in Kimmerle et al.
(2017). As parameters in the algorithms we work here
only with a time discretization of T/50 and 5400 finite
elements (3D), and with the tolerances tolopt = 10−4 and
tolfeas = 10−3. We start with λ1 = 0.01, λ2 = 1, λ3 =
10−4, ν1 = 1, ν2 = 0.1, ν5 = 10, ν6 = 1, and µ = 0. We
increase the multipliers, ν and µ, in the outer iteration (for
updating the multiplier penalties) by a factor of cW = 2.
For the control constraints Umax = −Umin = 10−3 s−2 is
considered, but otherwise the initial guess for U1 is of the
same shape as in Kimmerle et al. (2017). The initial guess
for T and the other parameters are chosen exactly as in
the latter study.

Fig. 3. ODE states. Left-hand side: position of trolley
q1 = xT (m) vs. time step (1). Right-hand side: angle
of load q2 = α (degree) vs. time step (1).

Fig. 4. PDE state: deformed crane beam at terminal time
T . Colors indicate absolute mechanical displacement
field ‖u‖2 (m). The plotted vertical deformation of the
crane beam is scaled for ease of presentation.

6. OUTLOOK

We have modelled mathematically a time-optimal control
problem for a coupled ODE-PDE system, arising in ap-
plications as elastic crane-trolley-load systems. We have
demonstrated the F-differentiability with respect to the
location of the moving boundary condition. First numeri-
cal results for time-optimal control are presented. From a
theoretical point of view, the derivation of the existence of
optimal controls and the necessary optimality conditions,
allowing for a FOTD approach as well, are open. A natural
goal is to achieve the computation of numerical optimal
control in 3D in reasonable computing times. Furthermore,
it might be interesting to consider the optimal control of
the rope length ` as well.
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