COMPARISON OF APPROACHES AND CONCEPTUAL FRAMEWORKS FOR COMPONENT-BASED MODELING AND SIMULATION (M&S)

Marko Hofmann
Institut für Technik Intelligenter Systeme (ITIS)
an der Universität der Bundeswehr München

e-mail: lehmann@informatik.unibw-muenchen.de
URL: http://www.informatik.unibw-muenchen.de/inst4/

Axel Lehmann
Institut für Technische Informatik und ITIS e.V.
Universität der Bundeswehr München
Our Research Focuses and Experiences

• Institut für Technische Informatik
 → Discrete event M&S methodology
 → Parallel and distributed simulation
 → Knowledge-based Simulation
 → Performance / reliability analysis / diagnosis of computer and telecommunication systems

• Institut für Technik Intelligenter Systeme (ITIS e.V.)
 → M&S development as a multiple phase engineering process
 → VV&A (verification, validation & accreditation)
 → M&S performance and dependability (safety)
 → (military) analysis, planning and decision support systems
COMPARISON OF APPROACHES AND CONCEPTUAL FRAMEWORKS FOR COMPONENT-BASED MODELING AND SIMULATION (M&S)

OUTLINE

1. M&S - “State of the Art” and Demands
2. M&S-Design, Implementation and Application:
 A Multi-Phase Development Process
3. Component-Based Modeling: Vision and Reality
4. Formal & Architectural Approaches for Component-Based M&S
5. Component Architectures and Technologies
6. Component-Based M&S: Status and Future Perspectives
1. M&S - “State of the Art” and Demands

☐ Trends / Requirements of (Technical) Systems Development

• Rapid technological innovations
 → new technologies (e.g. ICT)
 → efficient, powerful, computer-assisted Tools (e.g. CAD, CAM, . . .)

• Increasing systems complexity & lifetime
 → embedded systems
 → distributed systems
 → networks of components / systems

• Increasing productivity & cost-benefit

• Decreasing cycle times for system’s innovations

☐ Major Challenge

⇒ “Mastering” of systems over lifetime w.r.t. multiple aspects /goals!
⇒ goal-oriented, efficient, effective and dependable models

⇒ MODEL-ENGINEERING
Major evolving application domains for symbolic M&S:

Evaluation of e.g.:
- Technical systems
- Economical systems
- Environmental observations
- Social, political or cultural issues
- (military) conflict situations and strategies
- natural, biological or medical systems

Categories of “Evaluation”:
(w.r.t. goal(s) specification & solution space)
- Analysis (e.g. diagnosis, selection, classification, decision support)
- Synthesis (e.g. construction, planning)
- Prediction (e.g. evolvement over time, training)
Current Importance of M&S
(as a discipline / methodological approach / tool set)

→ Receives increasing acceptance by decision makers
→ Becomes more and more a “standard” method / tool set
→ Seen as a major enabling technology for innovations
→ Research relevance is well-documented, e.g. by

• 1995, US-DARPA: "... M&S is one of the top-10-key enabling technologies ..."
• 1998, DoD (Dr. Gansler): "... by the year 2000 ... Systems development in 25 % less time...”
• 1999, US-government: IT² Research Initiative
• 1999, PITAC report: "Fund research in ... global-scale networks and its associated information infrastructure including Modeling and simulating network behaviour (Recommendation 3.3.2)
• 2002, EU 6th Research Framework Program
Major Challenges for M&S applications:

- Increasing systems / M&S complexity
- Decreasing cycle times for systems / M&S innovations
- Increasing systems / M&S lifetimes
- Increasing variety of M&S-aspects / purposes
- Safety, reliability, ... cost-benefit constraints (for systems / M&S)
- "HW-/SW-/User-in-the loop" simulation
- User acceptance; ease of use & credibility
- Virtual / Augmented Reality
General Demands:

- Hierarchical modeling
- Interoperability
- Reusability → adaptability → multifaceted modeling
- Collaborative & distributed M&S
- Model credibility (→ VV&A)
- Model engineering
2. M&S - Design, Implementation and Application

⇒ A Multiple-Phase Development Process

Example: Effectiveness and efficiency of a “Booking System”
(client-server architecture)

Goal parameters e.g.:
→ processing time per transaction
→ client/server utilization
→ queueing time, queue length
M&S-Sources of Knowledge and Expertise

- Problem Definition
- System Analysis
- Model Formalization
- Implementation
- Experimentation

- User Knowledge
- Domain Knowledge
- Modeling Expertise
- (HW-)SW-Expertise
- Experimental Design and Analysis
M&S-Development Team

- User
- Domain Expert
- Modeller
- Programmer
- Project Manager (Contractor)
- Customer

Problem Definition
System Analysis
Model Formalization
Implementation
Experimentation

User Knowledge
Domain Knowledge
Modeling Expertise
Experimental Design and Analysis
(HW-)SW-Expertise

Knowledge Domain
Modeling Expertise
Experimental Design and Analysis
(HW-)SW-Expertise
Phases & Products in the M&S - Development Process

- Examination Aim
- System Observations
- Conceptual req.&constr.
- Modeling Method
- Formal req.&constr.
- Solution Techniques
- Technical req.&constr.
- Model Input Data
- Experimental req.&constr.

- Problem Definition
- System Analysis
- Model Formalization
- Implementation
- Experimentation

- Structured Problem Description
- Communicative Conceptual Model
- Formal Model
- Executable Model
- Model Results
Example: „Booking System“

Conceptual Model:

- Server
- CPU
- I/O device 1
- I/O device n
- T1
- Tn
Example: Booking System

Formal Model (Version 1):
Example: Booking System

Formal Model (Version 2):

- Terminals
- Remote Jobs
- CPU
- E/A-Komponente
Performance measures

calculated by an analytic solution of the Formal (Queueing) Model or:
implemented as a discrete event simulation

- State probability $p(k)$
- Utilization ρ (m service stations)

$$\rho = \frac{\text{arrival rate}}{\text{service rate}} = \frac{\lambda}{m \mu} < 1$$

- Throughput λ

$$\lambda = m \cdot \rho \cdot \mu$$

(service rate = arrival rate, stationary state)
Performance measures:

Little's law:

\[\bar{k} = \lambda \bar{t} \quad \text{or} \quad \bar{Q} = \lambda \bar{w} \]

Queue length

With: response time \(t \), queueing time \(w \), service rate \(\mu \)

\[\bar{t} = \bar{w} + \frac{1}{\mu} \quad ; \quad \bar{k} = \sum k \cdot p(k) \]
Queueing Petri Nets (QPN)

GSPN model of a FCFS queue

QPN model of a FCFS queue with 2 colours of tokens
Conclusions
(e.g. regarding the example “Booking System”)

• Conceptual Model:
 → structural & functional description of “components”
 → different levels of abstraction

• Formal Model:
 → formal specification of “components” (↔ selected modeling paradigm(s))
 → different levels of abstraction
 → hierarchical modeling approach
 (• decomposition into submodels / “components”

• Executable Model(s):
 e.g. → analytic solution reusable SW- “components”
 → simulation
3. Component-Based Modeling: Vision and Reality

What is a “Component”?

- **Douglass (2000):** “… it’s whatever you want it to be”
- **Szyperski (1997):** “Components are for composition”
- **Griffel (1998):** “… they are having an autonomous functionality” (Translation)
- **Meyer (2000):** “… may be used by other software elements (clients) … without the intervention of the components developers.”
- **Meyer (2000):** “A Software component … is a meta product: …

\[
\begin{align*}
\text{Specification} \\
| \quad \text{plan} \\
| \quad (\text{parameterized}) \\
\quad \text{instance(s)} \ldots , \text{(Translation)}
\end{align*}
\]
M&S-component: =

(pragmatism, intended purpose,
 semantic,
 syntax)
Properties of a (Software) Component:

- "Includes a specification of all dependencies; (HW-, SW-, etc.)
- includes a precise specification of offered functionalities; “information hiding"
- plug and play;
- is usable on the sole basis of that specification;
- is composable with other components;
- can be integrated into a system quickly and smoothly."

(Meyer, 2000)

component-class /-type: description of structure & implementation

component-objects /-instances: implementation
Differences to Classes / Objects and Modules

(according to Szyperski, Mayer)

• Very vague !!

• **Objects:**
 - have a state which can be persistent
 - import / export data, methods
 - can be part of a component

• **Modules:**
 - can be seen as “minimal components”
 - can include abstract data types & object classes
 - have no resources
 - connections to other modules are known
 (fixed structural arrangements)
 - can contain classes (e.g. Oberon, Modula-3)
Phases & Products in the M&S - Development Process

- Examination Aim
- System Observations
 - Conceptual req.&constr.
- Modeling Method
 - Formal req.&constr.
- Solution Techniques
 - Technical req.&constr.
- Model Input Data
 - Experimental req.&constr.

Problem Definition
- Structured Problem Description

System Analysis
- Communicative Conceptual Model

Model Formalization
- Formal Model

Implementation
- Executable Model

Experimentation
- Model Results

A. Lehmann - “Component-Based M&S” - AIS 2002 - Lisbon, April 8th, 2002
Phases & Products in the M&S - Development Process

M&S- „component“:

[Diagram of M&S components and interactions]
Ok, we have got the following problem...

Sponsor Needs

Structured Problem Description

Model Development & V&V

V&V Phase

Intermediate Results

Executable Model

Formal Model

Conceptual Model

Model Requirements Validation

P(E_P)

P(E_A)

P(E_F)

P(E_I)

P(E_E)

Model Results

Dynamic Simulation Model

Behavior Verification & Validation

Static Code & HW Verification & Validation

Static Model Verification & Validation

Static Model Structure Verification & Validation

A. Lehmann - “Component-Based M&S” - AIS 2002 - Lisbon, April 8th, 2002
Vision: Model („Component“) Specification Levels

- Model Federation Level
 „Black Boxes“

- Model Level
 Autonomous, interoperable models

- Submodel / Object Level
 Submodels / Object structures of different modeling paradigms

- Function Level
 Coded basic functions / algorithms
Component-Based M&S: Current Approaches

- Hierarchical modeling via
 - decomposition
 - aggregation
 - hybrid solution / implementation techniques

- Generic modeling object templates (depending on the modeling paradigm), e.g.
 - class / object libraries

- Function / Program libraries, e.g.
 - statistical analyses
 - random number generators

- Coupling of monolithic models, e.g.
 - federation of models (DIS, HLA, . . .)
 - agent-based simulation

Conclusion: Missing comprehensive formal & methodological approaches for component-based M&S
4. Formal Approaches for Component-Based M&S

(→ Formalisms for Component-Based M&S Specifications)

DEVS (Discrete Event System Specification, Zeigler)

Atomic DEVS : = (X, S, Y, in, ex, au, v)

- X : set of input ports & input events set
- S : sequential states set
- Y : set of output ports & output events set
- in : = S ↦ S : internal state transition function
- ex : = Q x X : external transition function
- au : = S ↦ Y : output function
- v : = S ↦ R⁺ : time advanced function

• Coupled Models ↔ hierarchical modeling approach
Thomas Krieger
UML (and extensions)

- standard notation for analysis, design and implementation of (object-oriented)-systems:
 - UML-meta model ↔ specifies abstract semantics
 - UML-notation ↔ describes a set of diagrams (→ syntax):
 - Static diagrams: Use Cases, Class / Object Diagrams
 - Behavioural diagrams: Activity ~ State ~
 - Interaction diagrams: Sequence ~ Collaboration ~
 - Implementation diagrams: Component ~ Deployment ~

- Extensions, e.g. for quantitative software performance M&S
VHDL: Hierarchical & Component-Based Hardware / Microelectronic Circuit Design

- Gajski-/Y-Diagram
• Component and its instances in VHDL
5. Component Architectures and Technologies

- **Architectures**
 - OMA (Object Management Architecture; basis for CCM)
 - Agent-based Simulation
 - DIS (Distributed Interactive Simulation)
 - HLA (High Level Architecture)

- **Component Technologies**
 - Component Object Model (Microsoft)
 (COM, COM+, DCOM, ActiveX)
 - Java Beans, Model Beans, EJB (Sun Microsystems)
 - CORBA Component Model (CCM; OMG)
High Level Architecture (HLA)

Federation „A“

Federate A_1

HLA Interface

... …

Federate A_n

HLA Interface

Federation Execution (FedEx) „A“

Network

HLA Runtime Infrastructure (RTIexec) FedEx-Management, Naming Service etc.

Operating System Level

(RTI of the Defense Modeling & Simulation Office)
Credibility of a Model

1. Conceptual, formal-mathematical, and technical aspects
2. Sub-models hierarchy
3. Static description and dynamic behavior

\[v = at + v_0 \]
6. Component-Based M&S: Status and Future Perspectives

Demands

• “Mastering” of systems / M&S complexity over lifetime
 → Hierarchical M&S e.g. by
 * decomposition
 * aggregation
 → Reusability & interoperability of M&S-components via:
 * a semiotic approach:
 (pragmatism/intended purpose, semantic, syntax)
 * based on: a comprehensive M&S methodology
 system-theoretic formalisms, and on architectural & technical frameworks

• M&S development & maintenance: engineering discipline ! ?
Status - Perspectives

• Component technologies available
• Component architectures developed
• but: M&S-component specification:
 (pragmatism/intended purpose description
 semantic (plan)
 syntax (implementation)) is almost missing !!

• Long Term Perspectives:
 → Repositories for: pragmatic concepts,
 formal model components (algorithms),
 executable model components (code)
 → Increasing long-term availability / reusability
 productivity & credibility (→ VV&A)

SW-focus !!
Phases & Products in the M&S - Development Process

Problem Definition
- Structured Problem Description
- Communicative Conceptual Model
- Formal Model
- Executable Model
- Model Results

System Analysis
- Project Objectives
- Structured Problem Description
- Formal Model
- Executable Model
- Model Results

Model Formalization
- Model Input Data
- Experimental req.&constr.

Implementation
- Technical req.&constr.
- Solution Techniques
- Formal req.&constr.

Examination Aim
- System Observations
- Conceptual req.&constr.
- Modeling Method

Technical req.&constr.
- Formal req.&constr.
- Solution Techniques

Experimental req.&constr.
- Model Input Data
- Examination Aim

A. Lehmann - “Component-Based M&S” - AIS 2002 - Lisbon, April 8th, 2002