Seminar
Long-term Preservation
Emulation: A Strategy for
preserving Authenticity

Ingo Schwarz
1070438
06—08—2009

Responsible person:
Prof. Dr. Uwe M. Borghoff
Carer:
Dipl.-Inform. Nico Krebs

der Bundeswehr
Universitdt jﬂ% Mlinchen

Institute for Software Technology
Department of Computer Science
Universitat der Bundeswehr Miinchen

Contents
1 Introduction

2 Means for long-term preservation
2.1 Migration
2.2 Emulation L oo

2.3 Universal virtual computer

3 Three technical approaches to emulation
3.1 Hardware emulation
3.2 Operating system emulation

3.3 Software emulation 0L

4 Current projects on emulation
4.1 The CAMIiLEON Project
4.2 The DIAS solution at the Koninklijke Bibliotheek

4.3 Dioscuri - The modular emulator

5 Conclusion & Outlook

10

11
11
12
12

14

1 Introduction

Nowadays people seem to think that archiving information digitally is the
best and most integrity-sustaining way to save data. It seems logical that
handwritten papers degrade over time whereas for instance a word docu-
ment can be easily duplicated and altered and the file does not decrease in
quality. In Addition, the physical space needed to store such objects eventu-
ally becomes smaller as storage density increases. As a result it has become
a natural course of action to use digital documents for preserving books,
newspapers, scientific papers, government and corporate documents.

Now what is the problem? Suppose we use a computer, equipped with
an operating system and all necessary software to create a random digital
document. How can it be guaranteed that this setup will be available and
kept working over long periods of time? Living in an age of rapid technologi-
cal advance new platforms pop out of the ground like mushrooms and older
platforms can become obsolete somewhat quickly. This means that one has
to solve the problem of degradation of digital documents primarily caused
by switching to newer computing platforms. There are several approaches
to a solution of which emulation is to be illustrated in further detail in this

paper.

After introducing some means for long-term preservation, the concept of
emulation will be described in further detail by referring to various technical
approaches. Subsequently, current projects on long-term preservation using
emulation as a key strategy will be mentioned.

2 Means for long-term preservation

There are several methods at one’s disposal for keeping digital documents
which are running danger of becoming unreadable legible. A short summary
of the most commonly used ones shall follow.

2.1 Migration

“Migration is the periodic transfer of digital materials from one hardware
respectively software configuration to another or from one generation of
computer technology to a subsequent generation. The purpose of migration
is to preserve the integrity of digital objects and to retain the ability for
clients to retrieve, display, and otherwise use them in the face of constantly
changing technology.”[1] Advantages and Disadvantages are described in

6 2 MEANS FOR LONG-TERM PRESERVATION

further detail in papers by Robert Berger and Falko Krause which were
created parallel to this seminar paper.

2.2 Emulation

Emulation is the replicating of functionality of an obsolete system. The
essential idea behind emulation is to be able to access or run original data
on a current platform by running software on that current platform that
behaves like the original platform. Creating an emulator involves encapsu-
lating certain pieces of information. A logical view of this encapsulation is
shown below.

o surface metadata o

..—l—'-'_'_'__ e
Metadata

Explanation [{annatatianflabeling}} [Dcrcurnentatiurﬂ

[Digital Dm:umentj

Emulator
Specification

[Driginal Suftwarej

[Dperating System]
Software

Figure 1: Logical view on encapsulation

The first kind of information to be encapsulated includes the document, its
software environment and the required operating system software. Addition-
ally, any other software that is needed to run that piece of software which
is needed to open the encapsulated digital document has to be included.
Technically, the bit stream(s) representing one or more original files is saved
so that it can be accessed by its original software.

The second bundle of information compromises a specification of an em-
ulator for the document’s original computing platform. The herewith in-
cluded difficulty is that the emulator cannot be an executable program, since
it must be created without knowledge of the future computers in which it
is supposed to run. In addition, a specification of all attributes of the origi-

2.3 Universal virtual computer 7

nal hardware platform is demanded in order to recreate the behavior of the
original document when it is run under emulation.

The third type of information in the encapsulation of a document consists
of explanatory material including labeling information, annotations, meta-
data of the document and its history and finally documentation for the soft-
ware and emulated hardware that was encapsulated. From the preservation
point of view, this last type is most crucial since this is the actual interface
to a user. In case these descriptive components one day become non-human-
readable, the emulator itself has faced the disaster of obsoleteness.|7]

There are a number of ways how to encapsulate information. Some
of these are safer because more information is stored whilst others involve
somewhat more of a risk since storing less information means there is a
danger that this emulator is unable to function correctly.[7] Imagine some
of the metadata and documentation to be missing. The emulator is then
not preserved for a long time because at some point of time, the user will
be unable to understand the emulator due to missing explanatory material.

Obviously, this practice makes it possible to maximize authenticity be-
cause the original object is never changed. Furthermore, only one emulator
has to be created for one type of data object whereas in the migration ap-
proach it is necessary to convert every single object one after the other, thus
increasing expenditures in terms of time and labor. However, emulation has
certain practical boundaries when it comes to working with complex envi-
ronments. Even more difficulties arise when system specifications of either
side, old or new platform, are unknown.[7]

2.3 Universal virtual computer

The universal virtual computer (UVC) deals with the notion of using a vir-
tual machine by the means that it creates a layer between the underlying
computer platform and upper lying software. Then software, developed for
running on top of the virtual machine, is then able to operate on a wide va-
riety of computer systems for which a virtual machine exists. The attribute
that makes the UVC universal is that it is general enough to continue to be
relevant in the future. The key to achieving this is that the UVC must be
kept as simple as possible.[6] The universal virtual computer solution will be
described in further detail in the paper by Gerrit Kahn which was created
parallel to this one.

8 3 THREE TECHNICAL APPROACHES TO EMULATION

3 Three technical approaches to emulation

Emulation can be done at three different levels: application software level,
operating system level and hardware level.

3.1 Hardware emulation

The first emulator was actually a hardware emulator, developed by IBM
in 1962. Back then the IBM System/360 was a new family of computers
designed to cover a wider range of applications for both commercial and
scientific purposes. This technological forward leap confronted all involved
people, from computer architects to the purchaser, with the problem of
old mainframe computers becoming obsolete which would have meant that
all software had had to be rewritten for the new system. And because
IBM’s existing customers had a large investment in software that ran on
now outdated machines, many new models offered the option of microcode
emulation of the customer’s previous computer.[11] As an example, Apple’s
“Rosetta” is to be mentioned which is a translation process that runs an
“Apple PowerPC” binary on an Intel-based Macintosh computer. The PC’s
kernel detects whether an application has native binary and triggers Rosetta
in case it does not.!

Nowadays it is frequently done to emulate hardware with other hardware
to create simpler or lower-power versions of existing processors, though it can
just as well be done to create faster or more powerful versions of popular
or older machines. This is the technically lowest level on which one can
emulate. The idea is to modify a new piece of hardware in a way that
it is possible to run older programs with a probably totally different set of
instructions. This so called microcode emulation either can be accomplished
by using hardware description languages and then simulating the newly
created hardware by software or by actually building it on semiconductor
basis.[4] It is well known from numerous computer science lectures that
any piece of hardware can be described by defined hardware description
languages. This hardware specification is then stored as microcode and can
be simulated on current computers. While an emulator runs an old machine
on a new one and recreates its behavior completely, an emulator logically
rebuilds the old machine probably leaving out some “unimportant” features.
Besides the fact that simulation and emulation have become a standard way
of functional verification, they seem to be of importance when it comes to

'http://developer.apple.com/documentation/MacOSX /Conceptual /universal-

_binary/universal_binary_exec_a/universal_binary_exec_a.html

3.2 Operating system emulation 9

long-term preservation since saving hardware means preserving it for the
future. [5]

From the preservation perspective, so called “software-emulation-of-hard-
ware” or simply “full emulation” is often employed. In this way, computer
hardware is emulated by a software surrogate.[8]

Original situation Emulated situation

Original digital document

Original rendering software

Origmal digital document Original operating system
Original rendering software Emulator
Original operating system Future operating system
Original hardware Future hardware

Figure 2: “Full emulation” [§]

It seems suitable to assume that actual hardware emulators are (though not
necessarily) harder and more expensive to build than to program a software
substitute for the piece of hardware to be emulated. Perhaps, as hardware
synthesis methods improve, hardware emulation might become competitive
with the software-emulation-of-hardware approach discussed above.

3.2 Operating system emulation

One can easily see that emulating between operating systems (cross platform
emulation) can serve a wide range of purposes. These reach from emulating
obsolete gaming platforms to historic computing to simply gaining some key
features from older operating systems by imitating them on a current OS.

In order to run a random obsolete program on a “new” computer, one
first has to create the original environment. An operating system is the
interface between computer hardware and a user. Accordingly, when at-
tempting to emulate one, one has to consider certain significant interactions
such as visual displays, sound- and network capabilities and perhaps even
varying file systems. The interfaces towards operating systems need to be re-
implemented in some cases where the OS communicates with the underlying
hardware in a totally different way. A common example is that Microsoft’s

10 3 THREE TECHNICAL APPROACHES TO EMULATION

current operating systems use the NTFS-file system whereas earlier in his-
tory it was the standard File-Allocation-Table system (FAT).2 This has to
be considered when emulation earlier Windows versions.

In addition, the target and host platforms have to be analyzed. By “tar-
get”, the platform on which the original objects run is meant. In case it
is intended to reproduce 100% of the old operating system’s behavior, one
has to re-implement the systems technical features as stated in its source
code, considering some adjustments as mentioned in the paragraph above.
Otherwise, previously limiting the range of objects to be used by the emu-
lated platform determines the required characteristics of a minimal target
platform. Dealing with the host platform, there are two distinguishable ap-
proaches on how to run the emulator. The first and most straight-forward
way is to run it directly on the host platform, giving away the highly de-
sirable feature of portability. This way, the created emulator can only be
run in one specific operating system. Second of choice is to employ a virtual
machine to act as a “mediator” between emulator and host platform.|8]

3.3 Software emulation

When applying the principle of emulation to software, one can easily see
that this barely has anything to do with preservation. Since most presently
used programming languages often build on one another, there is no need
to emulate between languages unless they are of different types like Java,
C or Visual Basic for instance. In fact, software emulation is used in soft-
ware engineering projects. When it comes to looking for software errors,
the use of so called “fault injection” to emulate the effects of real software
faults has been recognized as potentially very useful. Within this process
the target program code is enriched with small changes thus emulating the
original piece of software. This way the behavior of a software system can
be analyzed in the presence of errors, making it more reliable once unwanted
exceptions are fixed and the injected faults are removed again.[2]

For instance, when injecting faults in a device driver, one can evaluate the
operating system’s behavior in presence of a bad driver. On the other hand,
when flawing the operating system, one can evaluate the fault-tolerance of
the mentioned device driver.|[2]

http://technet.microsoft.com/en-us/library/cc758691(WS.10).aspx

4 Current projects on emulation

4.1 The CAMILEON Project

The “CAMILEON Project” is developing and evaluating a range of tech-
nical strategies for the long term preservation of digital materials. It is a
joint project between the Universities of Michigan (USA) and Leeds (UK).
Therefore CAMiLEON stands for “Creative Archiving at Michigan & Leeds:
Emulating the Old on the New”. Its primary objectives are:[10]

e To explore the options for long-term retention of the original function-
ality and “look and feel” of digital objects.

e To investigate technology emulation as a long-term strategy for long-
term preservation and access to digital objects.

e To consider where and how emulation fits into a suite of digital preser-
vation strategies.

There are three key strategies to the CAMILEON Project.

Two of these are called “Software Longevity” and “Migration on Re-
quest”, which both follow the migration and UVC strategies and are there-
fore not to be explained here.

The second strategy is emulation, which is to hold great promises for
the future according to [10]. In fact the approach used in this case is also
called “migrated emulation”. The following graphic shows the intention
to rebuild emulators from time to time, having the positive side effect of
constantly having no more than one layer between host platform and digital
document. Hence, whenever the old operating system becomes obsolete and
new one is current, the emulator is translated by a compiler to run in the
new environment.

Application Application

Operating System A Operating System A

Compiler | creates Compiler | creates
Operating System A Operating System B Operating System C

Time —p

Figure 3: Migrated emulation via compilation[§]

12 4 CURRENT PROJECTS ON EMULATION

4.2 The DIAS solution at the Koninklijke Bibliotheek

The “Koninklijke Bibliotheek” /National Library of the Netherlands (KB)
has developed a specific workflow for archiving electronic publications. The
technical heart of the e-Depot system is IBM’s “DIAS” (Digital Information
and Archiving System). It includes import and export interfaces for different
clients. These components (Delivery & Capture and Packaging & Delivery)
are illustrated below.[9]

b N

Dt Delivery Data Packaging Data
- & — | Ingest | Management | = Access | p & —
Capture Delivery

Archival Storage

Administration Monitoring & Logging

Figure 4: DIAS framework?

While the Delivery & Capture takes care of the pre-processing of digital
objects, the Packaging & Delivery transforms the requested documents into
an accessible format to the client.?

The actual detailed processes within DIAS shown in the picture above are
of lesser importance since preservation strategies change quickly over time.
In fact, a preservation project called “PLANETS” is currently being worked
on using the DIAS framework described above.[3]

4.3 Dioscuri - The modular emulator

The “Dioscuri” hardware emulator is a result of the PLANETS preserva-
tion project within the framework of the KB e-Depot preservation research
program. Its two key features are durability and flexibility. Because it is
implemented in Java, it can be ported to any computer platform which
supports the Java Virtual Machine (JVM), without any extra effort. It

3hhttp://www.kb.nl/dnp/e-depot/dm/dias-en.html

4.3 Dioscuri - The modular emulator 13

seems unlikely that emulation will fail since Java is a relatively wide-spread
programming language and is supported by nearly all current computing
platforms. Durability is achieved by the fact that Dioscuri is completely
component-based. Combining multiple modules, which are software surro-
gates of hardware components, allows users to configure any Intel computer
system (Dioscuri is based on the x86). Obviously these components have to
be compatible. Otherwise one has to replenish Dioscuri’s software library
with updated or new modules. The figure below shows the simplified design
of the emulator.*

Original platform

Modular emulator
Module list

Architecture components

Universal Virtual Machine

Future System Software
Future Hardware

Figure 5: Dioscuri design|§]

Obviously, the emulator is the core element of the design. Its task is to
virtually recreate the hardware of the upper (emulated) platform in such a
way that the original pieces of software can run on it as they have on the
original real hardware. The modular emulator feeds from a given library as
shown on the right-hand-side. *

“http://dioscuri.sourceforge.net /dioscuri.html

14 5 CONCLUSION & OUTLOOK

5 Conclusion & Outlook

Having summarized the strategy of emulation for long-term preservation,
some concluding words shall follow. In principle, emulation can be consider-
ed as the primary preservation strategy due to its unique way of preserving
authenticity.

Starting with the CAMIiLEON project, one can see that it does not actu-
ally put that much emphasis in emulation. Nevertheless, its focus is still on
keeping the ‘look and feel’. Dioscuri on the other hand makes use of emula-
tion in a way that it can behave like a lot of older Intel computers. All things
considered, the Dioscuri emulator seems most suitable for long-term preser-
vation since it was particularly designed for this. The only maintenance
effort one has to carry out is to port the actual emulator software once in a
while and to keep the encapsulated documentation human-readable. Thus,
as long as obsolete operating systems and software are stored safely, there
should be no problem to make them run in this modular emulator.

There is another innovative emulation project which has just started in
2009. “KEEP” (Keeping Emulation Environments Portable) is a medium
scale project. The development is supposed to provide accurate rendering
of static and dynamic digital objects, reaching from simple text files to
complex databases and videogames. The central goal of the KEEP project
is to provide new tools for accessing any digital object both at present and
in the long term. The illustration below shows a schematic decomposition of
all steps in the process of the emulation access platform. The design is based
on a digital data carrier as input A and possible outputs B and C offering
two different approaches for representing the original digital document that
was captured on the original carrier.

N
o

i

Fendenng

If.‘-"L)—P Mediz transfer [—# FPre-process |—® Emmlanon |~ Datz tansfer —I*(E\'/I
i F Y

Portability

Figure 6: Decomposition scheme of KEEP®

With media transfer, the transport from the old data carrier to the target
medium is meant. It is of utmost importance that the original bit stream

15

is left unchanged. The next step is where KEEP’s contribution is to be
employed, since a robust and standardized data format is needed to store
the scanned documents safely. The emulation part is ideally to be done by
emulators that were created for the purpose of long-term preservation such
as Dioscuri (see Chapter 4.3). As far as rendering is concerned, KEEP aims
to ease the setup and operation of emulated environments by using a brows-
ing system which searches the internet for metadata of a digital object.®

Shttp:/ /www.keepproject.eu/ezpub2/index.php?/eng/About-KEEP /Technical-

solution/Progress-beyond-the-state-of-the-art

16

5 CONCLUSION & OUTLOOK

REFERENCES 17

References

1]

U.M. Borghoff, P. Rodig, J. Scheffczyk, L. Schmitz, 2003, Long-Term
Preservation of Digital Documents. page 33, ISBN-10 3-540-33639-7
Springer Berlin Heidelberg New York.

J. Duraes, H. Madeira, 2002, Emulation of software faults by edu-
cated mutations at machine-code level. Software Reliability Engineering,
2002. ISSRE 2002. Proceedings. 13th International Symposium on

Adam Farquhar, 2006, Planets - Preservation and Long-term Ac-
cess via NETworked Services. available at: http://www.planets-
project.eu/docs/comms/Planets_Project_Brochure.pdf

Jens Frauenschlager, 2002, Hardware-Debugging durch die Kombination
von Emulation und Simulation. page 14, Diplom thesis at “Universitat
Leipzig”, available at: http://lips.informatik.uni-leipzig.de/files/2002-
58.pdf

Soha Hassoun, Senior Member, IEEE, Murali Kudlugi, Duaine Pryor,
and Charles Selvidge, February 2005, A Transaction-Based Unified Ar-
chitecture for Simulation and Emulation. IEEE TRANSACTIONS ON
VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13,
NO. 2

Ir. Raymond Lorie, 2002, The UVC: a Method for Preserving Digital
Documents - Proof of Concept. IBM Netherlands, Amsterdam / KB
Long-Term Preservation Study

Jeff Rothenberg, January 1998, Awoiding Technological Quicksand:
Finding a Viable Technical Foundation for Digital Preservation. Chap-
ter 8, Council on Library and Information Resources, Commission on
Preservation and Access

Jeffrey van der Hoeven, Hilde van Wijngaarden (KB), 2005, Em-
ulation - a wviable preservation strategy. Nationaal Archief of the
Netherlands, available at: http://www.kb.nl/hrd/dd/dd_projecten/-
Emulation_research_ KB_NA _2005.pdf

Hilde van Wijngaarden, Frank Houtman, Marcel Ras, 2008, The KB e-
Depot in development Integrating research results in the library organi-
sation. page 3, iPRES 2008 (British Library Conference Centre) avail-
able at: http://www.bl.uk/ipres2008/presentations_day2/41 _Ras.pdf

Paul Wheatley, 2001, Migration - a CAMiLEON discussion paper. avail-
able at: http://www.ariadne.ac.uk/issue29/camileon/

18 REFERENCES

[11] IBM Corporation, IBM System/360 Principles of
Operation. 2003, Form A22-68-21-0, available at:
http://bitsavers.org/pdf/ibm/360/princOps/A22-6821-
0_360PrincOps.pdf

