Problem Language

```
grammar Problem
    nonterminal S(0), A(2), B(2);
    terminal a(2),b(2),c(2),d(2), e(2);
    start S;
    S() ::= A(b,c) b(c,d) B(d,e) e(e,f) [s]
    A(a,c) ::= /* eps */ [a1]
            | B(a,b) c(b,c) [a2]
    B(a,b) ::=/* eps */ [b1]
            | d(a,b)
[b2]
end
```

State $q_{0}(a, b, c, d, e)$

S()	$\rightarrow . \mathrm{A}(\boldsymbol{a}, \boldsymbol{b}) \mathrm{b}(\boldsymbol{b}, \boldsymbol{c}) \mathrm{B}(\boldsymbol{c}, \boldsymbol{d}) \mathrm{e}(\boldsymbol{d}, \boldsymbol{e})$	
$\mathrm{A}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow$.	$[a 1]$	
$\mathrm{A}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow . \mathrm{B}\left(\boldsymbol{a}, n_{1}\right) \mathrm{c}\left(n_{1}, \boldsymbol{b}\right)$		
$\mathrm{B}\left(\boldsymbol{a}, n_{2}\right) \rightarrow$.		
$\mathrm{B}\left(\boldsymbol{a}, n_{3}\right)$	$\rightarrow . \mathrm{d}\left(\boldsymbol{a}, n_{3}\right)$	

$$
\begin{aligned}
& \xrightarrow[n_{0}=\boldsymbol{a}, n_{1}=\boldsymbol{b}]{\mathrm{A}\left(n_{0}, n_{1}\right)} q_{4}\left(n_{0}, n_{1}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}\right) \\
& \underset{\mathrm{B}\left(n_{0}, n_{1}\right)}{n_{0}=\boldsymbol{a}, n_{1}=?} q_{2}\left(n_{0}, \boldsymbol{b}\right) \\
& \xrightarrow[\substack{\mathrm{B}\left(n_{0}, n_{1}\right)} n_{0}=\boldsymbol{a}, n_{1} \uparrow]{ } q_{3}\left(n_{0}, \boldsymbol{b}, n_{1}\right) \\
& \xrightarrow[\mathrm{d}\left(n_{0}, n_{1}\right)]{n_{0}=\boldsymbol{a}, n_{1} \uparrow} q_{1}\left(n_{0}, n_{1}\right)
\end{aligned}
$$

State $\boldsymbol{q}_{1}(\boldsymbol{a}, \boldsymbol{b})$
$\mathrm{B}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \mathrm{d}(\boldsymbol{a}, \boldsymbol{b}) \cdot[b \mathscr{}]$

State $\boldsymbol{q}_{2}(\boldsymbol{a}, \boldsymbol{b})$

$$
\mathrm{A}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \mathrm{B}\left(\boldsymbol{a}, n_{1}\right) \cdot \mathrm{c}\left(n_{1}, \boldsymbol{b}\right)
$$

$$
\xrightarrow[n_{0} \uparrow, n_{1}=\boldsymbol{b}]{\mathrm{c}\left(n_{0}, n_{1}\right)} q_{5}\left(\boldsymbol{a}, n_{1}, n_{0}\right)
$$

State $\boldsymbol{q}_{3}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})$

$$
\mathrm{A}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \mathrm{B}(\boldsymbol{a}, \boldsymbol{c}) \cdot \mathrm{c}(\boldsymbol{c}, \boldsymbol{b})
$$

$$
\frac{\mathrm{c}\left(n_{0}, n_{1}\right)}{n_{0}=\boldsymbol{c}, n_{1}=\boldsymbol{b}} q_{5}\left(\boldsymbol{a}, n_{1}, n_{0}\right)
$$

State $\boldsymbol{q}_{4}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e})$

$$
\mathrm{S}() \rightarrow \mathrm{A}(\boldsymbol{a}, \boldsymbol{b}) \cdot \mathrm{b}(\boldsymbol{b}, \boldsymbol{c}) \mathrm{B}(\boldsymbol{c}, \boldsymbol{d}) \mathrm{e}(\boldsymbol{d}, \boldsymbol{e})
$$

$$
\xrightarrow[n_{0}=\boldsymbol{b}\left(n_{0}, n_{1}\right)]{n_{1}=\boldsymbol{c}} q_{6}\left(\boldsymbol{a}, n_{0}, n_{1}, \boldsymbol{d}, \boldsymbol{e}\right)
$$

State $\boldsymbol{q}_{\boldsymbol{5}}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})$

$$
\mathrm{A}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \mathrm{B}(\boldsymbol{a}, \boldsymbol{c}) \mathrm{c}(\boldsymbol{c}, \boldsymbol{b}) \cdot \quad[a 2]
$$

State $\boldsymbol{q}_{\boldsymbol{6}}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e})$

S()	$\rightarrow \mathrm{A}(\boldsymbol{a}, \boldsymbol{b}) \mathrm{b}(\boldsymbol{b}, \boldsymbol{c}) \cdot \mathrm{B}(\boldsymbol{c}, \boldsymbol{d}) \mathrm{e}(\boldsymbol{d}, \boldsymbol{e})$	
$\mathrm{B}(\boldsymbol{c}, \boldsymbol{d}) \rightarrow$.	$\quad[b 1]$	
$\mathrm{B}(\boldsymbol{c}, \boldsymbol{d})$	$\rightarrow . \mathrm{d}(\boldsymbol{c}, \boldsymbol{d})$	

$$
\begin{aligned}
& \xrightarrow[n_{0}=\boldsymbol{c}, n_{1}=\boldsymbol{d}]{\mathrm{B}\left(n_{0}, n_{1}\right)} q_{7}\left(\boldsymbol{a}, \boldsymbol{b}, n_{0}, n_{1}, \boldsymbol{e}\right) \\
& \underset{n_{0}=\boldsymbol{c}, n_{1}=\boldsymbol{d}}{\mathrm{d}\left(n_{0}, n_{1}\right)} q_{1}\left(n_{0}, n_{1}\right)
\end{aligned}
$$

State $q_{7}(a, b, c, d, e)$
S()$\rightarrow \mathrm{A}(\boldsymbol{a}, \boldsymbol{b}) \mathrm{b}(\boldsymbol{b}, \boldsymbol{c}) \mathrm{B}(\boldsymbol{c}, \boldsymbol{d}) \cdot \mathrm{e}(\boldsymbol{d}, \boldsymbol{e})$
$\xrightarrow[n_{0}=\boldsymbol{d}, n_{1}=\boldsymbol{e}]{\mathrm{e}\left(n_{0}, n_{1}\right)} q_{8}\left(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, n_{0}, n_{1}\right)$
State $q_{8}(a, b, c, d, e)$
S()$\rightarrow \mathrm{A}(\boldsymbol{a}, \boldsymbol{b}) \mathrm{b}(\boldsymbol{b}, \boldsymbol{c}) \mathrm{B}(\boldsymbol{c}, \boldsymbol{d}) \mathrm{e}(\boldsymbol{d}, \boldsymbol{e})$.

Super-clean Problem Language

```
grammar Problem_superclean
    nonterminal \(Z(0), S(5), A(2), B(2) ;\)
    terminal \(\quad a(2), b(2), c(2), d(2), e(2)\);
    start Z;
    Z() ::= S(b,c,d,e,f) [z]
    \(S(b, c, d, e, f) \quad::=A(b, c) b(c, d) B(d, e) e(e, f) \quad[s 1]\)
    | A(b,c) b(c,d) e(e,f) [s2]
    \(\mid b(c, d) B(d, e) e(e, f) \quad[s 3]\)
    | b(c,d)e(e,f) [s4]
    \(\mathrm{A}(\mathrm{a}, \mathrm{c}) \quad::=\mathrm{B}(\mathrm{a}, \mathrm{b}) \mathrm{c}(\mathrm{b}, \mathrm{c})\) [a1]
    । \(c(b, c)\) [a2]
        \(B(a, b) \quad::=d(a, b) \quad[b]\)
end
```

State $q_{0}(a, b, c, d, e)$

Z()	$\rightarrow \cdot \mathrm{S}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e})$
$\mathrm{A}(\boldsymbol{a}, \boldsymbol{b})$	$\rightarrow \cdot \mathrm{B}\left(\boldsymbol{a}, n_{1}\right) \mathrm{c}\left(n_{1}, \boldsymbol{b}\right)$
$\mathrm{A}(\boldsymbol{a}, \boldsymbol{b})$	$\rightarrow \cdot \mathrm{c}\left(n_{2}, \boldsymbol{b}\right)$
$\mathrm{B}\left(\boldsymbol{a}, n_{3}\right)$	$\rightarrow \cdot \mathrm{d}\left(\boldsymbol{a}, n_{3}\right)$
$\mathrm{S}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}) \rightarrow \cdot \mathrm{A}(\boldsymbol{a}, \boldsymbol{b}) \mathrm{b}(\boldsymbol{b}, \boldsymbol{c}) \mathrm{B}(\boldsymbol{c}, \boldsymbol{d}) \mathrm{e}(\boldsymbol{d}, \boldsymbol{e})$	
$\mathrm{S}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}) \rightarrow \cdot \mathrm{A}(\boldsymbol{a}, \boldsymbol{b}) \mathrm{b}(\boldsymbol{b}, \boldsymbol{c}) \mathrm{e}(\boldsymbol{d}, \boldsymbol{e})$	
$\mathrm{S}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}) \rightarrow \cdot \mathrm{b}(\boldsymbol{b}, \boldsymbol{c}) \mathrm{B}(\boldsymbol{c}, \boldsymbol{d}) \mathrm{e}(\boldsymbol{d}, \boldsymbol{e})$	
$\mathrm{S}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}) \rightarrow . \mathrm{b}(\boldsymbol{b}, \boldsymbol{c}) \mathrm{e}(\boldsymbol{d}, \boldsymbol{e})$	

$$
\begin{aligned}
& \mathrm{A}\left(n_{0}, n_{1}\right) \\
& n_{0}=\boldsymbol{a}, n_{1}=\boldsymbol{b} \\
& \mathrm{B}\left(n_{0}, n_{1}\right) \\
& \hline n_{0}=\boldsymbol{a}, n_{1} \uparrow \\
& \mathrm{~S}\left(n_{0}, n_{1}, n_{2}, n_{3}, n_{4}\right) \\
& \hline n_{0}=\boldsymbol{a}, n_{1}=\boldsymbol{b}, n_{2}=\boldsymbol{c}, n_{3}=\boldsymbol{d}, n_{4}=\boldsymbol{e} \\
& \mathrm{b}\left(n_{0}, n_{1}\right) \\
& \left.\hline n_{0}=\boldsymbol{b}, n_{1}=\boldsymbol{c}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}\right) \\
& \mathrm{c}\left(n_{0}, \boldsymbol{b}, n_{1}\right) \\
& \left.\hline n_{0} \uparrow, n_{1}\right) \\
& \mathrm{d}\left(n_{0}, n_{0}, n_{1}, n_{2}, n_{3}, n_{4}\right) \\
& \hline n_{0}=\boldsymbol{a}, n_{1} \uparrow
\end{aligned} q_{1}\left(\boldsymbol{a}, n_{0}, n_{1}, \boldsymbol{d}, \boldsymbol{e}, \boldsymbol{a}, \boldsymbol{d}, \boldsymbol{e}\right) . q_{3}\left(\boldsymbol{a}, n_{1}, n_{0}\right) .
$$

State $q_{1}(a, b, c, d, e, a, d, e)$

$\mathrm{S}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}) \rightarrow \mathrm{b}(\boldsymbol{b}, \boldsymbol{c}) \cdot \mathrm{e}(\boldsymbol{d}, \boldsymbol{e})$	
$\mathrm{S}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}) \rightarrow \mathrm{b}(\boldsymbol{b}, \boldsymbol{c}) \cdot \mathrm{B}(\boldsymbol{c}, \boldsymbol{d}) \mathrm{e}(\boldsymbol{d}, \boldsymbol{e})$	
$\mathrm{B}(\boldsymbol{c}, \boldsymbol{d})$	$\rightarrow . \mathrm{d}(\boldsymbol{c}, \boldsymbol{d})$

$$
\begin{aligned}
& \xrightarrow[n_{0}=\boldsymbol{c}, n_{1}=\boldsymbol{d}]{\mathrm{B}\left(n_{0}, n_{1}\right)} q_{8}\left(\boldsymbol{a}, \boldsymbol{b}, n_{0}, n_{1}, \boldsymbol{e}\right) \\
& \xrightarrow[\mathrm{d}\left(n_{0}, n_{1}\right)]{n_{0}=\boldsymbol{c}, n_{1}=\boldsymbol{d}} q_{2}\left(n_{0}, n_{1}\right) \\
& \underset{n_{0}=\boldsymbol{d}, n_{1}=\boldsymbol{e}}{\mathrm{e}\left(n_{0}, n_{1}\right)} q_{4}\left(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, n_{0}, n_{1}\right)
\end{aligned}
$$

State $q_{2}(a, b)$

$$
\mathrm{B}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \mathrm{d}(\boldsymbol{a}, \boldsymbol{b}) \cdot \quad[b]
$$

State $q_{3}(a, b, c)$
$\mathrm{A}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \mathrm{c}(\boldsymbol{c}, \boldsymbol{b}) . \quad\left[a^{2}\right]$
State $\boldsymbol{q}_{4}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e})$

$$
\mathrm{S}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}) \rightarrow \mathrm{b}(\boldsymbol{b}, \boldsymbol{c}) \mathrm{e}(\boldsymbol{d}, \boldsymbol{e}) \text {. } \quad[s 4]
$$

State $\boldsymbol{q}_{5}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e})$
Z()$\rightarrow \mathrm{S}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e})$.
State $\boldsymbol{q}_{\mathbf{6}}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})$

$$
\mathrm{A}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \mathrm{B}(\boldsymbol{a}, \boldsymbol{c}) \cdot \mathrm{c}(\boldsymbol{c}, \boldsymbol{b})
$$

$$
\xrightarrow[n_{0}=\boldsymbol{c}, n_{1}=\boldsymbol{b}]{\mathrm{c}\left(n_{0}, n_{1}\right)} q_{9}\left(\boldsymbol{a}, n_{1}, n_{0}\right)
$$

State $q_{7}(a, b, c, d, e, c, d, e)$

$$
\begin{array}{|l}
\mathrm{S}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}) \rightarrow \mathrm{A}(\boldsymbol{a}, \boldsymbol{b}) \cdot \mathrm{b}(\boldsymbol{b}, \boldsymbol{c}) \mathrm{B}(\boldsymbol{c}, \boldsymbol{d}) \mathrm{e}(\boldsymbol{d}, \boldsymbol{e}) \\
\mathrm{S}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}) \rightarrow \mathrm{A}(\boldsymbol{a}, \boldsymbol{b}) \cdot \mathrm{b}(\boldsymbol{b}, \boldsymbol{c}) \mathrm{e}(\boldsymbol{d}, \boldsymbol{e}) \\
\hline
\end{array}
$$

$$
\xrightarrow[n_{0}=\boldsymbol{b}, n_{1}=\boldsymbol{c}]{\mathrm{b}\left(n_{0}, n_{1}\right.} q_{10}\left(\boldsymbol{a}, n_{0}, n_{1}, \boldsymbol{d}, \boldsymbol{e}, \boldsymbol{d}, \boldsymbol{e}\right)
$$

State $q_{8}(a, b, c, d, e)$
$\mathrm{S}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}) \rightarrow \mathrm{b}(\boldsymbol{b}, \boldsymbol{c}) \mathrm{B}(\boldsymbol{c}, \boldsymbol{d}) \cdot \mathrm{e}(\boldsymbol{d}, \boldsymbol{e})$

$$
\xrightarrow[n_{0}=\boldsymbol{d}, n_{1}=\boldsymbol{e}]{\mathrm{e}} q_{11}\left(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, n_{0}, n_{1}\right)
$$

State $\boldsymbol{q}_{9}(a, b, c)$

$$
\mathrm{A}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \mathrm{B}(\boldsymbol{a}, \boldsymbol{c}) \mathrm{c}(\boldsymbol{c}, \boldsymbol{b}) . \quad[a 1]
$$

State $\boldsymbol{q}_{10}(a, b, c, d, e, f, g)$

| $\mathrm{S}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}) \rightarrow \mathrm{A}(\boldsymbol{a}, \boldsymbol{b}) \mathrm{b}(\boldsymbol{b}, \boldsymbol{c}) \cdot \mathrm{e}(\boldsymbol{d}, \boldsymbol{e})$ |
| :--- | :--- |
| $\mathrm{S}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{f}, \boldsymbol{g}) \rightarrow \mathrm{A}(\boldsymbol{a}, \boldsymbol{b}) \mathrm{b}(\boldsymbol{b}, \boldsymbol{c}) \cdot \mathrm{B}(\boldsymbol{c}, \boldsymbol{f}) \mathrm{e}(\boldsymbol{f}, \boldsymbol{g})$ |
| $\mathrm{B}(\boldsymbol{c}, \boldsymbol{f}) \quad \rightarrow . \mathrm{d}(\boldsymbol{c}, \boldsymbol{f})$ |

$$
\begin{aligned}
& \xrightarrow[n_{0}=\boldsymbol{c}, n_{1}=\boldsymbol{f}]{\mathrm{B}\left(n_{0}, n_{1}\right.} q_{12}\left(\boldsymbol{a}, \boldsymbol{b}, n_{0}, n_{1}, \boldsymbol{g}\right) \\
& \underset{n_{0}=\boldsymbol{c}, n_{1}=\boldsymbol{f}}{\mathrm{d}\left(n_{0}, n_{1}\right)} q_{2}\left(n_{0}, n_{1}\right) \\
& \underset{n_{0}=\boldsymbol{d}, n_{1}=\boldsymbol{e}}{\mathrm{e}\left(n_{0}, n_{1}\right)} q_{13}\left(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, n_{0}, n_{1}\right)
\end{aligned}
$$

State $q_{11}(a, b, c, d, e)$
$\mathrm{S}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}) \rightarrow \mathrm{b}(\boldsymbol{b}, \boldsymbol{c}) \mathrm{B}(\boldsymbol{c}, \boldsymbol{d}) \mathrm{e}(\boldsymbol{d}, \boldsymbol{e})$.
State $\boldsymbol{q}_{12}(a, b, c, d, e)$
$\mathrm{S}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}) \rightarrow \mathrm{A}(\boldsymbol{a}, \boldsymbol{b}) \mathrm{b}(\boldsymbol{b}, \boldsymbol{c}) \mathrm{B}(\boldsymbol{c}, \boldsymbol{d}) \cdot \mathrm{e}(\boldsymbol{d}, \boldsymbol{e})$

$$
\xrightarrow[n_{0}=\boldsymbol{d}, n_{1}=\boldsymbol{e}]{\mathrm{e}\left(n_{0}, n_{1}\right)} q_{14}\left(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, n_{0}, n_{1}\right)
$$

State $q_{13}(a, b, c, d, e)$
$\mathrm{S}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}) \rightarrow \mathrm{A}(\boldsymbol{a}, \boldsymbol{b}) \mathrm{b}(\boldsymbol{b}, \boldsymbol{c}) \mathrm{e}(\boldsymbol{d}, \boldsymbol{e}) . \quad[s 2]$
State $q_{14}(a, b, c, d, e)$
$\mathrm{S}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}) \rightarrow \mathrm{A}(\boldsymbol{a}, \boldsymbol{b}) \mathrm{b}(\boldsymbol{b}, \boldsymbol{c}) \mathrm{B}(\boldsymbol{c}, \boldsymbol{d}) \mathrm{e}(\boldsymbol{d}, \boldsymbol{e}) . \quad[s 1]$

