
Grappa Mini-Tutorial

Mark Minas

February 26, 2021

Download the appropriate installer file (use Grappa-x.exe for Windows,
Grappa-x.dmg for MacOS, or grappa-x.deb for Linux) and install Grappa. A
corresponding shortcut is created on your Windows desktop and also on Linux
(depending on your Linux distribution). On MacOS, you find Grappa in the
usual Applications directory.

Figure 1: Grappa screenshot showing the dialog of the PSR parser generator.

Start Grappa by double clicking on it. The program opens as shown in Fig. 1
(MacOS version). You can see the four tabs PSR, PTD, Processor and Settings
at the top of the window. PSR and PTD contain the dialogs for controlling
the PSR and the PTD parser generator. In Fig. 1 the dialog of the PSR Parser
generator is shown. The tab Processor contains the dialog of the graph proces-
sor, which can analyze any input graph with a previously generated generated
parser. The tab Settings provides access to a dialog for setting the directory
where generated files are stored, etc. The lower part of the Grappa window

1



shows the text output of the parser generators or the graph processor. In Fig. 1
this area is still empty.

Select the tab Settings and a suitable directory for class directory in this dialog
(see Fig. 2). The button at the right end of the line opens a file selection dialog
in the usual way. Generated parsers will be stored as .class files in this directory.
It is recommended to create an empty directory directory for this purpose.

Figure 2: Grappa screenshot with the settings dialog.

If you also enter a directory for GraphML output directory, the generators and
the graph processor store generated graphs in this directory. These graphs are
mainly for illustration purposes. Since they are stored in GraphML format, you
need the program yEd to layout and visualize them. yEd can be obtained for
free from https://www.yworks.com/products/yed/download.

Download the the file Grappa-mini-tutorial.zip from the Grappa site and
unpack it in a suitable directory. It contains two visual languages (anbncn

as chain graphs and graphs representing Nassi-Shneiderman diagrams) with
different grammars (.grammar files). Various .graph files are also included.
They describe hypergraphs in textual form and can be analyzed by the graph
processor using the generated parsers. An example hypergraph is represented
as follows:

graph NSD2

stmt(a,b,c,d)

stmt(c,d,e,f)

end

2

https://www.yworks.com/products/yed/download


in file nsd_lr.graph describes a graph consisting of two stmt edges that are
attached to four nodes each, indicated by letters. In addition, chains of binary
edges can also be formulated as follows:

n1 --a--> n2 --b--> n3 --c--> n4.

describes a graph with four nodes n1, . . . , n4 and three edges between them,
each marked a, b c, respectively.

The .grammar and .graph files each begin with an options section, in which the
Java package or the qualified class name of the graph parser to be used must be
specified. The corresponding parser class must have been previously generated
with the PSR or PTD parser generator. Its qualified name is composed of the
Java package specified in the .grammar file, the grammar name specified there,
and the parser type. The latter is either PTD or PSR in its various forms (see
below). The name of the generated class is reported in the textual output by the
parser generator at the end of the generation process, e.g., “Generated class

nsd.NSD lr sPSRParser”.

Use the PTD parser generator to generate the parser for the anbncn language
in the file abc1.grammar. You see that parser type “simple” is not sufficient,
but “Parikh based” must be used. With the first variant, the parser selects a
production for expanding a non-terminal based only on the next terminal edge
of the input graph whereas the “Parikh based” parser potentially considers the
entire remaining (“unread”) input graph.

Check that the .class files for the Java class abc.ABC1PTDParser and others
have been created in the directory you configured.

Parse the hypergraphs described in the abc1 PTD.graph file using the previously
generated parser. The parser is applied to both of the included graphs. However,
only the first of them is correct with respect to the language. For the second
one, an error message is returned.

In order to visualize the derivation tree of the correct input graph in text form,
you must select the option show derivation trees. Fig. 3 shows the correspond-
ing output of the graph processor. If you have also configured a directory for
GraphML output in the Settings dialog, you will find the same tree in the file
abc 1-dag.graphml (If you have set the verbose option, this file name will also
be shown in the text output).

The grammar specified in the file abc1.grammar cannot be processed by the PSR
parser generator. See the output of the generator to find out why. However, the
PSR generator can be applied to the file abc2.grammar.

Use the parser type “normal” for the PSR parser generator and then the file
abc2 sPSR.graph to try the generated parser.

The nsd directory contains two hyperedge replacement grammars for Nassi-
Shneiderman graphs. nsd-lr.grammar contains a left recursive grammar, for
which no PTD parser exists. However, a PSR parser does exist. Interpret the
respective text outputs of the parser generators. The problem can be solved
with so-called merging rules, analogous to ε-rules for LL(k) grammars. A cor-
responding grammar can be found in the file nsd-merging.grammar, for which
both a PTD and a PSR parser can be generated. For the PSR parser, the parser

3



Figure 3: Grappa screenshot showing the graph processor dialog.

generator first converts the grammar into an equivalent grammar without merg-
ing rules (“cleaned grammar”).

Apply the generated parsers to the hypergraphs in the corresponding .graph
files.

4


