Chair of "Secure Digital Circuits"

Use of Non-Binary LDPC Codes over Division Near Rings for Physical Layer Security

Introduction

While most security mechanisms operate on higher communication layers, physical-layer security is a promising candidate to raise the overall security of communication channels. Recently, promising physical-layer approaches in which channel codes including binary Low-Density Parity-Check (LDPC) and Polar codes have been proposed for a secure data communication.

Closed, Non-Abelian inverse Commu-Group tative element Closed. DNR Division inverse over Near **Multiplicative Group** Soint Pelayati Ring element SNG Non-0 Commu 5 tative dВ ubtractiv Abelian Finite Near 0.05 dB Group Fields Group

Algebraic field options for physical layer

security mechanisms

Addditive Group

Short Project Description

The goal of this project is to analyze non-binary LDPC codes over division near rings with respect to security. Therefore, an existing C model of an unsecure communication channel, in which error correction is done using a non-binary LDPC code over division near rings, shall be extended towards a secure communication channel featuring physical-layer security.

Prerequisites

- Interest in signal processing and digital baseband algorithms
- Basic knowledge in C is helpful

What you will learn

After the project you will be familiar with the non-binary LDPC decoding algorithm as well as the basic concepts of physical layer security.

Contact

matthias.korb@unibw.de