
Chair of
„Secure Digital Circuits“

High-Level Synthesis of a Generic Fast-Fourier-Transform
Accelerator for IoT Applications

Introduction

The Fast-Fourier Transformation
(FFT) is a key building block for
many communication systems
being used in OFDM systems for
example. With throughput
requirements highly dependent
on the actual communication link
a generic FFT hardware
accelerator is desirable for an
easy re-use. Here, a High-Level-
Synthesis approach, for which the
hardware accelerator is modelled in a high programming language such as
SystemC or C, provides the necessary flexibility.

Short Project Description

The goal of this project is to develop a generic FFT description in C language
which can be synthesized to an integrated circuit. The benefit of the approach is
proven by synthesizing FFT accelerators for different throughput requirements
and compare implementation costs to state-of-the-art FFT implementations.

Prerequisites

- Interest in signal processing and VLSI design
- Basic knowledge in SystemC or C is helpful

What you will learn

After the project you will be able to design digital integrated circuits using a High-
Level-Synthesis design flow. In addition, you get familiar with one of the most
important building blocks in modern communication systems.

Contact

matthias.korb@unibw.de

void runFFT(cdouble samples[], int fft_size) {
// Return for trivial cases
if (fft_size<= 1) return;

// Definition of half size arrays
cdouble * even= new cdouble[fft_size/2];
cdouble * odd= new cdouble[fft_size/2];

// Radix operations for single stage
for (int k = 0; k < fft_size/2; ++k) {

cdouble w;
w.real = cos(-2 * 3.1415 * k / fft_size));
w.imag = sin(-2 * 3.1415 * k / fft_size));

radix2(samples[k], samples[k+fft_size/2], w,
even[k], odd[k])

}

// Recursive call for half-sized FFTs
runFFT (even, fft_size/2);
runFFT (odd, fft_size/2);

// Combine output
for (int k = 0; k < fft_size/2; ++k) {

samples[k] = even[k];
samples[k+fft_size/2] = odd[k];

}
}

HLS

