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1 Introduction

Viscous flow problems can be modeled by the Navier-Stokes equations. Simpler models
include the Oseen equations (a linearization of the Navier-Stokes equations) and the Stokes
equations (convection is neglected). The viscosity leads in the classical formulation to a
term with second order derivatives of the velocity such that the solutions of all three
problems contain in general corner and edge singularities. Moreover, the convective terms
in the Navier-Stokes and Oseen equations lead (in particular in the case of high Reynolds
numbers) to boundary and interior layers.

Both edge singularities and layers are anisotropic phenomena, that means the solution
shows little variation in one direction (e.g. along the edge and tangential to the layer)
and large derivatives in the perpendicular direction. Such anisotropic phenomena can be
approximated well on anisotropic meshes. Before we define them in more detail let us
introduce the model problem and approximation results.

Consider the Stokes problem with Dirichlet boundary conditions in a two-dimensional
domain Ω. The weak formulation is to find u ∈ X = H1

0 (Ω)2 and p ∈ M = L2
0(Ω) such

that
a(u, v) + b(v, p) = (f, v) ∀v ∈ X,

b(u, q) = 0 ∀q ∈ M,
(1.1)

with

a(u, v) =

2
∑

i=1

∫

Ω

∇ui · ∇vi,

b(u, q) = −
∫

Ω

q div u.

Let Th be an admissible mesh of elements, and Xh ⊂ X, Mh ⊂ M , finite element spaces
corresponding to Th. The finite element solution of (1.1) is then to find uh ∈ Xh and
ph ∈ Mh such that

a(uh, vh) + b(vh, ph) = (f, vh) ∀vh ∈ Xh,

b(uh, qh) = 0 ∀qh ∈ Mh.
(1.2)

For the analysis of the method we define the (mesh dependent) inf-sup constant by

γh := inf
06=ph∈Mh

sup
06=uh∈Xh

b(uh, ph)

|uh|1,Ω‖ph‖0,Ω

.

Then the finite element error can be estimated by

‖u − uh‖1,Ω

�
γ−1

h inf
vh∈Xh

‖u − vh‖1,Ω + inf
qh∈Mh

‖p − qh‖0,Ω,

‖p − ph‖0,Ω

�
γ−2

h inf
vh∈Xh

‖u − vh‖1,Ω + γ−1
h inf

qh∈Mh

‖p − qh‖0,Ω,
(1.3)
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see [9]. The error estimate can therefore be split into the proof of the best approximation
property of the spaces and a stability property. The latter is also called inf-sup condition
and requires the constant γh to be bounded uniformly away from zero,

∃γ > 0 : γh > γ ∀h > 0. (1.4)

We call meshes to be admissible when they satisfy the conditions (Th1)–(Th5) in Ciarlet’s
standard book [10, pages 38, 51]. The ratio of the diameter of an element T ∈ Th and
the diameter of the largest ball contained in T̄ is called aspect ratio of the element. If
the aspect ratio is moderate such that the investigation of how constants in our estimates
depend on it, is unnecessary, we call the elements and the meshes isotropic. If the aspect
ratio becomes large we should sharpen the estimate and separate the aspect ratio from the
constants. In view of (1.3) it is desirable that the uniform inf-sup constant γ from (1.4) is
independent of the aspect ratio.

Several pairs of finite element spaces (Xh, Mh) satisfying condition (1.4) are known for
isotropic meshes, see, e. g., [9, 12] for an overview. Results for anisotropic meshes can be
found in [1, 2, 4, 6, 7, 13, 14, 15, 17]; a state of the art is given in [5].

We investigate in Section 3 a conforming low order (possibly the lowest) pair of trian-
gular and quadrilateral finite elements, namely for the pressure piecewise constants and for
the velocity piecewise (bi-)linear functions enriched with the normal components of the ve-
locity as a degree of freedom at mid-side nodes. The elements go back to Bernardi/Raugel
[8] and Fortin [11], see also [12, page 134 ff., page 153 ff.]. We will call it therefore Bernardi-
Fortin-Raugel element or shortly BFR element. The main result is contained in Theorem
3.7 where we prove that condition (1.4) is satisfied for a large class of two-dimensional
anisotropic meshes. As a consequence the pairs P2 −P0, Q2 −P0, and Q′

2 −P0 satisfy the
same condition on the same class of meshes.

Our work is closely related to the paper [15] by Schwab, Schötzau and Stenberg. We use
a similar two-level family of finite element meshes, namely a macrotriangulation combined
with local refinement strategies. One difference is that we do not use hanging nodes.
Another difference is that these authors use only affine quadrilateral macroelements, while
we use both triangles and general regular quadrilaterals so that we have to use more
general microtriangulations as well, for details see Section 2. The prize that we pay for
this generality is that the velocity space on the macrotriangulation is no longer a subspace
of the velocity space on the microtriangulation such that we had to introduce another
projection in the stability proof to remedy this. But we believe that this leads to higher
flexibility in the meshes which is closer to numerical practice.

The notation a
�

b means the existence of a positive constant C (which is independent
of Th) such that a ≤ Cb.

2 Meshes

To define the discretization we introduce a two-level family of meshes, that we call macro-
and microtriangulation, respectively. The macrotriangulation TH is a splitting of the do-
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main Ω into triangular or quadrilateral elements Q,

Ω =
⋃

Q∈TH

Q,

which is admissible in Ciarlet’s sense [10]. That means in particular that we do not admit
hanging nodes. We further assume that these elements are regular (isotropic) as defined
for example in [10, Section 3.1] and [12, Appendix A].

The microtriangulation Th is a splitting of Ω into triangular or quadrilateral elements T ,

Ω =
⋃

T∈Th

T ,

which should again be admissible in Ciarlet’s sense. Moreover, the restriction of the micro-
triangulation Th to a macroelement Q ∈ TH is assumed to be an admissible triangulation
of Q. These triangulations of macroelements (patches) can be classified into several local
refinement strategies. We discuss here the following ones:

Patches of isotropic elements. Q is split into isotropic elements only.

This includes simple cases with few elements only, but also situations as illustrated
in Figure 2.1, right hand side.

Boundary layer patches. We admit triangular and trapezoidal elements, possibly mixed.
The vertices are contained in two edges of the macroelement Q. In the case of a
quadrilateral macroelement Q we assume that these two edges are opposite, see the
illustration in Figure 2.2.

Note also that by construction triangles satisfy the maximal angle condition which
is important for interpolation error estimates. This condition was first introduced by
Synge [16, pages 209–213] and is discussed e. g. in [3, pages 44, 48f., 85].

Corner patches. We again admit either triangular or trapezoidal elements, but here we
assume that two edges with a common vertex are geometrically refined, see Figure 2.3
for an illustration. We further assume that the patch can be partitioned into a finite
number of patches K of isotropic elements or of boundary layer type (as described
above) such that adjacent patches have the same size. These patches K need not
to form an admissible mesh—we allow one hanging node per side and demand that
there is an edge e of an element T ∈ Th that joins the hanging node a of K with a
node b on the opposite side of K. We assume that K is split in this way into two
isotropic elements (either two quadrilaterals or a triangle and a quadrilateral). The
node b belongs to the triangulation Th but is not necessarily a corner of a patch K,
see the partition with the thick lines in Figure 2.3.

In Subsection 3.2 we prove local stability for these strategies. Other types of refinement
strategy can be included into the theory provided that local stability can be proven as well.
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Figure 2.1: Illustration of patches with isotropic elements.

Figure 2.2: Illustration of boundary layer patches

Figure 2.3: Illustration of corner patches
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Figure 2.4: Illustration of meshes near concave corners

×
×

Figure 3.1: Illustration of the degrees of freedom for Bernardi-Fortin-Raugel elements

Remark 2.1 In order to construct a mesh in a boundary layer near a concave corner we
can combine geometrically refined isotropic patches as shown in Figure 2.1 with geometri-
cally refined boundary patches, see the illustration in Figure 2.4, left hand side. Note that
the geometric refinement is necessary to ensure that the elements in the corner macro are
isotropic.

Another possibility to mesh the region around a concave corner is to use only boundary
layer patches, see Figure 2.4, right hand side. The mesh needs not to be equidistant like
in the figure.

3 Stability of the Bernardi-Fortin-Raugel pair

3.1 Definition of the element

For the definition of the spaces we follow closely Girault/Raviart [12, page 134 ff., page
153 ff.], for an illustration see Figure 3.1. Consider first the case of triangles T ∈ Th.

Denote the vertices by a(i) = (a
(i)
1 , a

(i)
2 )T , i = 1, 2, 3, the edges by ei, compare Figure 3.2,

the corresponding outward unit normals by n(i) = (n
(i)
1 , n

(i)
2 )T , and the affine nodal basis

functions (barycentric coordinates) by λi. Then the local velocity space is defined by

PT := P2
1 ⊕ span {n(1)λ2λ3, n

(2)λ3λ1, n
(3)λ1λ2}. (3.1)
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a(1)

a(2)

a(3)

e3

e1
e2

a(1) a(2)

a(3)a(4)

e1

e2

e3

e4

Figure 3.2: Illustration of the notation for triangles and trapezes

The local velocity space PT has 9 degrees of freedom and a polynomial v ∈ PT is uniquely
defined by its values in the vertices, v(a(i)), i = 1, 2, 3, and the integrals of the normal
components,

∫

ei
v · n(i), i = 1, 2, 3 [12, Lemma II.2.1]. The straightforward interpolation

operator IT v is therefore defined by

IT v(a(i)) = v(a(i)),

∫

ei

(IT v − v) · n(i) = 0, i = 1, 2, 3. (3.2)

With this definition we get immediately

∫

T

div (v − IT v) =

3
∑

i=1

∫

ei

(v − IT v) · n(i) = 0 (3.3)

independent of the shape or aspect ratio of the element.
In the case that T is a quadrilateral we proceed similarly. Assume that T = FT (T̂ )

where T̂ = (0, 1)2 is the reference element and FT : � 2 → � 2 is a bilinear mapping. Denote

the vertices of T by a(i) = (a
(i)
1 , a

(i)
2 )T , i = 1, . . . , 4, the edges by ei, and the corresponding

outward unit normals by n(i) = (n
(i)
1 , n

(i)
2 )T . The barycentric coordinates are replaced by

the reference variables x̂1, x̂2, x̂3 = 1 − x̂1, and x̂4 = 1 − x̂2. The edge bubbles on the
reference element are

b̂1 = x̂2x̂3x̂4, b̂2 = x̂1x̂3x̂4, b̂3 = x̂1x̂2x̂4, b̂4 = x̂1x̂2x̂3.

With bi = b̂i ◦ F−1
T we obtain the local velocity space

PT := Q2
1 ⊕ span {n(i)bi, i = 1, . . . , 4}. (3.4)

As above, a polynomial v ∈ PT is uniquely defined by its values in the vertices and the in-
tegrals of the normal components [12, Lemma II.3.1], and the straightforward interpolation
operator IT v is defined by

IT v(a(i)) = v(a(i)),

∫

ei

(IT v − v) · n(i) = 0, i = 1, . . . , 4. (3.5)
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The global velocity space is introduced by

Xh := {v ∈ X : v|T ∈ PT ∀T ∈ Th}. (3.6)

Note that the restriction of an edge bubble to the edge is the same for triangles and
quadrilaterals therefore the corresponding global bubble function is continuous and thus
in H1(Ω). Consequently, they are contained in Xh and not excluded by the postulation
Xh ⊂ X.

Independently of Xh we will need the space XH which is defined analogously on the
macrotriangulation TH . Finally we introduce the spaces

Mh := {q ∈ L2
0(Ω) : q|T ∈ P0 ∀T ∈ Th}, MH := {q ∈ L2

0(Ω) : q|Q ∈ P0 ∀Q ∈ TH}.

3.2 Stability for meshes from isotropic elements and boundary

layer patches

We start with the proof of stability locally in the macroelements (patches). For this, define

Xh(Q) := {v ∈ Xh : v = 0 in Ω \ Q},
Mh(Q) := {q|Q : q ∈ Mh} ∩ L2

0(Q).

Moreover, for any macroelement Q we define an interpolation operator IQ,h by

IQ,hv|T = IT v ∀T ⊂ Q,

where IT is the operator introduced in (3.2) and (3.5), respectively.

Lemma 3.1 Let Q be a boundary layer patch. Then IQ,h is well defined for functions
u ∈ H1

0 (Q)2 and it has the properties of a Fortin operator, namely

|IQ,hu|1,Q

� |u|1,Q ∀u ∈ H1
0 (Q)2, (3.7)

∫

Q

ph div (u − IQ,hu) = 0 ∀ph ∈ Mh(Q), ∀u ∈ H1
0 (Q)2. (3.8)

Proof The operator is well defined for functions from H1
0 (Q)2 since all nodes lay on ∂Q

where u = 0. Thus IQ,hu is defined only via the edge integrals of internal edges. The
stability property (3.7) is proved in Section 4. The equality (3.8) is obtained by analogy
to (3.3) using that ph is piecewise constant. 2

Lemma 3.1 can now be applied to prove local stability.

Lemma 3.2 If Q ∈ TH is split into isotropic elements or is a boundary patch, then there
exists a constant γ∗ > 0 independent of both micro- and macrotriangulation, such that

sup
vh∈Xh(Q)

∫

Q
qh div vh

|vh|1,Q
≥ γ∗‖qh‖0,Q ∀qh ∈ Mh(Q). (3.9)
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Proof Patches of isotropic elements are already treated in the classical literature, see for
example [12, Subsections II.2.1 and II.3.1]. The idea is to construct a Fortin operator by
using Clément interpolation to treat nodal values.

If Q is a boundary layer patch then the assertion is a corollary of Lemma 3.1 by using
the Fortin lemma, see, for example, [12, Lemma II.1.1]. 2

For the proof of global stability we shall use the macroelement technique, see, for
example, [12, Theorem II.1.12]. That means we have to define a subspace X̄h of Xh such
that the pair (X̄h, MH) satisfies the inf-sup condition with a constant independent of H.

Since the macrotriangulation is isotropic, we know that the pair (XH , MH) is stable.
Unfortunately, XH is in general not a subset of Xh. The idea is to use an appropriate
projection. Define the operator IH,h : XH → Xh by

(IH,hvH)|T := IT vH ∀T ∈ Th. (3.10)

Recall that the functions from XH are continuous, even smooth in all T , such that IT is
well defined. With this projection IH,h we define

X̄h := IH,hXH (3.11)

and show the inf-sup condition for the pair (X̄h, MH). We begin with the stability of IH,h.

Lemma 3.3 The stability estimate

|IT vH |1,T

� |vH |1,T + H|vH|2,T ∀T ⊂ Q (3.12)

holds for any function vH ∈ XH |Q, Q ∈ TH arbitrary.

The proof is postponed to Section 5. Note that the difference in comparison with (3.7)
is that the function vH does in general not satisfy Dirichlet boundary conditions on ∂Q such
that point values have to be used in the definition of the interpolation operator. Therefore
one cannot expect to prove stability without using second order derivatives. On the other
hand, the function vH is contained in an finite dimensional space which allows to derive
the following estimate (3.13) by using an inverse inequality.

Corollary 3.4 For any function vH ∈ XH the interpolation operator IH,h has the proper-
ties of a Fortin operator, namely

|IH,hvH |1,Ω

� |vH |1,Ω, (3.13)
∫

Ω

pH div (vH − IH,hvH) = 0 ∀pH ∈ MH . (3.14)

Proof Estimate (3.13) follows from Lemma 3.3 by using the inverse inequality on the
macroelements Q,

|IH,hvH |1,Q

� |vH |1,Q + H|vH |2,Q

� |vH |1,Q,
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since vH |Q is from a (maximally) 12-dimensional space and Q is isotropic and of diameter
of order H. The equality (3.14) is obtained by analogy to (3.3). Note that pH is constant
in each Q. 2

We are now able to prove the main result of this subsection.

Lemma 3.5 The pair (Xh, Mh) satisfies the inf-sup condition (1.4) on meshes as described
in Section 2, provided that only patches of isotropic elements and boundary layer patches
are used.

Proof As already stated above, the pair (XH , MH) is stable. By the Fortin lemma, see,
for example, [12, Lemma II.1.1], there exists a Fortin operator ΠH : X → XH with

|ΠHv|1,Ω

� |v|1,Ω ∀v ∈ X, (3.15)
∫

Ω

pH div (v − ΠHv) = 0 ∀pH ∈ MH , ∀v ∈ X. (3.16)

Define now Πh = IH,hΠH . With (3.13) and (3.15) we obtain

|Πhv|1,Ω = |IH,hΠHv|1,Ω

� |ΠHv|1,Ω

� |v|1,Ω ∀v ∈ X,

and with (3.14) and (3.16) we get for all pH ∈ MH and for all v ∈ X
∫

Ω

pH div (v − Πhv) =

∫

Ω

pH div (v − IH,hΠHv)

=

∫

Ω

pH div (v − ΠHv) +

∫

Ω

pH div (ΠHv − IH,hΠHv)

= 0.

Consequently, Πh is a Fortin operator for the pair (X̄h, MH), that means by the Fortin
lemma that this pair is stable. By using the macroelement technique [12, Theorem II.1.12]
we have proved the assertion. 2

3.3 Corner patches

A corner patch is itself a mesh that consists of patches K of isotropic elements and boundary
layer patches. If the patches form an admissible macrotriangulation, the local stability
result follows from the arguments in the previous subsection.

The difficulty consists in allowing hanging nodes in this macrotriangulation. For the
proof we can essentially follow [15, Section 4]. There, in Subsection 4.2, stability of the
BFR element is proved in the special case where the triangulation of the macroelement is
an affine image of a reference mesh. We show here that this result remains valid for the
more general corner patches as introduced in Section 2.

Lemma 3.6 For a corner patch Q ∈ TH there exists a constant γ∗ > 0 independent of
both micro- and macrotriangulation, such that (3.9) holds.
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a(1) a(2) a(3)

Figure 3.3: Illustration of notation in corner patches

Proof We start with the introduction of some notation. By definition a corner patch can
be partitioned into a finite number of patches K, we denote this partition by T � . All nodes
of this triangulation are either regular (interior) nodes, hanging nodes, or boundary nodes.
In Figure 3.3 we indicate regular nodes by a bullet and hanging nodes by a circle. All
interior edges in this triangulation that do not contain a hanging node are called regular

edges. They are marked with a cross in Figure 3.3. Note that the edges a(1)a(2) and a(2)a(3)

are regular, but a(1)a(3) is not.
According to the definition there is an edge for each node—we call it irregular edge—

that joins the hanging node a of K with a node b on the opposite side of K. In this way
the element is split into two subelements. Examples of irregular edges are shown in Figure
3.3 by a dashed line. Note that the set of regular and irregular edges still does not define
an admissible mesh because of the nodes that are indicated by a diamond.

For each regular node a(i) we introduce a piecewise (bi)linear basis function ϕi with
isotropic support ωi. We assume that it is continuous and vanishes in all boundary nodes
and in all other regular nodes. In hanging nodes it may have the value 0 or 1

2
. The support

of one basis function is shaded in Figure 3.3. Furthermore, we define for each regular edge
ei an edge bubble function bi in the same way as in Subsection 3.1. The support of such a
function is isotropic and consists of two (sub)elements.

We define now a local velocity space by

PK := span {ϕi : a(i) ∈ K̄ is a regular node}2 ⊕ span {bin
(i) : ei ⊂ K̄ is a regular edge}.

(3.17)
In this definition we mean with n(i) the outer normal of ei. Note that this space might
be different from that defined in Subsection 3.1 since edges with hanging node induce two
bubble functions. The velocity space X � (Q) ⊂ H1

0 (Q)2 and the pressure space M � (Q) ⊂
L2

0(Q) over the corner patch Q are now introduced by

X � (Q) := {v ∈ H1
0 (Q)2 : v|K ∈ PK ∀K ∈ T � },

M � (Q) := {q ∈ L2
0(Q) : q|K ∈ P0 ∀K ∈ T � }.
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Note that, similarly to Subsection 3.2, X � (Q) is in general not a subspace of Xh(Q). This
deficiency is again remedied by a projection.

We are now prepared to prove the lemma. In a first step we introduce the Clément
interpolant C � by

C � v :=
∑

i

(

|ωi|−1

∫

ωi

v

)

ϕi

where the sum extends over all regular nodes. We cannot use the standard relation C � v = v

for all v ∈ P0 here since all elements have boundary nodes or hanging nodes. But we still
get

∑

K

[

(diamK)−1‖v − C � v‖0,K + |v − C � v|1,K

]

≤ |v|1,Q ∀v ∈ H1
0 (Q)

since the support of all basis functions contains part of the boundary ∂Q where v vanishes
such that the Poincaré–Friedrichs inequality can be applied.

As in the standard proof, see [12, Subsections II.2.1 and II.3.1] we can now define the
operator Π � : H1

0 (Q) → X �

Π � v(a) = C � v(a) ∀ regular nodes a,
∫

e

(Π � v − v) · n = 0 ∀ regular edges e,

and prove that

|Π � v|1,Q

� |v|1,Q ∀v ∈ X � (Q), (3.18)
∫

Q

div (v − Π � v) q � = 0 ∀q � ∈ M � (Q). (3.19)

We can now proceed as in Subsection 3.2. We define the operator I � ,h : X � (Q) → Xh(Q)
by

(I � ,hv � )|T := IT v � ∀T ∈ Th,

the space X̄h(Q) := I � ,hX � (Q) ⊂ Xh(Q), and the operator Πh := I � ,hΠ � , and we obtain the
estimates

|I � ,hv � |1,Ω

� |v � |1,Ω,
∫

Ω

p � div (v � − I � ,hv � ) = 0 ∀p � ∈ M � .

Together with (3.18) and (3.19) we derive

|Πhv|1,Ω

� |v|1,Ω ∀v ∈ X(Q),
∫

Ω

p � div (v − Πhv) = 0 ∀p � ∈ M � , ∀v ∈ X(Q),

from which we conclude the local inf-sup stability. 2
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3.4 Summary

Theorem 3.7 The pair (Xh, Mh) satisfies the inf-sup condition (1.4) on meshes as de-
scribed in Section 2.

The proof is that of Lemma 3.5 since we did not use that the patches have a special
structure. It is only necessary that a local stability result is available for all patches. We
underline here that we can include further types of patches and need only to prove local
stability.

Corollary 3.8 All element pairs with the same pressure space (piecewise constants) but
a larger velocity space are of course also stable, see the definition of the inf-sup constant.
That means that on the meshes considered here we have proved stability for the P2 − P0,
Q2 − Q0, and Q′

2 − Q0 pairs. (The space Q′
2 ⊂ Q2 is the 8-node quadratic serendipity

element.)

Note that the pairs P2−P0 and Q2−Q0 were already treated in [14, 15] but trapezoidal
anisotropic meshes were not admitted there.

Remark 3.9 As introduced in Section 2 corner patches can be defined as the tensor
product of one-dimensional geometric meshes, consider for example the mesh with the
nodes (xi, yj),

x0 = 0, xi + 1 = σn−i, y0 = 0, yj = σn−j, i, j = 1, . . . , n.

Note, however, that the inf-sup constant depends on the value of σ, γh = γh(σ), where
limσ→0 γh(σ) = 0. This can be derived from [15, Remark 3.5, page 678f.] where this
statement was shown for the Q2 −Q0 pair. In our case the pressure space is the same but
the velocity space is a subspace of Q2 such that the inf-sup constant can only be smaller.

On the other hand, our proof shows that the inf-sup constant in boundary layer patches
does not depend on the ratio of the sizes of adjacent elements. This difference is tried to be
illustrated in Figure 2.3 (right hand side) where adjacent bold rectangles are of comparable
size (factor 1 . . . 4) whereas the elements in the boundary layer are much thinner than the
first element outside this layer.
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0 x1

x2

h1

h2

e2

e4

Figure 4.1: Illustration of a rectangular element T

4 Proof of (3.7)

4.1 Rectangular elements

We start with the investigation of the simplest case, namely rectangular elements, to
elucidate the main ideas. We can do all considerations in a single element T . For this we
introduce a coordinate system such that T = (0, h1)× (0, h2) and denote the long edges by
e2 and e4, see Figure 4.1. Recall further that the element T is an element in a boundary
layer patch, that means, the small edges are part of the boundary ∂Q of the macroelement.
Therefore we can use that the function u to be interpolated vanishes at the small edges
of T .

Denote by b(x1) = h−2
1 x1(h1 − x1) the bubble function at the edges e2 and e4, and by

ϕ1(x2) = 1 − h−1
2 x2, ϕ2(x2) = h−1

2 x2 the linear nodal hat functions. Then

IT v = d4 b(x1)ϕ2(x2)
�

0

1 � + d2 b(x1)ϕ1(x2)
�

0

−1 �
(∂1IT v)2 = b′(x1)(d4ϕ2(x2) − d2ϕ1(x2))

(∂2IT v)2 = b(x1)h
−1
2 (d4 + d2)

with

d4 =

∫

e4

v ·
�

0

1 �
∫

e4

b(x1)
=

∫

e4

v2

∫

e4

b(x1)
, d2 =

∫

e2

v ·
�

0

−1 �
∫

e2

b(x1)
= −

∫

e2

v2

∫

e2

b(x1)
.

So we can compute

‖b′(x1)ϕ2(x2)‖0,T = ‖b′(x1)ϕ1(x2)‖0,T = 1
3
h−1

1 |T |1/2,

‖b(x1)‖0,T = 1
30

√
30 |T |1/2,

‖∂1IT v‖0,T ≤ |d4| ‖b′(x1)ϕ2(x2)‖0,T + |d2| ‖b′(x1)ϕ1(x2)‖0,T
�

h−1
1 |T |1/2(|d4| + |d2|), (4.1)

‖∂2IT v‖0,T = 1
30

√
30h−1

2 |T |1/2|d4 + d2|. (4.2)
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The first expression, the left hand side of (4.1), is estimated only roughly due to the triangle
inequality. The essential point is that the second expression, (4.2), must be treated carefully
due to the factor h−1

2 .
The terms |di|, i = 2, 4, are estimated by the trace theorem and the Poincaré inequality

(v is zero on the small edges) with the proper scaling introduced by the transformation
xi = hix̂i, i = 1, 2, to the reference element T̂ :

|di| = 6h−1
1

∣

∣

∣

∣

∫

ei

v2

∣

∣

∣

∣

= 6

∣

∣

∣

∣

∫

êi

v̂2

∣

∣

∣

∣

�
∫

êi

|v̂2|
� ‖v̂2‖1,T̂

� |v̂2|1,T̂

� |T |−1/2
2
∑

i=1

hi‖∂iv2‖0,T

� |T |−1/2h1|v2|1,T . (4.3)

With (4.1) we obtain
‖∂1IT v‖0,T

� |v2|1,T . (4.4)

For |d2 + d4| we use that v = 0 on the small edges and the Gauß integral theorem:

|d2 + d4| = 6h−1
1

∣

∣

∣

∣

∣

∑

i=2,4

∫

ei

v · n
∣

∣

∣

∣

∣

= 6h−1
1

∣

∣

∣

∣

∫

∂T

v · n
∣

∣

∣

∣

= 6h−1
1

∣

∣

∣

∣

∫

T

div v

∣

∣

∣

∣

�
h−1

1 |T |1/2|v|1,T .

With (4.2) and |T | = h1h2 we get

‖∂2IT v‖0,T

� |v|1,T . (4.5)

Summation of (4.4) and (4.5) yields the desired estimate locally in each element T ⊂ Q.
Note that the x1-derivative could equally well be estimated by using the inverse in-

equality,
‖∂1IT v‖0,T

�
h−1

1 ‖IT v‖0,T

�
h−1

1 |T |1/2(|d1| + |d2|),
and (4.3).

4.2 Triangular elements

Consider now a triangular element T ⊂ Q. We locate the coordinate system such that the
shortest side is parallel to the x2-axis and the opposite vertex lays in the origin. Further
notation is introduced in Figure 4.2. Note that the angles α2 or α3 could also be negative.

The interpolant is defined as

IT v = d2 λ1λ3 n(2) + d3 λ1λ2 n(3)

with

λ1 = λ1(x1, x2) = 1 − h−1
1 x1

λ2 = λ2(x1, x2) = (h1 sin(α2 − α3))
−1 cos α3 (x1 sin α2 − x2 cos α2)

λ3 = λ3(x1, x2) = (h1 sin(α3 − α2))
−1 cos α2 (x1 sin α3 − x2 cos α3)
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0 x1

x2

a(1)

a(2)

a(3)

e3

e1
e2

h1

h2

α2 α3

n(2)

n(3)

a(1) =
�

0

0 �
a(2) = h1

�
1

tan α3 �
a(3) = h1

�
1

tan α2 �
Figure 4.2: Illustration of the notation in a triangular element T

and

d2 =

∫

e2

v · n(2)

∫

e2

λ1λ3

= (1
6
|e2|)−1

∫

e2

v · n(2), d3 = (1
6
|e3|)−1

∫

e3

v · n(3).

We start by considering the x2-derivative. Since λ1 does not depend on x2, and because
|e2| = h1(cos α2)

−1, |e3| = h1(cos α3)
−1, we have

∂2IT v = λ1[d2∂2λ3n
(2) + d3∂2λ2n

(3)]

= 6λ1

(

|e2|−1

(
∫

e2

v · n(2)

)

(h1 sin(α3 − α2))
−1 cos α2 (− cos α3)

�
− sin α2

cos α2 � +

+ |e3|−1

(
∫

e3

v · n(3)

)

(h1 sin(α2 − α3))
−1 cos α3 (− cos α2)

�
sin α3

− cos α3 �
)

= 6λ1(h1 sin(α2 − α3))
−1 cos α2 cos α3 h−1

1 A (4.6)

with

A =
�
− tan α2

1 �
∫

e2

v · n(2) +
�
− tanα3

1 �
∫

e3

v · n(3)

=
�
−

1
2
(tanα2 + tan α3)

1 �
(
∫

e2

v · n(2) +

∫

e3

v · n(3)

)

+

+
�
−

1
2
(tanα2 − tan α3)

0 �
(
∫

e2

v · n(2) −
∫

e3

v · n(3)

)

. (4.7)

We treat now the factors separately. Due to the regularity of Q we have |α2|, |α3| ≤ c0 < π
2
,

that means
∣

∣

∣

∣

�
−

1
2
(tanα2 + tan α3)

1 �
∣

∣

∣

∣

�
1. (4.8)

By definition, the identity

tan α2 − tan α3 = h−1
1 a

(3)
2 − h−1

1 a
(2)
2 = h−1

1 h2 (4.9)
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holds. Since v = 0 on e1 ⊂ ∂Q we obtain
∣

∣

∣

∣

∫

e2

v · n(2) +

∫

e3

v · n(3)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

∂T

v · n
∣

∣

∣

∣

=

∣

∣

∣

∣

∫

T

div v

∣

∣

∣

∣

� |T |1/2|v|1,T . (4.10)

In analogy to Subsection 4.1 we prove for j = 2, 3, using the trace theorem and the Poincaré
inequality,

∣

∣

∣

∣

∣

∫

ej

v · n(j)

∣

∣

∣

∣

∣

≤
∫

ej

|v1| + |v2|
� |ej| |T |−1/2

2
∑

i=1

(h1‖∂1vi‖0,T + h2‖∂2vi‖0,T )

�
h2

1|T |−1/2|v|1,T (4.11)

Here we have used a transformation�
x1

x2 � = F (x̂1, x̂2) =

[

h1 0

a
(2)
2 h2

] �
x̂1

x̂2 � +
�

0

a
(2)
2 �

to the reference element T̂ with vertices in (0, 0), (1, 0) and (0, 1). It transforms derivatives
as

∂̂1 = h1∂1, ∂1 = h−1
1 ∂̂1,

∂̂2 = a
(2)
2 ∂1 + h2∂2, ∂2 = h−1

2 (−a
(2)
2 h−1

1 ∂̂1 + ∂̂2).

Note further that |a(2)
2 | �

h1 since T ⊂ Q and Q is a regular quadrilateral.
With (4.8)–(4.11) we can derive from (4.7) the estimate

|A| � |T |1/2|v|1,T + h−1
1 h2 h2

1|T |−1/2|v|1,T ∼ |T |1/2|v|1,T

which leads with (4.6) and

sin(α2 − α3) = cos α2 cos α3(tanα2 − tanα3) = h−1
1 h2 cos α2 cos α3,

see (4.9), to

‖∂2IT v‖0,T

� ‖λ1‖0,T |h1 sin(α2 − α3)|−1 cos α2 cos α3h
−1
1 |T |1/2|v|1,T

� |T |1/2h−1
2 h−1

1 |T |1/2|v|1,T

∼ |v|1,T . (4.12)

The estimate for the x1-derivative is less difficult. By using the inverse inequality, the
definitions of IT v, d2, and d3, and the estimate (4.11), we get

‖∂1IT v‖0,T

�
h−1

1 ‖IT v‖0,T

�
h−1

1 |T |1/2(|d2| + |d3|)
�

h−1
1 |T |1/2h−1

1

(
∣

∣

∣

∣

∫

e2

v · n(2)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

e3

v · n(3)

∣

∣

∣

∣

)

� |v|1,T .

Thus the stability property (3.7) of IT is also proved for triangular elements.
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0 x1

x2

h1

h2

ξ2 ξ1
e2

e4

0 x̂1

x̂2

1

1

ê2

ê4

Figure 4.3: Illustration of a trapezoidal element T and the reference element T̂

4.3 Trapezoidal elements

Trapezoidal elements can be treated by analogy to rectangular elements. One has only to
be careful with the definition of the local basis functions. Since they are the image under
transformation of bilinear functions in the reference element it makes sense to investigate
this transformation. Introduce notation as illustrated in Figure 4.3 where we assume that

|ξ2|
�

h2, |h1 − ξ1|
�

h2. (4.13)

One can compute the transformation as�
x1

x2 � =
�

h1

0 � x̂1 +
�

ξ2

h2 � x̂2 +
�

ξ1 − h1 − ξ2

0 � x̂1x̂2

with the Jacobian

J =
∂(x1, x2)

∂(x̂1, x̂2)
=

∣

∣

∣

∣

h1 + (ξ1 − h1 − ξ2)x̂2 ξ2 + (ξ1 − h1 − ξ2)x̂1

0 h2

∣

∣

∣

∣

= h2(h1 + (ξ1 − h1 − ξ2)x̂2) ∼ h1h2

due to (4.13). Consequently

|∂1x̂1| = J−1|∂̂2x2| ∼ h−1
1 , |∂2x̂1| = J−1|∂̂2x1|

�
h−1

1 ,

|∂1x̂2| = J−1|∂̂1x2| = 0, |∂2x̂2| = J−1|∂̂1x1|
�

h−1
2 .

(4.14)

As in Subsection 4.1 we have

IT v = d4b4(x1, x2)
�

0

1 � + d2b2(x1, x2)
�

0

−1 �
where the edge bubble functions do not have the tensor product structure any more and
where the di, i = 2, 4, are

di =

∫

ei

v · n(i)

∫

ei

bi

. (4.15)
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For the convenience of notation we introduce w as the second component of IT v, IT v =�
0

w � . Viewing w in the reference coordinates, we get

ŵ = d4b̂4(x̂1, x̂2) − d2b̂2(x̂1, x̂2) (4.16)

with b̂2(x̂1, x̂2) = (1 − x̂2)x̂1(1 − x̂1), b̂4(x̂1, x̂2) = x̂2x̂1(1 − x̂1). Moreover, we have with
(4.14)

|∂1w| = |∂̂1ŵ∂1x̂1 + ∂̂2ŵ∂1x̂2| ∼ h−1
1 |∂̂1ŵ|,

|∂2w| = |∂̂1ŵ∂2x̂1 + ∂̂2ŵ∂2x̂2|
�

h−1
1 |∂̂1ŵ| + h−1

2 |∂̂2ŵ|,

|w|1,T

� |T |1/2

(
∫

T̂

(

h−2
1 |∂̂1ŵ|2 + h−2

2 |∂̂2ŵ|2
)

)1/2

� |T |1/2h−1
1

(
∫

T̂

|∂̂1ŵ|2
)1/2

+ |T |1/2h−1
2

(
∫

T̂

|∂̂2ŵ|2
)1/2

.

From (4.16) we get

∂̂1ŵ = x̂2(1 − 2x̂1)d4 − (1 − x̂2)(1 − 2x̂1)d2,

∂̂2ŵ = x̂1(1 − x̂1)(d2 + d4),

and consequently

|w|1,T

� |T |1/2h−1
1 (|d2| + |d4|) + |T |1/2h−1

2 |d2 + d4|. (4.17)

The terms |d2| and |d4| can be estimated similarly to those in Subsection 4.1:

|dj| ∼ h−1
1

∣

∣

∣

∣

∣

∫

ej

v2

∣

∣

∣

∣

∣

∼
∣

∣

∣

∣

∣

∫

êj

v̂2

∣

∣

∣

∣

∣

≤
∫

êj

|v̂2|
� ‖v̂2‖1,T̂

� |v̂2|1,T̂

� |T |−1/2

2
∑

i=1

hi‖∂iv2‖0,T

� |T |−1/2h1|v2|1,T , (4.18)

j = 2, 4. For |d2 + d4| we proceed slightly differently and exploit that
∫

ê2
b̂2 =

∫

ê4
b̂4:

|d2 + d4| =

∣

∣

∣

∣

∣

∫

e4
v2

∫

e4
b4

−
∫

e2
v2

∫

e2
b2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

ê4
v̂2

∫

ê4
b̂4

−
∫

ê2
v̂2

∫

ê2
b̂2

∣

∣

∣

∣

∣

∼
∣

∣

∣

∣

∫

ê4

v̂2 −
∫

ê2

v̂2

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

T̂

∂̂2v̂2

∣

∣

∣

∣

= |T |−1

∣

∣

∣

∣

∫

T

(∂1v2∂̂2x1 + ∂2v2∂̂2x2)

∣

∣

∣

∣

� |T |−1h2

∫

T

(|∂1v2| + |∂2v2|)
� |T |−1h2 |T |1/2|v2|1,T . (4.19)

With (4.17)–(4.19) we get the desired estimate

|IT v|1,T = |w|1,T

� |v2|1,T ≤ |v|1,T .
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5 Proof of (3.12)

The difference in the assumptions for (3.7) and (3.12) is that the function in (3.7) satisfies
Dirichlet boundary conditions on the small edges of the elements T ⊂ Q. Without having
this we prove first the weaker estimate (3.12) and get the desired result (3.13) by exploiting
that the function vH is from a finite-dimensional space only.

5.1 Rectangular elements

There is nothing to prove since XH |Q ⊂ Xh|Q and therefore IT vH = vH in T .

5.2 Triangular elements

We split the interpolant IT into two parts,

IT u = NT u + (IT u − NT u). (5.1)

The first part is the standard nodal interpolant NT with respect to the vertices of T , and
is easy to estimate using the interpolation results on anisotropic meshes [3]:

|NT u|1,T ≤ |u|1,T + |u − NT u|1,T

� |u|1,T + h1|u|2,T . (5.2)

Using the notation of Section 4.2, the second part can be represented by

IT u − NT u = d1 λ2λ3 n(1) + d2 λ3λ1 n(2) + d3 λ1λ2 n(3), (5.3)

where the coefficients dj, j = 1, 2, 3, are determined to satisfy the second condition in (3.5),
i.e.

dj = 6|ej|−1

∫

ej

(u − NT u) · n(j). (5.4)

We introduce the abbreviating vector function v := u − NT u and note that it vanishes
at the vertices of T . Let us estimate the first term on the right hand side of (5.3) by
exploiting this property:

∣

∣

∣

∣

∫

e1

v · n(1)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

e1

v1

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ a
(3)
2

a
(2)
2

(v1(h1, x2) − v1(h1, a
(2)
2 ))dx2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ a
(3)
2

a
(2)
2

(

∫ x2

a
(2)
2

∂2v1(h1, ξ)dξ

)

dx2

∣

∣

∣

∣

∣

≤
∫ a

(3)
2

a
(2)
2

∫ a
(3)
2

a
(2)
2

|∂2v1(h1, ξ)|dξdx2 = |e1|
∫

e1

|∂2v1| ≤ |e1|3/2‖∂2v1‖0,e1.(5.5)

Recall now that v is an interpolation error and ∂2 = t(1) ·∇ is the derivative in (tangential)
direction t(1) of the edge e1. So we can use the one-dimensional interpolation error estimate

‖t(j) · ∇(w − NT w)‖0,ej

� ‖t(j) · ∇w‖0,ej
∀w ∈ H1(ej). (5.6)
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The properly scaled trace theorem reads

‖w‖0,ej
∼ |ej|1/2‖ŵ‖0,êj

� |ej|1/2‖ŵ‖1,T̂

� |ej|1/2|T |−1/2(‖w‖0,T + h1|w|1,T ). (5.7)

With (5.4)–(5.7) and |e1| = h2 we get

|d1| ∼ h−1
2

∣

∣

∣

∣

∫

e1

v · n(1)

∣

∣

∣

∣

�
h

1/2
2 ‖∂2u1‖0,e1

�
h2|T |−1/2(‖∂2u1‖0,T + h1|∂2u1|1,T ). (5.8)

The desired result for the first term on the right hand side of (5.3) is now obtained by the
inverse inequality:

|d1 λ2λ3 n(1)|1,T

� |d1|h−1
2 ‖λ2λ3‖0,T

�
h2|T |−1/2(‖∂2u1‖0,T + h1|∂2u1|1,T ) h−1

2 |T |1/2

= ‖∂2u1‖0,T + h1|∂2u1|1,T . (5.9)

The remaining terms on the right hand side of (5.3) are treated as in Subsection 4.2.
We get in analogy to (4.6) and (4.7)

∂2(d2 λ3λ1 n(2) + d3 λ1λ2 n(3))

= 6λ1(h1 sin(α2 − α3))
−1 cos α2 cos α3 h−1

1 A,

A =
�
−

1
2
(tanα2 + tan α3)

1 �
(
∫

e2

v · n(2) +

∫

e3

v · n(3)

)

+

+
�
−

1
2
(tanα2 − tan α3)

0 �
(
∫

e2

v · n(2) −
∫

e3

v · n(3)

)

.

Two of the factors can be estimated as in Subsection 4.2, namely (4.8) and (4.9) are still
valid. The estimate (4.10) is modified slightly where we use (5.8) and h2

�
h1:

∣

∣

∣

∣

∫

e2

v · n(2) +

∫

e3

v · n(3)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

∂T

v · n −
∫

e1

v · n(1)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

T

div v

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

e1

v · n(1)

∣

∣

∣

∣

� |T |1/2|v|1,T + h2
2|T |−1/2(‖∂2u1‖0,T + h1|∂2u1|1,T )

� |T |1/2(|u|1,T + h1|u|2,T )

where we have used again a local interpolation error estimate as we did in (5.2).
In treating the remaining term we cannot use the Poincaré inequality, instead we pro-

ceed as in the derivation of (5.5) and get by using (5.6) and (5.7)
∣

∣

∣

∣

∫

ei

v · n(i)

∣

∣

∣

∣

≤
∫

ei

|v1| + |v2| ≤ |ei|3/2(‖∇v1 · t(i)‖0,ei
+ ‖∇v2 · t(i)‖0,ei

)

≤ |ei|3/2
(

‖∇u1 · t(i)‖0,ei
+ ‖∇u2 · t(i)‖0,ei

)

‖ ≤ |ei|3/2|u|1,ei

�
h2

1|T |−1/2(|u|1,T + h1|u|2,T ) (5.10)
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where t(i) is the unit tangential vector at the edge ei. Altogether we have derived

|A| � |T |1/2(|u|1,T + h1|u|2,T ) + h−1
1 h2 h2

1|T |−1/2(|u|1,T + h1|u|2,T )

∼ |T |1/2(|u|1,T + h1|u|2,T ),

and, analogously to (4.12),

‖∂2(d2 λ3λ1 n(2) + d3 λ1λ2 n(3))‖ � |u|1,T + h1|u|2,T (5.11)

The remaining estimate is again obtained as in Subsection 4.2 but using this time (5.10):

‖∂1(d2 λ3λ1 n(2) + d3 λ1λ2 n(3))‖ �
h−1

1 ‖d2 λ3λ1 n(2) + d3 λ1λ2 n(3)‖
�

h−1
1 |T |1/2(|d2| + |d3|)

�
h−1

1 |T |1/2 h−1
1

(
∣

∣

∣

∣

∫

e2

v · n(2)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

e3

v · n(3)

∣

∣

∣

∣

)

� |u|1,T + h1|u|2,T . (5.12)

With (5.2), (5.3), (5.9), (5.11), and (5.12) we have proved (3.12).

5.3 Trapezoidal elements

In the case of boundary layer patches there is nothing to prove since XH |Q ⊂ Xh|Q, and
therefore IT vH = vH in T . In more general cases, however, it is not that simple. We will
use the notation from Subsection 4.3, Figure 4.3, and proceed in analogy to Subsection
5.2.

Introducing the standard nodal interpolant NT with respect to the vertices of T , we
have the estimates (5.1) and (5.2):

IT u = NT u + (IT u − NT u) (5.13)

|NT u|1,T

� |u|1,T + h1|u|2,T , (5.14)

and in analogy to (5.3)

IT u − NT u =
4
∑

i=1

dibi(x1, x2)n
(i).

The coefficients di, i = 1, . . . , 4, are defined (using again v := u−NT u) as in (5.4) and can
be estimated as in Subsection 5.2:

|di| ∼ |ei|−1

∣

∣

∣

∣

∫

ei

v · n(i)

∣

∣

∣

∣

≤ |ei|−1

∫

ei

(|v1| + |v2|)

≤ |ei|−1

∫

ei

(
∫

ei

|∇v1 · t(i)| +
∫

ei

|∇v2 · t(i)|
)

� |ei|1/2
(

‖∇v1 · t(i)‖0,ei
+ ‖∇v2 · t(i)‖0,ei

)

� |ei|1/2|u|1,ei� |ei| |T |−1/2(|u|1,T + h1|u|2,T ). (5.15)
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The contributions from the short edges to IT u−NT u can be estimated as in (5.9): For
i = 1, 3, we obtain

|dibin
(i)|1,T

� |di|h−1
2 ‖bi‖0,T

� |u|1,T + h1|u|2,T . (5.16)

The contributions from the long edges are treated similarly to Subsection 4.3, estimates
(4.15)–(4.19):

d4b4(x1, x2)
�

0

1 � + d2b2(x1, x2)
�

0

−1 � =:
�

0

w � , (5.17)

|w|1,T

�
h−1

1 ‖∂̂1ŵ‖0,T̂ + h−1
2 ‖∂̂2ŵ‖0,T̂

∼ h−1
1 |T |1/2(|d2| + |d4|) + h−1

2 |T |1/2|d2 + d4|,
|d2 + d4|

�
h2|T |−1/2|v2|1,T

�
h2|T |−1/2h1|u2|2,T ,

such that with (5.15)

|w|1,T

� |u|1,T + h1|u|2,T . (5.18)

Combining (5.13)–(5.18) we find the estimate that was to be shown.
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[14] D. Schötzau and Ch. Schwab. Mixed hp-FEM on anisotropic meshes. Math. Models

Methods Appl. Sci., 8:787–820, 1998.
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