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Abstract. This paper deals with L2-error estimates for finite element approxi-
mations of control constrained distributed optimal control problems governed
by linear partial differential equations. First, general assumptions are stated
that allow to prove second order convergence in control, state and adjoint state.
Afterwards these assumptions are verified for problems where the solution of
the state equation has singularities due to corners or edges in the domain or
nonsmooth coefficients in the equation. In order to avoid a reduced convergence
order, graded finite element meshes are used.
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1. Introduction

In this paper we consider the optimal control problem

min
(y,u)∈Y×U

J(y, u) :=
1
2
‖y − yd‖2Z +

ν

2
‖u‖2U ,

subject to y = Su, u ∈ Uad,

(1.1)

where Z, U = U∗ are Hilbert spaces and Y is a Banach space with Y ↪→ Z ↪→ Y ∗.
We introduce a Banach space X ↪→ Z and demand yd ∈ X. The operator S : U →
Y ↪→ U is the solution operator of a linear elliptic partial differential equation. We
assume ν to be a fixed positive number and Uad ⊂ U to be non-empty, convex and
closed.

A general review of results is given by Hinze and Rösch in this volume [8];
they shall not be repeated here. We focus on results where the solution of the state
equation has singularities due to corners or edges in the domain or nonsmooth
coefficients in the equation [1, 3, 4, 16]. In Section 2, general assumptions are
stated that allow to prove second order convergence in control, state and adjoint
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state. Afterwards, in Section 3, these assumptions are verified for a scalar elliptic
state equation with discontinuous coefficients in a polygonal domain and isotropic
graded meshes, for the Poisson equation in a nonconvex prismatic domain and
anisotropic graded meshes and for the Stokes equations as state equation in a
nonconvex prismatic domain and a nonconforming discretization on anisotropic
meshes.

For further use we recall now part of the theory of control constrained optimal
control problems.

Remark 1.1. Problem (1.1) is equivalent to the reduced problem

min
u∈Uad

Ĵ(u) (1.2)

with

Ĵ(u) := J(Su, u) =
1
2
‖Su− yd‖2Z +

ν

2
‖u‖2U .

The following theorem can be proved with well known arguments, see, e.g., [10].

Theorem 1.1. The optimal control problem (1.1) has a unique optimal solution
(ȳ, ū). Furthermore, for S∗ being the adjoint of S, the optimality conditions

ȳ = Sū, (1.3)

p̄ = S∗(Sū− yd) (1.4)

ū ∈ Uad, (νū+ p̄, u− ū)U ≥ 0 ∀u ∈ Uad (1.5)

are necessary and sufficient.

Lemma 1.1. Let ΠUad : U → Uad be the projection on Uad, i.e.,

ΠUad(u) ∈ Uad, ‖ΠUad(u)− u‖U = min
v∈Uad

‖v − u‖U ∀u ∈ U.

Then the projection formula

ū = ΠUad

(
−1
ν
p̄

)
(1.6)

is equivalent to the variational inequality (1.5).

Proof. The assertion is motivated in [11]. A detailed proof is given, e.g., in [7]. The
assertion follows from Lemma 1.11 in that book by setting γ = 1/ν. �

2. Discretization and error estimates

The results of this subsection are also published in [17]. Detailed proofs can be found
there. We consider a family of triangulations Th = {T} of Ω, that is admissible in
Ciarlet’s sense, see [5, Assumptions (Th1)− (Th5)]. The operators Sh : U → Yh and
S∗h : Y ∗ → Yh are finite element approximations of S and S∗, respectively where
Yh is a suitable finite element space.
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2.1. Variational discrete approach

In [6] Hinze introduced a discretization concept for the optimal control problem
(1.2) which is based on the discretization of the state space only. The control
space is not discretized. Instead, the discrete optimal control ūsh is defined via the
variational inequality

(νūsh + S∗h(Shūsh − yd), u− ūsh)U ≥ 0 ∀u ∈ Uad. (2.1)

In the following we formulate two assumptions that are are sufficient to prove
optimal error estimates.

Assumption VAR1. The operators Sh and S∗h are bounded, i.e., the inequalities

‖Sh‖U→Y ≤ c and ‖S∗h‖Y ∗→U∗ ≤ c
are valid.

As usual in numerical analysis the generic constant c used here and in the
sequel does not depend on h.

Assumption VAR2. The estimates

‖(S − Sh)u‖U ≤ ch2‖u‖U ∀u ∈ U,
‖(S∗ − S∗h)z‖U ≤ ch2‖z‖Z ∀z ∈ Z

hold true.

We introduce the optimal discrete state ȳsh := Shū
s
h and optimal adjoint state

p̄sh := S∗h(Shūsh − yd) and formulate the error estimates in the following theorem.

Theorem 2.1. Let Assumptions VAR1 and VAR2 hold. Then the estimates

‖ū− ūsh‖U ≤ ch2 (‖ū‖U + ‖yd‖Z) , (2.2)

‖ȳ − ȳsh‖U ≤ ch2 (‖ū‖U + ‖yd‖Z) , (2.3)

‖p̄− p̄sh‖U ≤ ch2 (‖ū‖U + ‖yd‖Z) (2.4)

hold.

Proof. The first estimate is proved in [6]. For the proof of the second assertion we
write

‖ȳ − ȳsh‖U = ‖Sū− Shūsh‖U
≤ ‖(S − Sh)ū‖+ ‖Sh(ū− ūsh)‖U .

Inequality (2.3) follows then from Assumptions VAR1 and VAR2 and (2.2). For
the third assertion we can conclude similarly to above

‖p̄− p̄sh‖U = ‖S∗(Su− yd)− S∗h(Shush − yd)‖U
= ‖S∗(S − Sh)ū+ (S∗ − S∗h)Shū+ S∗hSh(ū− ūsh)− (S∗ − S∗h)yd‖U .

With the triangle inequality the assertion (2.3) follows from the boundedness of
S∗, Assumptions VAR1 and VAR2 and (2.2). �
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2.2. Postprocessing approach

We consider the reduced problem (1.2) and choose

U = Z = L2(Ω)d, Y = H1
0 (Ω)d or Y = H1(Ω)d,

where d ∈ {1, 2, 3} depending on the problem under consideration. As space of
admissible controls we use

Uad := {u ∈ U : ua ≤ u ≤ ub a.e.},
where ua ≤ ub are constant vectors from Rd. Then the projection in the admissible
set reads for a continuous function f as

(ΠUadf) (x) := max(ua,min(ub, f(x)).

This formula is to be understood componentwise for vector-valued functions f . We
introduce the discrete control space Uh,

Uh =
{
uh ∈ U : uh|T ∈ (P0)d for all T ∈ Th

}
and Uad

h = Uh ∩ Uad.

Then the discretized optimal control problem can be written as
Jh(ūh) = min

uh∈Uad
h

Jh(uh),

Jh(uh) :=
1
2
‖Shuh − yd‖2L2(Ω) +

ν

2
‖uh‖2L2(Ω).

(2.5)

As in the continuous case, this is a strictly convex and radially unbounded optimal
control problem. Consequently, (2.5) admits a unique solution ūh, that satisfies the
necessary and sufficient optimality conditions

ȳh = Shūh,

p̄h = S∗h(ȳh − yd),

(νūh + p̄h, uh − ūh)U ≥ 0 ∀uh ∈ Uad
h . (2.6)

For later use, we introduce the affine operators Pu = S∗(Su − yd) and Phu =
S∗h(Shu − yd), that maps a given control u to the adjoint state p = Pu and the
approximate adjoint state ph = Phu, respectively.

The approximate control ũh is constructed as projection of the approximate
adjoint state in the set of admissible controls,

ũh = ΠUad

(
−1
ν
p̄h

)
. (2.7)

This postprocessing technique was originally introduced by Meyer and Rösch [14].
In the following we state four rather general assumptions, that allow to prove
optimal discretization error estimates. To this end, we first define two projection
operators.

Definition 2.2. For continuous functions f we define the projection Rh in the space
P0 of piecewise constant functions by

(Rhf)(x) := f(ST ) if x ∈ T (2.8)
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where ST denotes the centroid of the element T .
The operator Qh projects L2-functions g in the space P0 of piecewise constant

functions,

(Qhg)(x) :=
1
|T |

∫
T

g(x) dx for x ∈ T. (2.9)

Both operators are defined componentwise for vector valued functions.

Assumption PP1. The discrete solution operators Sh and S∗h are bounded,

‖Sh‖U→H1
h(Ω)d ≤ c, ‖S∗h‖U→H1

h(Ω)d ≤ c,
‖Sh‖U→L∞(Ω)d ≤ c, ‖S∗h‖U→L∞(Ω)d ≤ c,

with the space

H1
h(Ω)d :=

{
v : Ω→ Rd :

∑
T∈T h

‖v‖2H1(T )d <∞

}
.

Notice that Assumption PP1 implies

‖Sh‖U→U ≤ c and ‖S∗h‖U→U ≤ c

by the embedding H1
h(Ω) ↪→ U .

Assumption PP2. The finite element error estimates

‖(S − Sh)u‖U ≤ ch2‖u‖U ∀u ∈ U,
‖(S∗ − S∗h)z‖U ≤ ch2‖z‖Z ∀z ∈ Z

hold.

Assumption PP3. The optimal control ū is contained in X and the corresponding
adjoint state p̄ satisfy the inequality

‖Qhp̄−Rhp̄‖U ≤ ch2 (‖ū‖X + ‖yd‖X) .

for a space X ↪→ U . In particular, p̄ is continuous, such that Rhp̄ is well defined.

Assumption PP4. The optimal control ū is contained in X and for all functions
ϕh ∈ Yh the inequality

(Qhū−Rhū, ϕh)U ≤ ch2‖ϕh‖L∞(Ω)d (‖ū‖X + ‖yd‖X)

holds. In particular, ū is continuous, such that Rhū is well defined.

First, we recall a property of Qh that is proved in [4].

Lemma 2.1. For f, g ∈ H1(T ) the inequality

(f −Qhf, g)L2(T ) ≤ ch2
T |f |H1(T )|g|H1(T )

is valid where hT denotes the diameter of the element T .

Now we can prove the following properties of the operator Rh.
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Lemma 2.2. Assume that the Assumptions PP1 and PP4 hold. Then the estimates

‖Shū− ShRhū‖U ≤ ch2 (‖ū‖X + ‖yd‖X) (2.10)

‖Phū− PhRhū‖U ≤ ch2 (‖ū‖X + ‖yd‖X) (2.11)

are valid.

Proof. The proof of this Lemma is similar to the one given by Apel and Winkler in
[4] in the special case of optimal control of the Poisson equation and a discretization
with linear finite elements. A proof under assumptions like PP1 and PP4 for the
optimal control of the Stokes equation is given in [16]. A detailed proof for the
general case can be found in [17]. �

Lemma 2.3. The inequality

ν‖Rhū− ūh‖2U ≤ (Rhp̄− p̄h, ūh −Rhū)U (2.12)

holds.

Proof. This lemma was originally proved in [14] and is based on a combination of
the variational inequalities (1.5) and (2.6). �

Now we are able to prove the following supercloseness result.

Theorem 2.3. Assume that Assumptions PP1–PP4 hold. Then the inequality

‖ūh −Rhū‖U ≤ ch2 (‖ū‖X + ‖yd‖X)

is valid.

Proof. The following proof is similar to the one of Theorem 4.21 of [18] which is
given in the context of optimal control of the Poisson equation. We give the details
here to illustrate the validity under the Assumptions PP1 – PP4. From Lemma 2.3
we have

ν‖ūh −Rhū‖2U ≤ (Rhp̄− p̄h, ūh −Rhū)U
= (Rhp̄− p̄, ūh −Rhū)U + (p̄− PhRhū, ūh −Rhū)U

+ (PhRhū− p̄h, ūh −Rhū)U . (2.13)

We estimate these three terms separately. For the first term, we use that Qh is an
L2-projection and get

(Rhp̄− p̄, ūh −Rhū)U = (Rhp̄−Qhp̄, ūh −Rhū)U + (Qhp̄− p̄, ūh −Rhū)U
= (Rhp̄−Qhp̄, ūh −Rhū)U .

The Cauchy-Schwarz inequality yields together with Assumption PP3

(Rhp̄− p̄, ūh −Rhū)U ≤ ‖Rhp̄−Qhp̄‖U‖ūh −Rhū‖U
≤ ch2 (‖ū‖X + ‖yd‖X) ‖ūh −Rhū‖U . (2.14)

For the second term we apply again the Cauchy-Schwarz inequality and use p̄ = Pū,
so that we arrive at

(p̄− PhRhū, ūh −Rhū)U ≤ ‖Pū− PhRhū‖U‖ūh −Rhū‖U .
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With Assumptions PP1 and PP2, Lemma 2.2 and the embedding X ↪→ U , one can
conclude

‖Pū− PhRhū‖U ≤ ‖S∗h‖U→U‖Sū− Shū‖U + ‖S∗yd − S∗hyd‖U
+ ‖Phū− PhRhū‖U
≤ ch2 (‖ū‖X + ‖yd‖X) ,

and therefore

(p̄− PhRhū, uh −Rhū)U ≤ ch2 (‖ū‖X + ‖yd‖X) ‖ūh −Rhū‖U . (2.15)

The third term can simply be omitted since

(PhRhū− p̄h, ūh −Rhū)U = (PhRhū− Phūh, ūh −Rhū)U
= (Sh(Rhū− ūh), Sh(ūh −Rhū))U
≤ 0. (2.16)

Thus, one can conclude from the estimates (2.13)–(2.16)

ν‖ūh −Rhū‖2U ≤ ch2 (‖ū‖X + ‖yd‖X) ‖uh −Rhū‖U
what yields the assertion. �

Now we are able to formulate the main result of this section.

Theorem 2.4. Assume that the Assumptions PP1–PP4 hold. Then the estimates

‖ȳ − ȳh‖U ≤ ch2 (‖ū‖X + ‖yd‖X) , (2.17)

‖p̄− p̄h‖U ≤ ch2 (‖ū‖X + ‖yd‖X) , (2.18)

‖ū− ũh‖U ≤ ch2 (‖ū‖X + ‖yd‖X) (2.19)

are valid.

Proof. In order to prove the first assertion we apply the triangle inequality and get

‖ȳ − ȳh‖U = ‖Sū− Shūh‖U
≤ ‖Su− Shu‖U + ‖Shū− ShRhū‖U + ‖Sh(Rhū− ūh)‖U .

The first term is a finite element error and is estimated in the first inequality of
Assumption PP2. For the second term an upper bound is given in Lemma 2.2. For
the third term we use the supercloseness result of Theorem 2.3 and the boundedness
of Sh given in Assumption PP1. These three estimates yield assertion (2.17). In a
similar way one can prove inequality (2.18). By using the Lipschitz continuity of
the projection operator, we get

‖ū− ũh‖U =
∥∥∥∥ΠUad

(
−1
ν
p̄

)
−ΠUad

(
−1
ν
p̄h

)∥∥∥∥
U

≤ 1
ν
‖p̄− p̄h‖U

and inequality (2.19) is a direct consequence of estimate (2.18). �
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Figure 1. Example for subdomains Ωi in interface problem

3. Examples

3.1. Scalar elliptic state equation with discontinuous coefficients in polygonal do-
main

We consider the optimal control problem (1.2) with the interface problem for the
Laplacian as state equation. We assume that the domain Ω can be partitioned
into disjoint, open, polygonal Lipschitz subdomains Ωi, i = 1, . . . , n, on which the
diffusion coefficient k has the constant value ki. Since the singular behaviour is a
local phenomenon we restrict our considerations to one corner located at the origin
and assume that no singularities occur at the other corners. The interior angle of
the subdomains Ωi at this corner is denoted by ωi, see Figure 1 for an example.
Notice, that for n = 1 the state equation reduces to the Poisson equation. This
case is treated in [1].

The variational formulation of the state equation reads as

Find y ∈ V0 : aI(y, v) = (u, v)L2(Ω) ∀v ∈ V0 (3.1)

with bilinear form aI : H1(Ω)×H1(Ω)→ R,

aI(y, v) :=
∫

Ω

k∇y · ∇v

and V0 := {v ∈ H1(Ω) : v|∂Ω = 0}. We triangulate the domain Ω by an isotropic
graded mesh with element size hT := diamT , that satisfy

c1h
1/µ ≤ hT ≤ c2h1/µ for rT = 0,

c1hr
1−µ
T ≤ hT ≤ c2hr1−µ

T for rT > 0,

where µ is the grading parameter and rT the distance of the triangle T to the
corner. We assume that the triangulation Th of Ω is aligned with the partition of
Ω, i.e., the boundary ∂Ωi is made up of edges of triangles in Th. The discrete state
yh = Shu is given as solution of

Find yh ∈ V0h : aI(yh, vh) = (f, vh)L2(Ω) ∀vh ∈ V0h.
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with

V0h = {vh ∈ C(Ω̄) : vh|T ∈ P1 ∀T ∈ Th and vh = 0 on ∂Ω} (3.2)

We introduce the singular exponent λI as smallest positive solution of the Sturm-
Liouville eigenvalue problem

−Φ′′i (ϕ) = λ2
IΦi(ϕ), ϕ ∈ (ωi−1, ωi), i = 1, . . . , n (3.3)

with the boundary and interface conditions

Φ1(0) = Φn(ω) = 0,

Φi(ωi) = Φi+1(ωi) i = 1, . . . , n− 1,

kiΦ′i(ωi) = ki+1Φ′i+1(ωi) i = 1, . . . , n− 1.

This is derived, e.g., in [15, Example 2.29]. In the following we assume that the
mesh grading parameter satisfies µ < λI . For the Poisson equation Assumptions
VAR1 and PP1 are proved in [1] under the condition µ > 1/2, which is a reasonable
assumption since λI > 1/2 in that case. For n > 1 the singular exponent λI > 0 can
become arbitrary small such that a more involved proof is necessary. This is given
in [17, Lemma 5.16] for smooth coefficients. The proof can be easiliy adapted for the
interface problem (3.1). The finite element error estimates of Assumptions VAR2
and PP2 can be verified using interpolation error estimates in weighted Sobolev
spaces and the fact that the triangulation is aligned with the partition (Ωi) of Ω,
see [17, Theorem 4.29]. Assumptions PP3 and PP4 follow with similar arguments
to the case of the Poisson equation in a prismatic domain (see Subsection 3.2).
The proofs are even less complicated since one has not to exploit an anisotropic
behaviour of the solution. Detailed proofs are given in [17, Lemma 5.46 and 5.47].

Altogether this means that the results of Theorems 2.1 and 2.4 hold for
this example. In [17, Subsection 5.2.3.3] one can find numerical tests for the
postprocessing approach that confirm the theoretical findings.

3.2. Examples in prismatic domains

In this section we consider a scalar elliptic equation and the Stokes equation
as state equation in a nonconvex prismatic domain and show that Assumptions
VAR1–VAR2 and PP1–PP4 hold on anisotropic graded meshes. Let Ω = G× Z be
a domain with boundary ∂Ω, where G ⊂ R2 is a bounded polygonal domain and
Z := (0, z0) ⊂ R is an interval. Since situations with more than one singular edge
can be reduced to the case of only one reentrant edge by a localization argument,
see, e.g., [9], we assume that the cross-section G has only one corner with interior
angle ω > π located at the origin.

To construct such an anisotropic graded mesh we first triangulate the two-
dimensional domain G by an isotropic graded mesh, then extrude this mesh in
x3-direction with uniform mesh size h and finally divide each of the resulting
pentahedra into tetrahedra. If one denotes by hT,i the length of the projection of
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an element T on the xi-axis, these element sizes satisfy

c1h
1/µ ≤ hT,i ≤ c2h1/µ for rT = 0,

c1hr
1−µ
T ≤ hT,i ≤ c2hr1−µ

T for rT > 0,
c1h ≤ hT,3 ≤ c2h,

(3.4)

for i = 1, 2, where rT is the distance of the element T to the edge,

rT := inf
x∈T

√
x2

1 + x2
2,

and µ is the grading parameter. Note that these meshes are anisotropic, i.e. their
elements are not shape regular. Anisotropic refinement near edges is more effective
than grading with isotropic (shape-regular) elements. Nevertheless, the latter is
also investigated, see [4].

3.2.1. Scalar elliptic state equation. We consider the optimal control problem (1.2)
with operator S that associates the state y = Su to the control u as the solution of
the Dirichlet problem

Find y ∈ V0 := {v ∈ H1(Ω) : v = 0 on ∂Ω} : aD(y, v) = (f, v)L2(Ω) ∀v ∈ V0,
(3.5)

where the bilinear form aD : H1(Ω)×H1(Ω)→ R is defined as

aD(y, v) =
∫

Ω

∇y · ∇v,

or as the solution of the Neumann problem

Find y ∈ H1(Ω) : aN (y, v) = (f, v)L2(Ω) ∀v ∈ H1(Ω) (3.6)

where the bilinear form aN : H1(Ω)×H1(Ω)→ R is defined as

aN (y, v) =
∫

Ω

∇y · ∇v +
∫

Ω

y · v.

The corresponding finite element approximation yh = Shu is given as the unique
solution of

aD(yh, vh) = (u, vh)L2(Ω) ∀vh ∈ V0h

or
aN (yh, vh) = (u, vh)L2(Ω) ∀vh ∈ Vh

respectively, where the spaces V0h and Vh are defined as

V0h =
{
v ∈ C(Ω̄) : v|T ∈ P1 ∀T ∈ Th and vh = 0 on ∂Ω

}
,

Vh =
{
v ∈ C(Ω̄) : v|T ∈ P1 ∀T ∈ Th

}
.

In the following we assume that the domain Ω is discretized according to (3.4)
with grading parameter µ < π/ω. The boundedness of the operators Sh and S∗h
is proved in [18, Subsection 3.6] by using Green function techniques. This means
Assumptions VAR1 and PP1 are true. For the proof of the finite element error
estimates of Assumptions VAR2 and PP2 one had to deal with quasi-interpolation
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operators and exploit the regularity properties of the solution. For details we
refer to [2]. Assumption PP3 is proved in [17, Lemma 5.38]. The main idea is
to split Ω into the sets Ks =

⋃
{T∈Th:rT =0} T and Kr = Ω\K̄s and to utilize the

different regularity properties of the optimal adjoint state p̄ in these subdomains.
Additionally, one has to take account of the fact that the number of elements in
Ks is bounded by ch−1. To prove Assumption PP4 we have to assume that the
boundary of the active set has finite two dimensional measure. Furthermore we
utilize the boundedness of rβ∇p̄ for β > 1− λ, which can be proved with the help
of a regularity result by Maz’ya and Rossmann [13]. For a detailed proof we refer
to [17].

In summary this means that Theorems 2.1 and 2.4 hold true in this setting.
Numerical tests for the postprocessing approach that confirm the theoretical results
are given in [17, Subsection 5.2.2.3].

3.2.2. Stokes equation as state equation. For the Stokes equation the state has
actually two components, namely velocity and pressure. Therefore we slightly
change the notation. We denote by v the velocity field and by q the pressure. The
velocity field v plays the role of the state y in Section 2. Consequently, we substitute
yd by vd, such that the optimal control problem (1.1) reads as

J (ū) = min
u∈Uad

J(u)

J(u) :=
1
2
‖Su− vd‖2L2(Ω)3 +

ν

2
‖u‖2L2(Ω)3 .

(3.7)

The operator S maps the control u to the velocity v as solution of the Stokes
equations,

Find (v, q) ∈ X ×M :

a(v, ϕ)+b(ϕ, q) = (u, ϕ) ∀ϕ ∈ X
b(v, ψ) = 0 ∀ψ ∈M

with the bilinear forms a : X ×X → R and b : X ×M → R defined as

a(v, ϕ) :=
3∑
i=1

∫
Ω

∇vi · ∇ϕi and b(ϕ, q) := −
∫

Ω

q∇ · ϕ,

and the spaces

X =
{
v ∈ (H1(Ω))3 : v|∂Ω = 0

}
and M =

{
q ∈ L2(Ω) :

∫
Ω

q = 0
}
.

The finite element solution vh = Shu is given as the unique solution of

Find (vh, qh) ∈ Xh ×Mh such that

ah(vh, ϕh) + bh(ϕh, qh) = (u, ϕh) ∀ϕh ∈ Xh

bh(vh, ψh) = 0 ∀ψh ∈Mh.
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with the weaker bilinear forms ah : Xh ×Xh → R and bh : Xh ×Mh → R,

ah(vh, ϕh) :=
∑
T∈Th

3∑
i=1

∫
T

∇vh,i · ∇ϕh,i and bh(ϕh, ph) := −
∑
T∈Th

∫
T

ph∇ · ϕh.

Here, the i-th component of the vectors vh and ϕh is denoted by vh,i and ϕh,i,
respectively. We approximate the velocity by Crouzeix-Raviart elements,

Xh :=
{
vh ∈ L2(Ω)3 : vh|T ∈ (P1)3 ∀T,

∫
F

[vh]F = 0 ∀F
}

where F denotes a face of an element and [vh]F means the jump of vh on the face
F ,

[vh(x)]F :=

{
lim
α→0

(vh(x+ αnF )− vh(x− αnF )) for an interior face F,

vh(x) for a boundary face F.

Here nF is a fixed normal of F . For the approximation of the pressure we use
piecewise constant functions, this means

Mh :=
{
qh ∈ L2(Ω) : qh|T ∈ P0 ∀T,

∫
Ω

qh = 0
}
.

For our further considerations we assume that the mesh is graded according to
(3.4) with parameter µ < λs, where λs is the smallest positive solution of

sin(λsω) = −λs sinω.

This eigenvalue equation is given in [12, Theorem 6.1]. With the help of a discrete
Poincaré inequality in Xh one can prove the boundedness of the operators Sh and
S∗h, comp. [16], such that Assumptions VAR1 and PP1 hold true. The finite element
error estimates of Assumptions VAR2 and PP2 are shown in [17, Lemma 4.38]. For
the proof of Assumption PP3 one cannot apply the arguments of the scalar elliptic
case componentwise since there are only regularity results for the derivatives of the
solution in edge direction in L2(Ω), but not in Lp(Ω) for general p. For the proof
of this assumption we refer to [17, Lemma 5.57]. The proof of Assumption PP4 is
similiar to the one for the scalar elliptic case. The weaker regularity result in edge
direction, however, results in the condition, that the number of elements in the set
K1 is bounded by ch−2, which is slightly stronger than the condition in Subsection
3.2.1, where the active set is assumed to have bounded two-dimensional measure.

Altogether one can conclude that Theorems 2.1 and 2.4 are valid. Correspond-
ing numerical tests for the postprocessing approach that confirm the theoretical
findings can be found in [16, 17].
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