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Summary. An optimal control problem for a 2-d elliptic equation and with point-
wise control constraints is investigated. The domain is assumed to be polygonal but
non-convex. The corner singularities are treated by a priori mesh grading. A sec-
ond order approximation of the optimal control is constructed by a projection of
the discrete adjoint state. Here we summarize the results from [1] and add further
numerical tests.
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1 Introduction

This paper is concerned with the a 2-d elliptic optimal control problem with
pointwise control constraints. The state and the adjoint state are discretized
by continuous, piecewise linear functions on a family of graded finite ele-
ment meshes. The control is initially discretized with piecewise constants on
the same meshes, but this control is used only for solving the system of dis-
cretized equations. Finally, an improved control is constructed by postprocess-
ing the adjoint state. This approach was suggested and analysed for sufficiently
smooth solutions by Meyer and Rösch [3]. The results of our analysis [1] of
the case of non-smooth solutions are summarized in Section 2.

In Section 3, we present some new numerical tests of this method. It can be
seen that graded meshes are indeed suited to retain the convergence order of
smooth solutions in the non-smooth case. Moreover, we see that the boundary
between active and non-active controls is approximated well although the
method does not specially target to this aim. The results show that it is not
necessary to adapt the mesh to these a priori unknown curves.



2 Apel, Rösch, Winkler: Optimal control in a nonconvex domain

2 Theory

In this section, we summarize our results from [1]; and therefore we closely
follow that paper. We consider the elliptic optimal control problem

J(ū) = min
u∈Uad

J(u), J(u) := F (Su, u), (1)

F (y, u) :=
1
2
‖y − yd‖2L2(Ω) +

ν

2
‖u‖2L2(Ω), (2)

where the associated state y = Su to the control u is the weak solution of the
state equation

Ly = u in Ω, y = 0 on Γ = ∂Ω, (3)

and the control variable is constrained by

a ≤ u(x) ≤ b for a.a. x ∈ Ω. (4)

The function yd ∈ L∞(Ω) is the desired state, a and b are real numbers, and
the regularization parameter ν > 0 is a fixed positive number. Moreover, Ω ⊂
R2 is a bounded polygonal domain with boundary Γ . The set of admissible
controls is Uad := {u ∈ L2(Ω) : a ≤ u ≤ b a.e. in Ω}. The second order
elliptic operator L is defined by

Ly := −∇ · (A∇y) + a · ∇y + a0y, (5)

where the coefficients A = AT ∈ C(Ω̄, R2×2), a ∈ C(Ω̄, R2), a0 ∈ C(Ω̄),
satisfy the usual ellipticity and coercivity conditions ξT Aξ ≥ m0ξ

T ξ for all
ξ ∈ R2 and a0 − 1

2∇ · a ≥ 0.
We focus on state equations with non-smooth solutions. Let us assume

that the domain Ω ⊂ R2 has exactly one reentrant corner with interior angle
ω > π located at the origin. Due to the local nature of corner singularities in
elliptic problems this not a loss of generality. We denote by r := r(x) = |x|
the Euclidean distance to this corner. The solution of the elliptic boundary
value problem

Ly = g in Ω, y = 0 on Γ,

has typically an rλ-singularity where λ ∈ (1/2, 1) is a real number which is
defined by the coefficient matrix A and the angle ω. In the case of the Dirichlet
problem for the Laplace operator, the value of λ is explicitly known, λ = π/ω.
In more general cases this can also be computed.

Via (3), the operator S associates a state y = Su to the control u. We
denote by S∗ the solution operator of the adjoint problem

L∗p = y − yd in Ω, p = 0 on Γ, (6)

that means, we have p = S∗(y−yd). Since we can also write p = S∗(Su−yd) =
Pu with an affine operator P we call the solution p = Pu the associated adjoint
state to u.
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Fig. 1. Ω with a quasi-uniform mesh (µ = 1.0) and with graded meshes (µ = 0.6)

Introducing the projection

Π[a,b]f(x) := max(a,min(b, f(x))),

the condition

ū = Π[a,b]

(
−1

ν
p̄

)
. (7)

is necessary and sufficient for the optimality of ū.
The optimal control problem is now discretized by a finite element method.

We analyze a family of graded triangulations (Th)h>0 of Ω̄ with the global
mesh size h and a grading parameter µ < λ. We assume that the individual
element diameter hT := diam T of any element T ∈ Th is related to the
distance rT := infx∈T |x| of the triangle to the corner by the relation

c1h
1/µ ≤ hT ≤ c2h

1/µ for rT = 0,

c1hr1−µ
T ≤ hT ≤ c2hr1−µ

T for rT > 0.
(8)

For a 2-dimensional domain the number of elements of such a triangulation
is of order h−2. Figure 1 shows an example domain with a uniform mesh and
graded meshes. Implementational aspects are given in Section 3. On these
meshes, we define the finite element spaces

Uh := {uh ∈ L∞(Ω) : uh|T ∈ P0 for all T ∈ Th}, Uad
h := Uh ∩ Uad,

Vh := {yh ∈ C(Ω̄) : yh|T ∈ P1 for all T ∈ Th and yh = 0 on Γ},

where Pk, k = 0, 1, is the space of polynomials of degree less than or equal
to k.

For each u ∈ L2(Ω), we denote by Shu the unique element of Vh that
satisfies a(Shu, vh) = (u, vh)L2(Ω) for all vh ∈ Vh, where a : H1(Ω)×H1(Ω) →
R is the bilinear form defined by a(y, v) :=

∫
Ω

(∇y · (A∇v) + b∇v + a0yv) dx.
In other words, Shu is the approximated state associated with a control u.

The finite dimensional approximation of the optimal control problem is
defined by

Jh(ūh) = min
uh∈Uad

h

Jh(uh) (9)
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with Jh(uh) := 1
2‖Shuh − yd‖2L2(Ω) + ν

2‖uh‖2L2(Ω). The adjoint equation is
discretized in the same way: We search ph = S∗h(Shuh−yd) = Phuh ∈ Vh such
that a(vh, ph) = (Shuh − yd, vh)L2(Ω) for all vh ∈ Vh. The optimal control
problem (9) admits a unique solution ūh, and we denote by ȳh = Shūh the
optimal discrete state and by p̄h = Phūh the optimal discrete adjoint state. In
analogy to (7) we define a postprocessed approximate control ũh by a simple
projection of the piecewise linear adjoint state p̄h onto the admissible set Uad,

ũh := Π[a,b]

(
−1

ν
p̄h

)
.

Let us now summarize discretization error estimates. Under the assump-
tion that the mesh grading parameter µ satisfies the condition

µ < λ, (10)

the optimal, piecewise constant approximate control ūh satisfies

‖ū− ūh‖L2(Ω) ≤ ch
(
‖ū‖L∞(Ω) + ‖yd‖L∞(Ω)

)
(11)

The first order convergence is also observed in numerical tests. Although the
difference ū− ūh is of first order, the associated states and adjoint states differ
by second order,

‖ȳ − ȳh‖L2(Ω) ≤ ch2
(
‖ū‖L∞(Ω) + ‖yd‖L∞(Ω)

)
, (12)

‖p̄− p̄h‖L2(Ω) ≤ ch2
(
‖ū‖L∞(Ω) + ‖yd‖L∞(Ω)

)
, (13)

from which one can conclude that the error of the postprocessed control is
also of second order,

‖ū− ũh‖L2(Ω) ≤ ch2
(
‖ū‖L∞(Ω) + ‖yd‖L∞(Ω)

)
. (14)

These results were first proved by Meyer and Rösch [3] for uniform meshes
in the smooth case, where the solution of Ly = f is contained in W 2,2(Ω) ∩
W 1,∞(Ω). The main result of our paper [1] is that the error estimates (11)–
(14) are also valid in the case of non-convex domains and appropriately graded
meshes, (10). Without local mesh grading (µ = 1), only a reduced convergence
order is observed.

For the proof of the superconvergence results, we needed the following
assumption. The formula (7) computes the optimal control ū by a projection
of the adjoint state p̄. This reduces the smoothness. While |r1−µp̄|W 2,2(Ω) ≤
c|r1−µp̄|W 2,2(Ω) < ∞ for µ < λ < 1, this is not true for ū due to kinks at the
boundary of the active set. We assume that∑

T∈Th: r1−µū 6∈W 2,2(T )

meas T ≤ ch.
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Fig. 2. Example 1. Optimal control function −0.3 ≤ u(x) ≤ −0.1

3 Numerical Results

Let Ω be a circular sector as shown in Figure 1. In order to construct meshes
that fulfil the conditions (8) we transformed the mesh using the mapping
T (x) = x‖x‖

1
µ−1 near the corner, see figure 1, middle image. An alternative

is to use a partitinong strategy, see figure 1, right image.
We choose the example such that the state and dual state have a singularity

near the corner. Consider

−∆y + y = u + f in Ω,

−∆p + p = y − yd in Ω,

u = Π[a,b]

(
− 1

ν p
)

with homogeneous Dirichlet boundary conditions for y and p.
First Example. In order to have an exact solution we choose the data

f = Ly − u = Ly −Π
(
− 1

ν p
)

and yd = y − L∗p such that

y(r, ϕ) = (rλ − rα) sinλϕ

p(r, ϕ) = ν(rλ − rβ) sinλϕ

are the exact solutions of the optimal control problem. We set λ = 2
3 , α =

β = 5
2 , ν = 10−4, a = −0.3 and b = −0.1. Figure 2 displays a piecewise

linear approximation of the corresponding control function ū. Table 1 shows
the reduced convergence rate 2λ on a quasi-uniform mesh (µ = 1) and the
optimal rate of convergence of the control on a graded mesh (µ = 0.6).

Figure 3 shows that the error near the corner dominates the global error.
The picture visualizes the contribution of each triangle to the global L2-error.
Using graded meshes this error diminishs at least as fast as the global error.
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µ = 0.6 µ = 1.0
ndof ‖u− ũ‖L2 rate ‖u− ũ‖L2 rate

18 1.95e-01 0.00 1.95e-01 0.00
55 1.92e-01 0.02 1.92e-01 0.02

189 1.24e-01 0.63 1.31e-01 0.56
697 4.44e-02 1.48 5.87e-02 1.16

2673 1.38e-02 1.69 2.42e-02 1.28
10465 3.79e-03 1.86 9.84e-03 1.30
41409 9.58e-04 1.98 3.93e-03 1.32

164737 2.17e-04 2.14 1.57e-03 1.33

Table 1. Example 1. L2-error of the computed control ũh, −0.3 ≤ u(x) ≤ −0.1
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Fig. 3. Example 1. Visualization of the L2-error of ph, −0.3 ≤ u(x) ≤ 1, µ = 1

Second Example. We choose now the data f and yd such that

y(r, ϕ) = (rλ − rα) sin 3λϕ

p(r, ϕ) = ν(rλ − rβ) sin 3λϕ

with λ = 2
3 and α = β = 5

2 . Further we set a = −0.2, b = 0 and ν = 10−4.
We used a mesh that did not even coincide with the boundary of the upper
active set {x : u(x) = b} in order to show that the method does not need
any apriori information about the active set. Figure 4 shows the piecewise
constant approximation of the optimal control ū.

Table 2 shows that the convergence rate of the control ũ is about 2 which
was proven in [1]. Table 3 contains the absolute errors and error reduction rates
of the approximated state yh in both the L2-norm and the H1-seminorm.

Active Sets. The approximation of the boundary of the active sets is very
important for the quality of the computed control, see e.g. [2]. The method
presented here approximates the active set by a union of triangles. However,
after postprocessing the piecewise linear function ũh gives a much better rep-
resentation of the active sets. Figure 5 shows the active set of Example 1 on
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Fig. 4. Example 2. Piecewise constant approximation of optimal control function
ū, −0.2 ≤ u(x) ≤ 0. One can see a singularity near the corner.

µ = 0.6
ndof ‖u− ũ‖L2 rate

18 2.63e-01 0.00
55 2.59e-01 0.02

189 2.33e-01 0.15
697 8.44e-02 1.47

2673 2.36e-02 1.84
10465 6.04e-03 1.96
41409 1.57e-03 1.95

164737 4.31e-04 1.86

Table 2. Example 2. L2-error of the computed control ũh, −0.2 ≤ u(x) ≤ 0

µ = 0.6 µ = 1
ndof ‖y − yh‖L2 rate ‖y − yh‖H1 rate ‖y − yh‖L2 rate ‖y − yh‖H1 rate

18 1.55e-01 0.00 1.78e+00 0.00 1.55e-01 0.00 1.78e+00 0.00
55 3.92e-02 1.98 1.04e+00 0.77 4.35e-02 1.83 1.10e+00 0.69

189 7.68e-03 2.35 5.74e-01 0.86 1.10e-02 1.98 6.84e-01 0.69
697 1.99e-03 1.94 3.06e-01 0.91 3.55e-03 1.63 4.24e-01 0.69

2673 6.18e-04 1.69 1.61e-01 0.93 1.23e-03 1.53 2.64e-01 0.68
10465 1.58e-04 1.97 8.38e-02 0.94 3.91e-04 1.66 1.65e-01 0.68
41409 3.97e-05 1.99 4.33e-02 0.95 1.23e-04 1.67 1.04e-01 0.67

164737 1.00e-05 1.99 2.22e-02 0.96 3.87e-05 1.67 6.52e-02 0.67

Table 3. Example 2. L2- and H1-errors of the computed state yh, −0.2 ≤ u(x) ≤ 0
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Fig. 5. Example 1: Active triangles and boundary of active sets, (zoom of region
near singularity), left: ndof=2673, middle: ndof=10465, right: ndof=41409

Fig. 6. Example 2: Active triangles and boundary of active sets, −0.2 ≤ u(x) ≤ 0,
µ = 1.0, α = β = 5

2
, (zoom of region near singularity), left: ndof=2673, middle:

ndof=10465, right: ndof=41409

different meshes. The active triangles are shaded. The black curve shows the
computed boundary of the active set as represented by ũh. The second curve
displays the exact boundary. Clearly, the approximation improves with de-
creasing mesh size. Figure 6 shows the same behavior for the second example.
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