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Treatment of boundary layers with anisotropic finite elements

The aim is to construct a finite element method which resolves layers appearing in singularly perturbed problems, here
the easiest case of a reaction diffusion problem. For this, a special anisotropic mesh of Shishkin type 1s investigated.
Estimates of the finite element error in the energy norm are derived which are uniformly valid with respect to the
(small) diffusion parameter. A key ingredient for the error analysis is a refined estimate for derivatives of the
interpolation error.

1. The model problem
Consider the reaction diffusion problem
—e?Autcu=finQ=(0,1)% wu=0ondQ, (1)

where ¢ € (0,1] is the diffusion parameter, and ¢ and f are sufficiently smooth functions, ¢ > ¢; > 0. In the
singularly perturbed case £ < 1 the solution of (1) is characterized by a boundary layer of width O(¢|Inel). For the
analysis of the finite element method we need localized Sobolev norm estimates of the solution with respect to .
Unfortunately, such estimates are hard to obtain. The results of Shishkin [4] for smooth domains and for the unit
square led us to an assumption which we are going to describe next.

Introduce a non-overlapping domain decomposition of Q by introducing lines with a distance b := boe|Ineg]|,
by > %, to the boundary. Denote by Q1 := (b, 1 — b)? the interior subdomain, by Q5 := (0,5)2U (1 —b,1) x (0,b)U
(1 —5,1)2U(0,b) x (1 —b,b) the union of the small subdomains near the corners, and by Q3 := (b, 1 —b) x (0,b)U
(1=b,1)x(b,1=b)U(b,1=b)x (1 —=05,1)U(0,b) x (b,1 —b) the union of the remaining boundary strips. In Q3 we
introduce a boundary fitted Cartesian coordinate system (z1,z3) with z9 := dist(z, 9Q); derivatives D* are to be
understood with respect to this coordinate system.

We assume that the following estimates hold:

W2 < (2)
s W22(Qa)| < OB, 3)
D% Lo(@a)| < C(e™1/24+6/77%2), Ja| =2, (4)
1D Lo ()| < €=, ol = 1. (5)

A discussion of these assumptions can be found in [3, Subsection 2.2]. Here, we have used a multi-index notation
with a = (a1, as), D* := §“*+*2 /(§z]1 0x5?).
With V = WOI’Z(Q) the variational formulation of problem (1) reads:

Find v € V such that a(u,v) = (f,v) for allv € V, (6)
where a(u,v) := e?(Vu, Vo) + (cu,v) and (.,.) is the L3(Q) inner product. Define by || v||q := y/a(v,v) the energy
norm of v € V.

2. Finite element error estimates

Let 7, = {e} be a family of finite element meshes. Introduce the finite element space Vi, C VNC(Q) of all continuous
functions which are linear in the triangular elements e. Then the finite element solution of (1) is defined by:

Find up, € Vi, such that a(up,vs) = (f,vs) for all v, € V. (7)

For motivating the use of anisotropic finite elements in the boundary strip {23 we point out the following: If
the domain was meshed using isotropic elements of equal size h, then the error estimate would be ||u— up |[|a <
Che='/?. Tf the boundary layer Qs UQ3 was resolved using isotropic elements of diameter ¢'/2h then one can obtain
llw—up |lo < Ch. But then the number of elements grows to O(h~?|1In¢l).



As our favourite variant we propose to use in {23 anisotropic elements with diameter A; = h in tangential
direction and hy = bh normal to the boundary. We complete the mesh with isotropic elements of diameter A in €4
and of diameter bh in 5. Then we are able to prove

llu—unllla < Ch(e'/?Ine| + h) (8)

while using only O(h~?%) elements. The proof can be sketched as follows:

In ©Q; and Qs, we can use standard interpolation error estimates. Together with (2) and (3) we find

llu—Ihulle, < Cleh+h*)|u; W2(Q1))|
< C(eh+h?),

lu—Thulle, < Clebh+ (bh)*]fu; W2(1))
< C(ebh 4 b2h2)pH/ 2312
< Chellne)P’?(1 4 h|Ine|).

In Q3, we use the anisotropic interpolation error estimates

= T La(e)l < Clamease)V2(hy | DODu; L ()] + hall DOVs Lo(e)]),

B W] < OO ID3u; L) 4+ i [DCDu; L] 4 a0 L))
The second one is proved in [1], the first one can be obtained with the same methodology. We conclude with (4)
and (5)

Celhe™ % + he™ "% 4 (bh)e™®/?] + Cblh + (ah)e™]
Che'?|Ine|.

lu—=Thulla, <
<

Summing up these estimates we obtain a global interpolation error estimate. By using the projection property of
the finite element method we get the finite element error estimate (8). Note that the proof sketched here is slightly
improved in comparison with [3]. The estimate (8) was derived there under an assumption which is slightly stronger
than (4).

This approach can be generalized to arbitrary polygonal domains, to three dimensions, and to shape functions
of higher order [3]. Quadrilateral elements can be used as well [2].
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