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1. Introduction. We consider the stationary Stokes problem

−4u +∇p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω,

(1.1)

in a two-dimensional domain Ω. For the discretisation of (1.1), one has to make
the fundamental decision of choosing either a continuous or a discontinuous pressure
approximation. We advocate the latter due to a better mass conservation on element
level. Furthermore, coupled multi-grid solvers work in general better for discontinuous
pressure spaces [16, 17]. Moreover, one has to distinguish between conforming and
non-conforming velocity spaces. Since the degrees of freedom in two-dimensional non-
conforming methods are edge-oriented, these methods are advantageous for parallel
implementation due to missing cross-point communication.

Well-known examples for low order non-conforming discretisations of (1.1) can
be found in [9, 12, 14]. Families of non-conforming triangular elements of arbitrarily
high polynomial order were given in [21, 22] where only in [21] the application to the
Stokes problem was considered. Three families of quadrilateral elements and a family
of hexahedral elements were derived recently in [20]. They generalise the well-known
rotated Q1 element [23].

The spaces for approximating the velocity and the pressure in Stokes and Navier–
Stokes problems cannot be chosen independently but have to satisfy the discrete
inf-sup stability condition. The solution of the Navier–Stokes problem includes in
general layer phenomena. To capture this anisotropic behaviour, one usually employs
adequately refined anisotropic meshes. The small element size in one direction is used
to compensate for large derivatives in this direction. In such applications it is essential
that the constant in the discrete inf-sup condition does not degenerate for increasing
aspect ratio of the elements. We refer to [6] for the state of the art in about 2002.
However, the above mentioned families were till now not investigated concerning their
behaviour on meshes which contain elements with large aspect ratio. In this paper we
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will analyse on anisotropic meshes the properties of the three quadrilateral families
of [20] and a further new family which generalises the first order element developed
in [5]. All considered elements are parametric. The first mentioned three families
generalise the parametric rotated Q1 element which itself is not inf-sup stable on
anisotropic meshes. Although we investigate families of arbitrary polynomial degree,
we focus on an h-version of the finite element method, this means that the dependence
of the constants on the polynomial degree is not elaborated.

The paper is organised as follows. We start with basic notation in Sect. 2. All
four considered families will be introduced in Sect. 3. The numerical results which are
obtained by using these families on isotropic meshes, differ only slightly. However,
a numerical study on selected anisotropic meshes shows that for two families the
constant in the inf-sup condition degenerates to zero as the aspect ratio increases.
We succeeded in analysing the remaining two families and present interpolation error
estimates, the proof of the inf-sup condition, and an estimate of the consistency error
in Sect. 5, 6, and 7, respectively. Since the proofs are technical, we summarise our
results already in Sect. 4.

2. Notation. Let Ω be a bounded domain in R2. For a one- or two-dimensional
domain G ⊂ Ω we will use the Sobolev space Wm,p(G) with the norms ‖ · ‖m,p,G and
semi-norms |·|m,p,G where the last index will be omitted if G = Ω. In the case p = 2 we
write, as usual, Hm(G) := Wm,2(G) and omit the index p in the norms. Note further
that Lp(G) := W 0,p(G). The vector-valued version of all spaces will be denoted by
the corresponding bold-face letter. The inner product in L2(G) and its vector-valued
and tensor-valued versions will be denoted by (·, ·)G. For a one-dimensional manifold
F ⊂ ∂G, the inner product in L2(F ) and its vector-valued versions is written as 〈·, ·〉F .

Let X := H1
0(Ω) and M := L2

0(Ω) = {v ∈ L2(Ω) : (v, 1) = 0}. A weak
formulation of (1.1) reads

Find (u, p) ∈ X ×M such that

a(u,v)− b(v, p) = (f ,v) ∀v ∈ X,

b(u, q) = 0 ∀q ∈ M,
(2.1)

where

a(u,v) := (∇u,∇v), b(v, q) := (div v, q).

Let
{
Th

}
be a family of admissible triangulations of Ω into rectangular elements.

For a domain G ⊂ Rd, d = 1, 2, let Pk(G) denote the space of polynomials of degree
less than or equal to k. For discretising the pressure, we will use the space

Mh := {p ∈ L2
0(Ω) : p|K ∈ Pr−1(K)∀K ∈ Th

}
of generally discontinuous, piecewise polynomials of degree less than or equal to r−1.
The velocity will be approximated by a non-conforming finite element space Xh :=
X2

h. The detailed definition for several choices of Xh will be given in Sect. 3.
Since the bilinear forms a and b are not defined for general functions from Xh,

we introduce the bilinear forms ah and bh by

ah(uh,vh) :=
∑

K∈Th

(∇uh,∇vh)K , bh(vh, qh) :=
∑

K∈Th

(div vh, qh)K ,
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which coincide for regular arguments with a and b, i. e. ah(u,v) = a(u,v) for u,v ∈
X, and bh(v, q) = b(v, q) for v ∈ X, q ∈ M . Furthermore, we define

|vh|1,h :=

( ∑
K∈Th

|vh|21,K

)1/2

which will be a norm on Xh, see (3.2) for the definition of Xh. The discretised Stokes
problem reads

Find (uh, ph) ∈ Xh ×Mh such that

ah(uh,vh)− bh(vh, ph) = (f ,vh) ∀vh ∈ Xh,

bh(uh, qh) = 0 ∀qh ∈ Mh.
(2.2)

For the spaces Xh and Mh we define the quantity

βh := inf
qh∈Mh

sup
vh∈Xh

bh(vh, qh)
|v|1,h ‖qh‖0

. (2.3)

The positivity of βh ensures that (2.2) is uniquely solvable. Moreover, the inverse
of βh enters the estimate of the discretisation error, see [9, Sect. II.2.2]. Since we
are interested in anisotropic discretisations, the quantity βh should be bounded away
from zero not only for h tending to zero but also for increasing aspect ratio. We call
this the inf-sup condition and shall see that it is not generally satisfied.

Within this paper, we will frequently use the notation x . y for the case that
x ≤ C y holds true where C is a positive constant which is independent of the mesh
parameters, i.e., independent of the element sizes and the aspect ratio.

3. Families of finite elements. For a non-negative integer k, we denote by Lk

the k-th one-dimensional Legendre polynomial normalised such that Lk(1) = 1. Let

δk :=

1∫
−1

L2
k(t) dt =

2
2k + 1

, k ≥ 0.

The Legendre polynomials are orthogonal, i.e.,

1∫
−1

Li(t)Lj(t) dt = δijδi

where δij denotes the Kronecker delta. The integrated Legendre polynomials L̂k which
are defined by

L̂k(t) :=

t∫
−1

Lk(s) ds

are related to the Legendre polynomials by

L̂k(t) =


δk

2
(
Lk+1(t)− Lk−1(t)

)
k ≥ 1,

L1(t) + L0(t) k = 0.
(3.1)
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For defining the non-conforming finite element space, we will use the triple nota-
tion in the sense of Ciarlet, [10]. Let (K̂, V̂ , N̂ ) be a finite element on the reference
cell K̂. All quantities which are connected to the reference element will be indicated
by a hat. Note that as an exception both the Legendre polynomials Lk and the
integrated Legendre polynomials L̂k are always defined on reference interval [−1, 1].
Let FK := K̂ → K be the affine transformation which maps K̂ onto K. Then, the
function space V (K) on K is defined by

V (K) :=
{
v = v̂ ◦ F−1

K : v̂ ∈ V̂
}
.

Using the notation Si
h and Sb

h for the set of interior and boundary edges of Th, the
global scalar finite element space Xh is given by

Xh :=
{

v ∈ L2(Ω) : v|K ∈ V (K)∀K ∈ Th, 〈q, [v]E〉E = 0 ∀q ∈ Pr−1(E)∀E ∈ Si
h,

〈q, v〉E = 0∀q ∈ Pr−1(E)∀E ∈ Sb
h

}
.

(3.2)
As usual, [v]E denotes the jump of the function v across the edge E. The vector-valued
finite element space Xh consists of Xh in each component.

Now, we will define several finite elements on the reference cell K̂ = (−1, 1)2. We
introduce the nodal functionals

N̂ij(v̂) :=
1

δiδj

1∫
−1

1∫
−1

v̂(x̂1, x̂2) Li(x̂1)Lj(x̂2) dx̂2 dx̂1, i, j ≥ 0,

and, for non-negative integers k,

N̂k,−(v̂) :=
1
δk

1∫
−1

v̂(x̂1,−1) Lk(x̂1) dx̂1, N̂k,+(v̂) :=
1
δk

1∫
−1

v̂(x̂1,+1)Lk(x̂1) dx̂1,

N̂−,k(v̂) :=
1
δk

1∫
−1

v̂(−1, x̂2) Lk(x̂2) dx̂2, N̂+,k(v̂) :=
1
δk

1∫
−1

v̂(+1, x̂2) Lk(x̂2) dx̂2.

For a fixed integer r ≥ 1, the set N̂r of nodal functionals is given by

N̂r :=
{
N̂ij : 0 ≤ i+ j ≤ r− 2

}
∪
{
N̂k,−, N̂k,+, N̂−,k, N̂+,k : k = 0, . . . , r− 1

}
. (3.3)

Now, we look for suitable function spaces V̂r ⊃ Pr(K̂) with the property that the set
N̂r of nodal functionals is unisolvent with respect to the space V̂r. The following four
choices for V̂r fulfil these conditions. An illustration of these families for r = 11 is
given in Figure 3.1 where the grey boxes indicate the space Pr(K̂), the dark boxes
stand for further functions of form Li(x̂1)Lj(x̂2), and if a pair of bright boxes is
connected by an arc then only the difference of the involved functions belongs to the
space V̂r.

A first choice was already given in Example 5 in [15]. We set

V̂ 1
r := Pr(K̂)⊕ R̂r ⊕ Ŝr (3.4)
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Fig. 3.1. Illustration of the function spaces bV ν
11 for ν = 1, . . . , 4, from top left to bottom right.

where

R̂r :=


span

{
Li+1(x̂1)Li(x̂2), Li(x̂1)Li+1(x̂2)

Li+2(x̂1)Li(x̂2)− Li(x̂1)Li+2(x̂2), : i = r/2
}

, r even,

span
{

Li+2(x̂1)Li(x̂2)− Li(x̂1)Li+2(x̂2) : i = (r − 1)/2
}

, r odd,

and

Ŝr := span
{

Li(x̂1)Li(x̂2), Li+1(x̂1)Li(x̂2), Li(x̂1)Li+1(x̂2),

Li+2(x̂1)Li(x̂2)− Li(x̂1)Li+2(x̂2) : r/2 < i ≤ r − 1
}

.

A second variant which is given by

V̂ 2
r := Pr(K̂) ⊕ span

{
Li+2(x̂1)Lr−1−i(x̂2)− Li(x̂1)Lr+1−i(x̂2) , i = 0, . . . , r − 1

}
⊕ span

{
Li+2(x̂1)Lr−i(x̂2)− Li(x̂1)Lr+2−i(x̂2) , i = 1, . . . , r − 1

}
(3.5)
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was introduced in [20]. There, also the following third version can be found:

V̂ 3
r :=Pr(K̂)

⊕ span
{

Li(x̂1)Lr+1−i(x̂2), Lr+1−i(x̂1)Li(x̂2) , i = 0, . . . , br/2c − 1
}

⊕ span
{

Li(x̂1)Lr+2−i(x̂2), Lr+2−i(x̂1)Li(x̂2) , i = 1, . . . , b(r + 1)/2c − 1
}

⊕ span
{

Lbr/2c+2(x̂1)Lbr/2c(x̂2)− Lbr/2c(x̂1)Lbr/2c+2(x̂2)
}

(3.6)
where bsc is the largest integer which is less than or equal to s. Note that all these
spaces generalise the parametric rotated Q1 element, i. e. V̂ 1

1 = V̂ 2
1 = V̂ 3

1 = Qrot
1 .

Finally, we introduce a new family,

V̂ 4
r := Pr(K̂)⊕ span

{
Lr+1−i(x̂1)Li(x̂2), i = 0, . . . , r − 1

}
⊕ span

{
Lr+2−i(x̂1)Li(x̂2), i = 1, . . . , r − 1

} (3.7)

which recovers for r = 1 the space introduced in [5]. Note that this space is not
symmetric with respect to x̂1 and x̂2. It is adapted to anisotropic elements which
are elongated in the x̂1-direction. If the anisotropic element is stretched in the x̂2-
direction, the roles of x̂1 and x̂2 must be exchanged in the definition of V̂ 4

r . For
isotropic elements one can use both variants or one of the families V̂ ν

r , ν = 1, 2, 3.
All four families are unisolvent with respect to the set Nr of nodal functionals

defined in (3.3). The proof for V̂ 1
r can be found in [15]. The unisolvence results for V̂ 2

r

and V̂ 3
r are given in [20]. The proof for the family V̂ 4

r will be given in the appendix,
see Lemma A.1 on page 21.

Table 3.1
Results for second and third order elements on isotropic meshes.

|u− uh|1,h ‖u− uh‖0 ‖p− ph‖0

pair error order error order error order

V 1
2 /P disc

1 2.475-05 1.98 4.732-08 2.99 2.147-05 2.00
V 2

2 /P disc
1 2.679-05 1.99 5.637-08 2.99 2.145-05 2.00

V 3
2 /P disc

1 2.321-05 2.01 4.643-08 3.01 2.146-05 2.00
V 4

2 /P disc
1 2.542-05 2.00 5.955-08 2.99 2.341-05 2.00

V 1
3 /P disc

2 6.990-08 2.99 1.117-10 3.99 6.655-08 3.00
V 2

3 /P disc
2 6.794-08 3.00 1.158-10 4.00 6.650-08 3.00

V 3
3 /P disc

2 6.869-08 3.02 1.151-10 4.02 6.807-08 3.03
V 4

3 /P disc
2 6.642-08 2.99 1.095-10 3.99 6.681-08 3.00

Table 3.1 shows that the results for different elements of the same order are
comparable on isotropic meshes. The presented results were obtained on a uniform
64 × 64-decomposition of the unit square. The right hand side and the boundary
conditions were chosen such that

u(x, y) =
(

sin(x) sin(y)
cos(x) cos(y)

)
, p(x, y) = 2 cos(x) sin(y)− p0

is the given solution of (2.1) where the constant p0 is determined by p ∈ L2
0(Ω). The

given orders were calculated from the data on the 64× 64-mesh and the next coarser
32× 32-mesh. All convergence rates are optimal.
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Fig. 3.2. Plot of βh against the aspect ratio for a family of layer meshes; left: r = 2, right: r = 3.

In Figure 3.2 we display the inf-sup constants βh for the finite element spaces
(Xh,Mh) defined via V̂ ν

r , r = 2, 3, ν = 1, 2, 3, 4, on a family of meshes with increasing
aspect ratio. These rectangular 2 × N -meshes are defined by their nodes (xi, yj),
xi = i/2, i = 0, 1, 2, yj = j/N , j = 0, . . . , N , yielding the aspect ratio N/2 for all
elements. We see that the inf-sup constant βh tends to zero for the families with
ν = 1, 2. This means that these families are not suited when anisotropic meshes are
employed. For ν = 3, 4, however, the inf-sup constant βh remains bounded away from
zero on a quite large level. Therefore we will investigate these two families further.

Since we will not focus on a p-version of the finite element method, the dependence
of all constants on the parameter r is not elaborated within this paper. For ν = 3, 4,
we define by

N̂(Îν v̂) = N̂(v̂) ∀N̂ ∈ N̂

the canonical interpolation operators Îν which map onto V̂ ν . Note that these interpo-
lation operators are well defined for all functions which belong to W 1,1(K̂). The global
interpolant Iν

h is defined elementwise as usual via
(
Iν
hu
)
|K =

(
Îν(u|K ◦ FK)

)
◦ F−1

K .
Since the edge functionals from N̂ are transformed into functionals which are as-
sociated with the edges of Th, the elementwise defined interpolation operators Iν

h ,
ν = 3, 4, map into the corresponding non-conforming space Xh. The vector-valued
interpolation operators Iν

h : X → Xh where Xh is based on V̂ ν , ν = 3, 4, are defined
componentwise.

4. Main results. In the remaining part of this paper we will investigate the
families 3 and 4 where we succeed to prove, on special meshes, the fulfilment of the
inf-sup condition and estimates for the interpolation error and the consistency error.
These three properties result in the final discretisation error estimate of order r. Since
the proofs are quite lengthy, we summarise the results in this section. The proofs of
Theorems 4.1 to 4.4 are given in Sections 5 to 7.

The first ingredient is an anisotropic local interpolation error estimate on an
element K which is a rectangle with edge sizes hK,1 and hK,2. We assume that K is
elongated in x1-direction, i.e., hK,1 ≥ hK,2. We abbreviate ∂1 := ∂/∂x1, ∂2 := ∂/∂x2,
∂̂1 := ∂/∂x̂1, ∂̂2 := ∂/∂x̂2, and use the multi-index notation with α = (α1, α2),
α1, α2 ≥ 0, |α| = α1 + α2, Dα = ∂α1

1 ∂α2
2 , and hα

K = hα1
K,1h

α2
K,2.
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Theorem 4.1 (Interpolation of smooth functions). Let u ∈ W `,p(K) where ` ∈
N, 2 ≤ ` ≤ r + 1, p ∈ [1,∞]. Fix m ∈ {0, 1} and q ∈ [1,∞] such that W `−m,p(K) ↪→
Lq(K). Then, the anisotropic interpolation error estimate

|u− Iν
hu|m,q,K . |K|1/q−1/p

∑
|α|=`−m

hα
K |Dαu|m,p,K , ν = 3, 4,

holds true.
Although the interpolation operators Iν

h , ν = 3, 4, are well defined for functions
from W 1,1(K), the anisotropic interpolation error estimate holds only for functions
from W 2,1(K) if r ≥ 2. The reason is that we need traces of derivatives in the proof,
see also Example 5.5. Note that for r = 1 and ` = 1, the anisotropic interpolation
error estimate holds for I4

h, see [4, Corollary 1], but not for I3
h, see [7], since the

parametric version is considered here.
Interpolation error estimates for regular functions are needed for the estimation

of the best approximation error. However, for the proof of the fulfilment of the inf-
sup condition, one needs an interpolation estimate for H1-functions. Fortunately,
the regularity assumption u ∈ W 2,1(K) in Thm. 4.1 can be weakened if functions
are considered which vanish on the short sides of K. To this end, we introduce the
function space

W 1,p
E (K) :=

{
v ∈ W 1,p(K) : v|E−,∗ = v|E+,∗ = 0

}
, (4.1)

where we denote by E−,∗ and E+,∗ the edges on the left hand and the right hand side
of the element K, respectively, see Figure 4.1. The anisotropic interpolation error
estimate on W 1,p

E (K) is stated in the following theorem.

K

E∗,−

E+,∗

E∗,+

E−,∗

Fig. 4.1. Side labels on the element K.

Theorem 4.2 (Interpolation of non-smooth functions). Let u ∈ W 1,p
E (K), p ∈

[1,∞]. Fix m ∈ {0, 1} and q ∈ [1,∞] such that W 1−m,p(K) ↪→ Lq(K). Then, the
anisotropic interpolation error estimate

|u− Iν
hu|m,q,K . |K|1/q−1/p

∑
|α|=1−m

hα|Dαu|m,p,K , ν = 3, 4,

holds true.
To be able to use this result for checking the inf-sup condition, we employ the

macro-element technique from [8], see also [14, Sect. II.1.4]. To this end, let TH be
an admissible macro-triangulation of Ω into isotropic rectangular macro-elements Q,

Ω =
⋃

Q∈TH

Q.

The finally used triangulation Th is obtained from TH by applying local refinement
strategies to the macro-elements Q in such a way that Th is admissible. In particular,
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we investigate here boundary layer and corner patches which are defined in the sequel.
Other patches can be included provided a local inf-sup condition, as given by Lemmata
6.2 and 6.3, holds.

Let Q = (x−, x+) × (y−, y+) be a patch, and let τx = {(xi−1, xi), i = 1, . . . , n}
and τy = {(yj−1, yj), j = 1, . . . ,m} be decompositions of (x−, x+) and (y−, y+) into
subintervals, respectively. In this way, the tensor-product triangulation τx × τy of Q
is induced. If τx is the trivial decomposition of (x−, x+) into one interval then the
obtained patch is called boundary layer patch. If m = n, x0 = x−, y0 = y−, xi =
x− + (x+ − x−)σn−i, i = 1, . . . , n, and yj = y− + (y+ − y−)σn−j , j = 1, . . . , n, with a
parameter σ ∈ (0, 1), then the resulting patch is called corner patch. Typical boundary
layer and corner patches are shown in Fig. 4.2. Note that the trivial decomposition
of Q into one cell is allowed. The constants σ and n may vary from patch to patch.
It is only required that the global mesh Th is admissible.

Fig. 4.2. Typical boundary layer (left) and corner patches (right).

Theorem 4.3 (Inf-sup condition). Let Th be a triangulation of Ω as described
above and consider Xh based on V̂ 3

r or V̂ 4
r with r ≥ 3. Then, there exists a constant

β > 0 such that βh ≥ β. As all constants in this paper, β is independent of the mesh
parameter h and the maximal aspect ratio.

Our method of proof works for all polynomial degrees r ≥ 3, but not for r = 2.
Since some numerical tests with r = 2 showed stability, the validity of a uniform
inf-sup condition must be considered open for this case.

The consistency error is estimated in the following theorem.
Theorem 4.4 (Consistency error). Let u ∈ X ∩Hr+1(Ω) and p ∈ M ∩Hr(Ω)

be the solution of (2.1). Then, the consistency error estimate

sup
vh∈Xh

|ah(u,vh)− bh(vh, p)− (f ,vh)|
|vh|1,h

.

 ∑
K∈Th

∑
|α|=r

h2α
K

(
‖Dα(∂1u1 − p)‖2

0,K + ‖Dα∂1u2‖2
0,K

)1/2

+

 ∑
K∈Th

h2
K,1

∑
|α|=r−1

h2α
K ‖Dαf‖2

0,K

1/2

holds true. As above, the space Xh is based on V̂ 3
r or V̂ 4

r .
Now, we can formulate our main result.
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Theorem 4.5 (Discretisation error estimate). Let (u, p) ∈ X×M and (uh, ph) ∈
Xh ×Mh be the solutions of (2.1) and (2.2), respectively. The space Xh is based on
V̂ 3

r or V̂ 4
r with r ≥ 3. Then, the discretisation error is estimated by

|u− uh|1,h + ‖p− ph‖0 .

 ∑
K∈Th

∑
|α|=r

h2α
K

(
|Dαu|21,K + ‖Dαp‖2

0,K

)1/2

+

 ∑
K∈Th

h2
K,1

∑
|α|=r−1

h2α
K ‖Dαf‖2

0,K

1/2

provided that u ∈ Hr+1(Ω), p ∈ Hr(Ω), and f ∈ Hr−1(Ω).
Proof. Under the assumption that the uniform inf-sup condition βh ≥ β > 0 is

valid, Proposition II.2.16 of [9] gives

|u− uh|1,h + ‖p− ph‖0 . inf
vh∈Xh

|u− vh|1,h + inf
qh∈Mh

‖p− qh‖0

+ sup
vh∈Xh

|ah(u,vh)− bh(vh, p)− (f ,vh)|
|vh|1,h

.

The estimate for the error of the best approximation is obtained by combining the
local estimates from Thm. 4.1. The consistency term is estimated in Thm. 4.4. The
assertion is concluded by observing that parts of the right hand side of the consistency
error estimate can be bounded by best approximation terms.

Note that the estimate is standard in the sense that we have a method of order
r for u ∈ Hr+1(Ω), p ∈ Hr(Ω), and f ∈ Hr−1. The advantage is that we can
compensate large derivatives of u and p in x2-direction by choosing small values for
hK,2.

5. Proof of the interpolation error estimates. Estimates for ‖u−Ihu‖0,q,K

and ‖∂1(u − Ihu)‖0,q,K can be proved in the standard way since the element K is
assumed to be stretched in x1-direction. Even non-smooth functions u ∈ W 1,p(K)
can be treated by this approach.

Lemma 5.1. Let u ∈ W `,p(K) where ` ∈ N, 1 ≤ ` ≤ r + 1, p ∈ [1,∞]. Fix
m ∈ {0, 1} and q ∈ [1,∞] such that W `−m,p(K) ↪→ Lq(K). Then, the anisotropic
interpolation error estimate

‖∂m
1 (u− Iν

hu)‖0,q,K . |K|1/q−1/p
∑

|α|=`−m

hα
K |Dαu|m,p,K , ν = 3, 4,

holds true.
Proof. We prove the estimate first on the reference element K̂. Since the interpola-

tion operator Îν preserves polynomials of degree r and since Îν : W `,p(K̂) → Wm,q(K̂)
is a bounded operator we have for all ŵ ∈ P`−1(K̂) ⊂ Pr(K̂) ⊂ V̂ ν

r

‖∂̂m
1 (û− Îν û)‖0,q, bK = ‖∂̂m

1 (û− ŵ)− ∂̂m
1 Îν(û− ŵ)‖0,q, bK . ‖û− ŵ‖`,p, bK .

By using the Deny–Lions lemma, we obtain

‖∂̂m
1 (û− Îν û)‖0,q, bK . |û|`,p, bK .
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The assertion is proved by transforming this estimate from K̂ to K using hK,2 ≤ hK,1.

The challenge is the proof for ‖∂2(u − Iν
hu)‖0,q,K , see [1, Ex. 2.1]. Due to [1,

Lemma 2.2] we succeed if we find a set F̂r of dim ∂̂2V̂
ν
r linear functionals, such that

F̂ ∈
(
W `−1,p(K̂)

)′ ∀F̂ ∈ F̂r, (5.1)

F̂
(
∂̂2(û− Îν û)

)
= 0 ∀F̂ ∈ F̂r, ∀û ∈ W `,p(K̂), (5.2)

v̂ ∈ ∂̂2V̂
ν
r and F̂ (v̂) = 0 ∀F̂ ∈ F̂r ⇒ v̂ ≡ 0. (5.3)

To this end, we define the set

F̂r :=
{
F̂i,∗ : i = 0, . . . , r − 1

}
∪
{
F̂ij : 0 ≤ i + j ≤ r − 2

}
∪
{
F̂+,i, F̂−,i : i = 1, . . . , r − 1

} (5.4)

with

F̂i,∗(v̂) :=
1

δiδ0

1∫
−1

1∫
−1

Li(x̂1)L0(x̂2)v̂(x̂1, x̂2) dx̂1 dx̂2,

F̂ij(v̂) :=
2

δiδj

1∫
−1

1∫
−1

Li(x̂1)L̂j(x̂2)v̂(x̂1, x̂2) dx̂1 dx̂2,

F̂+,i(v̂) :=
2
δi

1∫
−1

L̂i(x̂2)v̂(+1, x̂2) dx̂2,

F̂−,i(v̂) :=
2
δi

1∫
−1

L̂i(x̂2)v̂(−1, x̂2) dx̂2.

One easily checks that both the dimension of ∂̂2V̂
ν
r , ν = 3, 4, and the number of

functionals in F̂r are equal to r2/2 + 5r/2 − 2. It remains to prove that the set F̂r

satisfies the properties (5.1)–(5.3). We start with the unisolvence property (5.3) which
needs the most complex proof, done for V̂ 4

r and V̂ 3
r separately.

Lemma 5.2. The set F̂r of functionals is unisolvent on ∂̂2V̂
4
r .

Proof. The definition of V̂ 4
r gives immediately

∂̂2V̂
4
r = Pr−1(K̂)⊕ span

(
Lr−i(x̂1)Li(x̂2), i = 0, . . . , r − 2

)
⊕ span

(
Lr+1−i(x̂1)Li(x̂2), i = 0, . . . , r − 2

)
.

(5.5)

We will show that v̂ ∈ ∂̂2V̂r and F̂ (v̂) = 0 for all F̂ ∈ F̂r gives v̂ ≡ 0. To this end, a
general element v̂ ∈ ∂̂2V̂r is written as

v̂ =
∑

0≤i+j≤r−1

αijLi(x̂1)Lj(x̂2) +
r−2∑
i=0

βiLr−i(x̂1)Li(x̂2) +
r−2∑
i=0

γiLr+1−i(x̂1)Li(x̂2).

Applying F̂n,∗ to v̂ and using the orthogonality of the Legendre polynomials it follows
that

0 = F̂n,∗(v̂) = αn0, n = 0, . . . , r − 1. (5.6)
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Hence, the function v̂ can be written as

v̂ =
r−2∑
i=0

r−1−i∑
j=1

αijLi(x̂1)Lj(x̂2) +
r−2∑
i=0

βiLr−i(x̂1)Li(x̂2) +
r−2∑
i=0

γiLr+1−i(x̂1)Li(x̂2).

Applying F̂m,0, m = 0, . . . , r − 2, and using the orthogonality of the Legendre poly-
nomials together with 2/δ0 = 1 results in

0 = F̂m,0(v̂) =
r−2∑
i=0

r−1−i∑
j=1

αijδim(δj1δ1 + δj0δ0) +
r−2∑
i=0

βiδm,r−i(δi1δ1 + δi0δ0)

+
r−2∑
i=0

γiδm,r+1−i(δi1δ1 + δi0δ0) = αm1δ1 (5.7)

since all other terms vanish due to the range of i and j in the various sums. Hence,
αm1 = 0 for m = 0, . . . , r− 2. Now, we apply F̂mn for n ≥ 1, i. e. for n = 1, . . . , r− 2,
m = 0, . . . , r − 2 − n. Applying relation (3.1) between Legendre polynomials and
integrated Legendre polynomials, we obtain

0 = F̂mn(v̂) =
r−2∑
i=0

r−1−i∑
j=2

αijδim(δj,n+1δn+1 + δj,n−1δn−1)

+
r−2∑
i=0

βiδm,r−i(δi,n+1δn+1 + δi,n−1δn−1)

+
r−2∑
i=0

γiδm,r+1−i(δi,n+1δn+1 + δi,n−1δn−1)

where again the orthogonality of the Legendre polynomials was used. The first double
sum can be simplified, and the sums with βi and γi are again zero due to m+n ≤ r−2.
Thus, the equations become

0 = αm,n+1δn+1 − αm,n−1δn−1.

For n = 1 one gets αm2 = 0, m = 0, . . . , r− 3, since αm0 = 0. By induction we obtain
with (5.6) and (5.7)

αij = 0, 0 ≤ i + j ≤ r − 1.

Hence, we have

v̂ =
r−2∑
i=0

(
βiLr−i(x̂1) + γiLr+1−i(x̂1)

)
Li(x̂2).

Using F̂+,n(v̂) = 0 and F̂−,n(v̂) = 0, n = 1, . . . , r − 1, we get

0 =
r−2∑
i=0

(
βi(+1)r−i + γi(+1)r+1−i

)(
δn+1,iδn+1 − δn−1,iδn−1

)
,

0 =
r−2∑
i=0

(
βi(−1)r−i + γi(−1)r+1−i

)(
δn+1,iδn+1 − δn−1,iδn−1

)
.



Non-conforming, anisotropic elements for Stokes 13

In the case n = r − 1 and n = r − 2 these equations reduce to

βr−2 + γr−2 = 0, βr−2 − γr−2 = 0,

βr−3 + γr−3 = 0, βr−3 − γr−3 = 0,

i.e., we get

βr−2 = γr−2 = βr−3 = γr−3 = 0.

Using this result, we get by induction on n = r − 3, . . . , 1 the final result

βi = γi = 0, i = 0, . . . , r − 2.

This means that v̂ ≡ 0.
Lemma 5.3. The set F̂r of functionals is unisolvent on ∂̂2V̂

3
r .

Proof. In order to get an expression for ∂̂2V̂
3
r , we have to consider the difference

term carefully. Setting

k := br/2c (5.8)

and using the differentiated version of (3.1), we obtain

∂

∂x̂2

(
Lk+2(x̂1)Lk(x̂2)− Lk(x̂1)Lk+2(x̂2)

)
=Lk+2(x̂1)

[
L′k−2(x̂2) +

2
δk−1

Lk−1(x̂2)
]
− Lk(x̂1)

[
L′k(x̂2) +

2
δk+1

Lk+1(x̂2)
]

=
2

δk+1

[
δk+1

δk−1
Lk+2(x̂1)Lk−1(x̂2)− Lk(x̂1)Lk+1(x̂2)

]
+ qr−1

with qr−1 ∈ Pr−1(K̂). Hence, the space ∂̂2V̂
3
r can be written as

∂̂2V̂
3
r =Pr−1(K̂)

⊕ span
{

Lr−i(x̂1)Li(x̂2), Lr+1−i(x̂1)Li : i = 0, . . . , k − 2 or i = k + 2, . . . , r
}

⊕ span
{

δk+1

δk−1
Lk+2(x̂1)Lk−1(x̂2)− Lk(x̂1)Lk+1(x̂2)

}
⊕ span

{
Lm(x̂1)Ln(x̂2)

}
(5.9)

where k is defined in (5.8) and

(m,n) :=

{
(k + 3, k − 1) for r odd,

(k − 1, k + 1) for r even.
(5.10)

As usual, we will show that v̂ ∈ ∂̂2V̂
3
r with F̂ (v̂) = 0 for all F̂ ∈ F̂r results in

v̂ ≡ 0. In order to do so, we write v̂ as a linear combination of the basis functions
given in (5.9) and the Legendre basis of Pr−1(K̂). Proceeding as in the beginning
of the proof for Lemma 5.2, we get that all coefficients for functions from Pr−1(K̂)
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vanish. Hence, the function v̂ can be represented as

v̂ =
k−2∑
i=0

(
βiLr−i(x̂1)Li(x̂2) + γiLr+1−i(x̂1)Li(x̂2)

)
+

r∑
i=k+2

(
βiLr−i(x̂1)Li(x̂2) + γiLr+1−i(x̂1)Li(x̂2)

)
+ µ

(
δk+1

δk−1
Lk+2(x̂1)Lk−1(x̂2)− Lk(x̂1)Lk+1(x̂2)

)
+ ϑLm(x̂1)Ln(x̂2)

with k from (5.8) and m,n from (5.10). Now, the cases of odd and even r have to be
distinguished. Let r be even. Applying the nodal functionals F̂±,k, we obtain

0 = F̂±,k(v̂) =µ
δk+1

δk−1

1∫
−1

(±1)k+2Lk−1(x̂2)
(
Lk+1(x̂2)− Lk−1(x̂2)

)
dx̂2

− µ

1∫
−1

(±1)kLk+1(x̂2)
(
Lk+1(x̂2)− Lk−1(x̂2)

)
dx̂2

+ ϑ

1∫
−1

(±1)k−1Lk+1(x̂2)
(
Lk+1(x̂2)− Lk−1(x̂2)

)
dx̂2

=(±1)k

[
δk+1

δk−1
(−δk−1)µ− δk+1µ + (±1)δk+1ϑ

]
by using again the orthogonality of the Legendre polynomials. Hence, we get

0 = −2µ + ϑ, 0 = −2µ− ϑ

which immediately gives µ = ϑ = 0. In a similar way, we obtain that µ = ϑ = 0 also
for odd r. For showing that the coefficients βi and γi will vanish, we proceed as in
the end of the proof of Lemma 5.2. Here, we apply F̂±,` for ` = k + 1, . . . , r − 1 and
` = k − 1, . . . , 0. Finally, we end up with v̂ ≡ 0 since all coefficients vanish.

We are now prepared to prove the anisotropic interpolation error estimate for
∂2(u−Iν

hu), ν = 3, 4. We start with the case of smooth functions u ∈ W `,p(K), ` ≥ 2.
Lemma 5.4. Let u ∈ W `,p(K) where ` ∈ N, 2 ≤ ` ≤ r + 1, p ∈ [1,∞]. Fix

q ∈ [1,∞] such that W `−1,p(K) ↪→ Lq(K). Then, the anisotropic interpolation error
estimate

‖∂2(u− Iν
hu)‖0,q,K . |K|1/q−1/p

∑
|α|=`−1

hα
K |Dαu|1,p,K , ν = 3, 4,

holds true.
Proof. We prove first an estimate on the reference element K̂. In order to be able

to apply [1, Lemma 2.2], it remains to show that the functionals F̂ ∈ F̂r satisfy the
properties (5.1) and (5.2) since the property (5.3) was already proved in Lemmata 5.2
and 5.3.
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Property (5.1) is satisfied since `− 1 ≥ 1 and all functionals are well defined for
û ∈ W 1,1(K̂). We note here that weaker functions cannot be used since their trace
on an edge of K̂ must be integrable. This is the reason for the assumption ` ≥ 2.

Property (5.2) can also be proved simultaneously for both V̂ 3
r and V̂ 4

r since the
nodal functionals N̂ are the same. We have

F̂i,∗
(
∂̂2(û− Îν û)

)
=

1
δiδ0

1∫
−1

1∫
−1

Li(x̂1)L0(x̂2)∂̂2

(
û− Îν û

)
(x̂1, x̂2) dx̂1 dx̂2

=
1

δiδ0

1∫
−1

Li(x̂1)
(
û− Îν û

)
(x̂1,+1) dx̂1

− 1
δiδ0

1∫
−1

Li(x̂1)
(
û− Îν û

)
(x̂1,−1) dx̂1

=
1
δ0

(
N̂i,+(û− Îν û)− N̂i,−(û− Îν û)

)
= 0, i = 0, . . . , r − 1,

F̂±,i

(
∂̂2(û− Îν û)

)
=

2
δi

1∫
−1

L̂i(x̂2)∂̂2

(
û− Îν û

)
(±1, x̂2) dx̂2

=− 2
δi

1∫
−1

Li(x̂2)
(
û− Îν û

)
(±1, x̂2) dx̂2

=N̂±,i

(
û− Îν û

)
= 0, i = 1, . . . , r − 1,

F̂ij

(
∂̂2(û− Îν û)

)
=

2
δiδj

1∫
−1

Li(x̂1)

1∫
−1

L̂j(x̂2)∂̂2

(
û− Îν û

)
(x̂1, x̂2) dx̂2 dx̂1

=δj0
2

δiδ0

1∫
−1

Li(x̂1)L̂0(+1)
(
û− Îν û

)
(x̂1, 1) dx̂1

− 2
δiδj

1∫
−1

Li(x̂1)

1∫
−1

Lj(x̂2)
(
û− Îν û

)
(x̂1, x̂2) dx̂2 dx̂1

=2δj0N̂i,+

(
û− Îν û

)
− 2N̂ij

(
û− Îν û

)
= 0, 0 ≤ i + j ≤ r − 2.

Consequently, Lemma 2.2 of [1] delivers

‖∂̂2(û− Îν û)‖0,q, bK . |∂̂2û|`−1,p, bK . (5.11)

Note that the condition û ∈ C(K̂) in [1, Lemma 2.2] is not needed here but only for
Lagrangian finite elements. The transformation of (5.11) from K̂ to K gives

‖∂2(u− Iν
hu)‖0,q,K . |K|1/q−1/p

∑
|α|=`−1

hα
K‖Dα∂2u‖0,p,K

. |K|1/q−1/p
∑

|α|=`−1

hα
K |Dαu|1,p,K .
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This is the desired estimate.
Example 5.5. We show that the assumption ` ≥ 2 in Lemma 5.4 is essential.

The validity of

‖∂2(u− Iν
hu)‖0,q,K . |K|1/q−1/p|u|1,p,K

is equivalent to

‖∂̂2(û− Îν û)‖0,q, bK . ‖∂̂2û‖0,p, bK , (5.12)

compare [1, Example 2.1]. In order to show that estimate (5.12) is not valid, we adapt
Example 2.3 of [1] and consider the sequence of functions

ûε(x̂1, x̂2) = x̂2 ·min
{

1, ε
∣∣∣ ln x̂1 + 1

2

∣∣∣} , ε → +0.

The limit function is defined pointwise by

û0(x̂1, x̂2) = lim
ε→0

ûε(x̂1, x̂2) =

{
x̂2 for x̂1 = −1,

0 for x̂1 > −1.

Since, for p < ∞,

lim
ε→0

‖∂̂2ûε‖0,p, bK = 0 and lim
ε→0

‖∂̂2(ûε − Îν ûε)‖0,q, bK = ‖∂̂2Î
ν û0‖0,q, bK = C > 0,

the estimate (5.12) cannot hold.
The last equality is proved by contradiction: If ‖∂̂2Î

ν û0‖0,q, bK = 0, then Iν û0 =:

v̂(x̂1) is polynomial in x̂1, and (û0 − Îν û0)(−1, x̂2) = x̂2 − v̂(−1) is a non-vanishing
first order polynomial in x̂2. On the other hand, we obtain from the definition of Îν

that this polynomial is orthogonal to all polynomials of order r−1. This is not possible
for a non-vanishing first order polynomial if r ≥ 2.

In order to prove an anisotropic interpolation error estimate for non-smooth
functions u ∈ W 1,p(K) we have to deal with the difficulty that F̂−,i and F̂+,i,
i = 1, . . . , r − 1, are in general not defined for functions v̂ ∈ Lp(K̂). The back
door is to consider functions from W 1,p

E (K) which vanish on E−,∗ and E+,∗, see (4.1).
Lemma 5.6. Let u ∈ W 1,p

E (K) defined in (4.1), p, q ∈ [1,∞], q ≤ p. Then, the
estimate

‖∂2(u− Iν
hu)‖0,q,K . |K|1/q−1/p|∂2u|0,p,K , ν = 3, 4,

holds true.
Proof. We start with an estimate on the reference element K̂. With respect to

(5.3) and (5.4) we have the following equivalence of norms on the space ∂̂2V̂
ν
r , ν = 3, 4,

‖∂̂2Î
ν û
∥∥

0,q, bK .
∑

0≤i+j≤r−2

|F̂ij(∂̂2Î
ν û)
∣∣+ r−1∑

i=0

|F̂i,∗(∂̂2Î
ν û)
∣∣

+
r−1∑
i=1

|F̂+,i(∂̂2Î
ν û)
∣∣+ r−1∑

i=1

|F̂+,i(∂̂2Î
ν û)
∣∣.
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For the functionals F̂ij and F̂i,∗, we use their property (5.2) and their boundedness
for functions from L1(K̂),

|F̂ij(∂̂2Î
ν û)| =|F̂ij(∂̂2û)| . ‖∂̂2û‖0,p, bK , 0 ≤ i + j ≤ r − 2,

|F̂i,∗(∂̂2Î
ν û)| =|F̂i,∗(∂̂2û)| . ‖∂̂2û‖0,p, bK , i = 0, . . . , r − 1.

Moreover, we integrate by parts for the functionals F̂±,i and employ L̂i(±1) = 0 for
i ≥ 1,

∣∣∣F̂±,i(∂̂2Î
ν û)
∣∣∣ = 2

δi

∣∣∣∣∣∣
1∫

−1

L̂i(x̂2)(∂̂2Î
ν û)(±1, x̂2) dx̂2

∣∣∣∣∣∣ = 2
δi

∣∣∣∣∣∣
1∫

−1

Li(x̂2)Îν û(±1, x̂2) dx̂2

∣∣∣∣∣∣
=
∣∣∣N̂±,i(Îν û)

∣∣∣ = ∣∣∣N̂±,i(û)
∣∣∣ = 0.

Therefore, we can conclude

‖∂̂2Î
ν û‖0,q, bK .‖∂̂2û‖0,p, bK ,

‖∂̂2(û− Îν û)‖0,q, bK .‖∂̂2û‖0,p, bK
where we have used ‖ · ‖0,q, bK . ‖ · ‖0,p, bK for q ≤ p. The assertion is proved by

transforming this estimate from K̂ to K.
Lemmata 5.1 and 5.4 yield Theorem 4.1, whereas Lemmata 5.1 and 5.6 give

Theorem 4.2.

6. Checking the inf-sup condition. For showing that the inf-sup condition
holds true, we will use the macro-element technique introduced in [8], see also [14,
Sect. II.1.4]. As already described in Sect. 4, the domain Ω is decomposed into
isotropic rectangular macro-elements Q such that

Ω =
⋃

Q∈TH

Q.

On the macro-elements Q from this macro-triangulation TH , we define subspaces of
Xh and Qh in the following way:

Xh(Q) :=
{
v : v ∈ Xh, v ≡ 0 in Ω \Q

}
,

Mh(Q) :=
{
q|Q : q ∈ Mh

}
∩ L2

0(Q).

Furthermore, let

Mh :=
{
q ∈ L2

0(Ω) : q|Q = const. ∀Q ∈ TH

}
be the space of piecewise constant functions with respect to the macro-triangulation
TH . Now, we can give the uniform local inf-sup condition

∃β` > 0 ∀Q ∈ TH : inf
qh∈Mh(Q)

sup
vh∈Xh(Q)

bh(vh, qh)
|vh|1,h ‖qh‖0,Q

≥ β`

Adapting the results from [8] to the non-conforming case, we can state the following
lemma.



18 THOMAS APEL AND GUNAR MATTHIES

Lemma 6.1. Let the local inf-sup condition be fulfilled with a constant β` which
is independent of the number of macro-elements and the mesh size h. Furthermore,
we assume that there exists a subspace Xh of Xh such that (Xh,Mh) satisfies an
inf-sup condition with a constant β > 0 which does not depend on h. Then, there
exists a constant β > 0 independent of h such that (Xh,Mh) is inf-sup stable with
the constant β.

Proof. For conforming finite elements, the proof can be found in [8] and [14,
Sect. II.1.4]. For the adaption of the idea to non-conforming finite elements, we refer
to [11, 18, 19].

A careful inspection of the macro-element techniques shows that the global inf-
sup constant is independent of all mesh parameters if the constants β` and β are
independent of the mesh parameters.

For our purposes, we will use for Xh the space of continuous functions which are
piecewise biquadratic in TH . Note that this space is a subspace of Xh for r ≥ 3 and
forms together with Mh an inf-sup stable pair. Hence, is remains to show that the
local inf-sup condition will be satisfied on boundary layer and corner patches. Let
start with boundary layer patches.

Lemma 6.2. Let Q be a boundary layer patch. Then, there exists a constant
β > 0 independent of the aspect ratio of the elements such that

βh := inf
qh∈Mh(Q)

sup
vh∈Xh(Q)

bh(vh, qh)
|v|1,Q ‖qh‖0,Q

> β (6.1)

holds true provided r ≥ 2.
Proof. Due to Fortin [13], the fulfilness of the inf-sup condition on a macro-element

Q is equivalent to the existence of an interpolation operator iQ : H1
0(Q) → Xh which

has the following properties:

bh(iQv, qh) = bh(v, qh) ∀qh ∈ Mh(Q) v ∈ H1
0(Q), (6.2)

|iqv|1,h . |v|1 ∀v ∈ H1
0(Q). (6.3)

In the considered situation, we can choose the natural interpolation operator Iν , ν =
3, 4, for iQ. The condition (6.3) follows directly from the interpolation error estimate
given in Thm. 4.2 for the case m = 1, p = 2. The condition (6.2) is a consequence
of the natural interpolation operator which is defined via the nodal functionals from
N̂r. Indeed, we have

bh(Iνv, qh) =
∑

K⊂Q

(div Iνv, qh)K

=
∑

K⊂Q

[
− (Iνv,∇qh)K + 〈nK · Iνv, qh〉∂K

]
=
∑

K⊂Q

[
− (v,∇qh)K + 〈nK · v, qh〉∂K

]
=
∑

K⊂Q

(div v, qh)K = bh(v, qh)

where we have used that ∇qh|K ∈ P r−2(K) and qh|E ∈ Pr−1(E) for all edges E ∈
∂K. Since both conditions (6.2) and (6.3) are fulfilled and the constant in (6.3) is
independent of all mesh parameters, we conclude that the local inf-sup condition is
satisfied with a constant which does not depend on the mesh parameters.
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Lemma 6.3. Let Q be a corner patch. Then there exists a constant β > 0
independent of the aspect ratio of the elements such that (6.1) holds true provided
r ≥ 3.

Proof. The proof follows the lines of the proof [24, Cor. 4.13], compare also [3,
Lem. 5]. The proof uses also a macroelement technique where, as above, the space
inclusion is valid for r ≥ 3 only.

Numerical tests for the case r = 2 have shown that all four families are stable
on corner patches with σ = 1

2 . Nevertheless, our method of proof does not work for
r = 2. Therefore the validity of a uniform inf-sup condition must be considered open
for this case.

Now, we can finish this section with the
Proof. [of Thm. 4.3] Since we have shown all necessary ingredients for the macro-

element technique, the stated inf-sup condition holds true with a constant which is
independent of the mesh parameter, aspect ratio and mesh size.

7. Proof of the consistency error estimate. For proving the estimate of the
consistency error, we start with an estimate for an auxiliary problem.

Lemma 7.1. For arbitrary η ∈ Hr(Ω) and g = −div η the estimate

sup
vh∈Vh

(η,∇vh)h − (g, vh)
|vh|1,h

.

 ∑
K∈Th

∑
|α|=r

h2α
K ‖Dαη‖2

0,K

1/2

+

 ∑
K∈Th

h2
K,1

∑
|α|=r−1

h2α
K ‖Dαg‖2

0,K

1/2

holds true where

(η,∇vh)h :=
∑

K∈Th

(η,∇vh)K .

Proof. By using g = −div η and integration by parts, we can rewrite the numer-
ator as

(η,∇vh)h − (g, vh) =
∑

K∈Th

〈η · nK , vh〉∂K = T1 + T2

with

T1 =
∑

K∈Th

∑
E∈ES(K)

∫
E

η · n vh dγ, T2 =
∑

K∈Th

∑
E∈EL(K)

∫
E

η · n vh dγ,

where EL(K) and ES(K) denote the sets of long and short edges of K, respectively.
Let us further assume that the long edges are parallel to the x1-direction while the
short edges are parallel to the x2-direction. This gives that n2 = 0 on short edges and
n1 = 0 on long edges. Hence, T1 and T2 simply to

T1 =
∑

E∈ES

∫
E

η1n
E
1 [vh]E dγ, T2 =

∑
E∈EL

∫
E

η2n
E
2 [vh]E dγ.

Here, EL and ES are the global sets of long and short edges, respectively. Let Π
denote the special interpolation operator into the space of continuous Qr−1 elements
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defined in [14, p. 108]. Due to the definition of Vh, the jump [vh]E is orthogonal to
all polynomials of degree r − 1. Hence, we obtain

T1 =
∑

E∈ES

∫
E

(η1 −Πη1)nE
1 [vh]E dγ, T2 =

∑
E∈EL

∫
E

(η2 −Πη2)nE
2 [vh]E dγ

since the normal vectors are constant on the edges. Using the Gaussian theorem and
the product rule, we get

T1 =
∑

K∈Th

∫
K

∂1

[
(η1 −Πη1)vh

]
dx

=
∑

K∈Th

∫
K

∂1(η1 −Πη1)vh dx +
∑

K∈Th

∫
K

(η1 −Πη1)∂1vh dx,

T2 =
∑

K∈Th

∫
K

∂2

[
(η2 −Πη2)vh

]
dx

=
∑

K∈Th

∫
K

∂2(η2 −Πη2)vh dx +
∑

K∈Th

∫
K

(η2 −Πη2)∂2vh dx.

Due to the choice of the special interpolation operator Π, we have∫
K

∂i(ηi −Πηi) dx = 0.

Hence, we get

T1 =
∑

K∈Th

∫
K

∂1(η1 −Πη1)(vh − vK
h ) dx +

∑
K∈Th

∫
K

(η1 −Πη1)∂1vh dx,

T2 =
∑

K∈Th

∫
K

∂2(η2 −Πη2)(vh − vK
h ) dx +

∑
K∈Th

∫
K

(η2 −Πη2)∂2vh dx.

where vK
h is the integral mean of vh on the cell K. The interpolation operator Π fulfils

‖∂i(w −Πw)‖0,K .
∑

|α|=r−1

hα
K‖Dα∂iw‖0,K , ‖w −Πw‖0,K .

∑
|α|=r

hα
K‖Dαw‖0,K

provided that w ∈ Hr(K), see [2, 25]. We end up with

|T1| .


 ∑

K∈Th

h2
K,1

∑
|α|=r−1

h2α
K ‖Dα∂1η1‖2

0,K

1/2

+

 ∑
K∈Th

∑
|α|=r

h2α
K ‖Dαη1‖2

0,K

1/2
 |vh|1,h,
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|T2| .


 ∑

K∈Th

h2
K,1

∑
|α|=r−1

h2α
K ‖Dα∂2η2‖2

0,K

1/2

+

 ∑
K∈Th

∑
|α|=r

h2α
K ‖Dαη2‖2

0,K

1/2
 |vh|1,h,

where the Cauchy-Schwarz inequality was used. The desired estimate is obtained by
using ∂2η2 = −g − ∂1η1.

We finish this section with the
Proof. [of Thm. 4.4] The proof is accomplished by applying Lemma 7.1 to

η(1) =
(

∂1u1

∂2u1

)
, g(1) = f1 − ∂1p, and η(2) =

(
∂1u2

∂2u2 − p

)
, g(2) = f2.

This choice leads to

|ah(u,vh)− bh(vh, p)− (f ,vh)|
=
∣∣(η(1),∇vh,1)h − (g(1), vh,1) + (η(2),∇vh,2)h − (g(2), vh,2)

∣∣
.

 ∑
K∈Th

∑
|α|=r

h2α
K

(
|Dαu|21,K + ‖Dαp‖2

0,K

)1/2

|vh|1,h

+

 ∑
K∈Th

h2
K,1

∑
|α|=r−1

h2α
K

(
‖Dαf‖2

0,K + ‖Dα∂1p‖2
0,K

)1/2

|vh|1,h

The pressure terms in the last row are part of those in the second last row. This
finishes the proof.

Appendix A. Unisolvence. This appendix contains the proof of the unisolvence
results for V̂ 4

r .
Lemma A.1. The set N̂r is unisolvent on V̂ 4

r .
Proof. We have to show that v̂ ∈ V̂ 4

r and N̂(v̂) = 0 for all N̂ ∈ N̂r results in
v̂ ≡ 0. To this end, we represent an arbitrary function v̂ ∈ V̂ 4

r in the form

v̂ =
∑

0≤i+j≤r

αijLi(x̂1)Lj(x̂2) +
r−1∑
i=0

βiLr+1−i(x̂1)Li(x̂2) +
r−1∑
i=1

γiLr+2−i(x̂1)Li(x̂2).

(A.1)
The orthogonality of the Legendre polynomials gives

0 = N̂mn(v̂) = αmn, 0 ≤ m + n ≤ r − 2.

Hence, we have

v̂ =
r−1∑
i=0

αr−1−i,iLr−1−i(x̂1)Li(x̂2) +
r∑

i=0

αr−i,iLr−i(x̂1)Li(x̂2)

+
r−1∑
i=0

βiLr+1−i(x̂1)Li(x̂2) +
r−1∑
i=1

γiLr+2−i(x̂1)Li(x̂2).
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The application of N̂−,n and N̂+,n, 0 ≤ n ≤ r − 1, results in

0 = αr−1−n,n + αr−n,n + βn + γn, n = 0, . . . , r − 1, (A.2)
0 = αr−1−n,n − αr−n,n + βn − γn, n = 0, . . . , r − 1, (A.3)

where again the orthogonality of the Legendre polynomials is used. The parameter
γ0 = 0 is introduced for the convenience of notation. The sum and the difference
of (A.2) and (A.3) give

0 = αr−1−n,n + βn, n = 0, . . . , r − 1, (A.4)
0 = αr−n,n + γn, n = 0, . . . , r − 1, (A.5)

respectively. If we apply N̂m,− and N̂m,+, m = 0, . . . , r − 1, then we get

0 = αm,r−1−m − αm,r−m + βr+1−m − γr+2−m, m = 0, . . . , r − 1, (A.6)
0 = αm,r−1−m + αm,r−m + βr+1−m + γr+2−m, m = 0, . . . , r − 1, (A.7)

where we set βr = βr+1 = 0 and γr = γr+1 = γr+2 = 0. Taking the sum and the
difference of (A.6) and (A.7), we obtain

0 =αm,r−1−m + βr+1−m, m = 0, . . . , r − 1, (A.8)
0 =αm,r−m + γr+2−m, m = 0, . . . , r − 1, (A.9)

respectively. Using (A.4) for n and (A.8) for m = r − 1− n, we obtain

αr−1−n,n + βn = 0 = αr−1−n,n + βn+2, n = 0, . . . , r − 1.

Hence, we get βn = βn+2, n = 0, . . . , r − 1. With βr = βr+1 = 0 we conclude

βn = 0, n = 0, . . . , r − 1,

and with (A.4)

αr−1−n,n = 0, n = 0, . . . , r − 1.

For n = 1, . . . , r − 1 we obtain from (A.5) for n and from (A.9) for m = r − n

αr−n,n + γn = 0 = αr−n,n + γn+2, n = 1, . . . , r − 1.

Hence, we have γn = γn+2, n = 1, . . . , r − 1. Together with γr = γr+1 = 0 we end up
with

γn = 0, n = 1, . . . , r − 1.

Putting this into (A.5) we get

αr−n,n = 0, n = 1, . . . , r − 1.

It remains to consider αr,0 and α0,r. From (A.5) for n = 0 we get αr,0 = 0 since
γ0 = 0. Setting m = 0 in (A.9) results in α0,r = 0 due to γr+2 = 0. Finally, we have
seen that all coefficients in the representation (A.1) vanish. Hence, v̂ ≡ 0 and the set
of nodal functionals N̂r is unisolvent on V̂ 4

r .
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[4] T. Apel, S. Nicaise, and J. Schöberl, Crouzeix-Raviart type finite elements on anisotropic
meshes, Numer. Math., 89 (2001), pp. 193–223.

[5] , A non-conforming finite element method with anisotropic mesh grading for the Stokes
problem in domains with edges, IMA J. Numer. Anal., 21 (2001), pp. 843–856.

[6] T. Apel and H. M. Randrianarivony, Stability of discretizations of the Stokes problem on
anisotropic meshes, Math. and Comput. Simulation, 61 (2003), pp. 437–447.

[7] R. Becker and R. Rannacher, Finite element solution of the incompressible Navier-Stokes
equations on anisotropically refined meshes, in Fast solvers for flow problems (Kiel, 1994),
vol. 49 of Notes Numer. Fluid Mech., Vieweg, Braunschweig, 1995, pp. 52–62.

[8] J. Boland and R. Nicolaides, Stability of finite elements under divergence constraints, SIAM
J. Numer. Anal., 20 (1983), pp. 722–731.

[9] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, vol. 15 of Springer
Series in Computational Mathematics, Springer-Verlag, 1991.

[10] P. G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing
Company, Amsterdam - New York - Oxford, 1978.

[11] M. Crouzeix and R. S. Falk, Nonconforming finite elements for the Stokes problem, Math.
Comp., 52 (1989), pp. 437–456.

[12] M. Crouzeix and P. A. Raviart, Conforming and non-conforming finite elements for solving
the stationary Stokes equations, R.A.I.R.O. Anal. Numér., 7 (1973), pp. 33–76.

[13] M. Fortin, An analysis of the convergence of mixed finite element methods, RAIRO Anal.
Numér., 11 (1977), pp. 341–354.

[14] V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes equations,
Springer-Verlag, Berlin-Heidelberg-New York, 1986.
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