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Abstract An interpolant defined via moments is investigated for triangles, quadrilater-
als, tetrahedra, and hexahedra and arbitrarily high polynomial degree. The elements are
allowed to have diameters with different asymptotic behavior in different space directions.
Anisotropic interpolation error estimates are proved.
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1 Introduction

In this short note we apply the approach for proving anisotropic interpolation error estimates
as developed in [1, 2], to a two- or three-dimensional Pk- and Qk-interpolant defined via
moments. To our knowledge, this interpolant is first introduced by Girault and Raviart [5]
for triangles and quadrilaterals. The variant with quadrilaterals is used by Lin, Yan and
Zhou [6] and Zhou and Li [9] who derive superconvergence results. Stynes and Tobiska [8]
derive anisotropic interpolation error estimates for rectangles which will be reproduced as
a special case and under weaker assumptions here. Mao and Shi [7] prove error estimates
for anisotropic triangles.

The three-dimensional version of this interpolant is used by Buffa, Costabel and Dauge
in the paper [4]; anisotropic interpolation error estimates are needed to prove Assumption
4 of this paper. Apel and Matthies [3] estimated the consistency error of non-conforming
discretizations of arbitrary order for the Stokes problem where they used the error estimates
for this interpolant in the case of rectangles.
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Interpolation error estimates are usually proved first for a reference element. In view of
[1, Subsection 2.1.2] we will prove in Section 2 the following lemma for several reference
elements T ⊂ Rd, d = 2, 3, which will be specified in Section 2.

Lemma 1 Consider an interpolation operator IT : W `,p(T ) → PT where PT ⊃ Pk is a
finite-dimensional space and Pk is the space of polynomials of order less than or equal to k.
Let γ be a multi-index with |γ| = 1 and u ∈ C(T ) be a function with Dγu ∈ W `−1,p where
` ∈ N and p ∈ [1,∞] shall be such that 2 ≤ ` ≤ k + 1 and

p > 2 if ` = 2 and d = 3. (1)

Fix q ∈ [1,∞] such that W `−1,p(T ) ⊂ Lq(T ). Then the estimate

‖Dγ(u− IT u)‖Lq(T ) ≤ C|Dγu|W `−1,p(T ) (2)

holds.

By using the arguments from [1, Chapter 2] we can conclude anisotropic interpolation
error estimates of the type

|u− IT u|W 1,q(T ) ≤ C|T |1/q−1/p
∑

|α|=`−1

hα
T |Dαu|W 1,p(T ) (3)

for several types of affine and subparametric elements T with size parameters h1,T , . . . , hd,T .
This will be surveyed in Section 3.

In this paper we use standard multi-index notation α = (α1, . . . , αd), α1, . . . , αd ≥ 0,
|α| =

∑d
i=1 αi, Dα = ∂α1

1 · · · ∂αd
d , and hα

T = hα1
1,T · · ·h

αd
d,T . As usual, C is a positive constant

which is independent of the mesh parameters, i.e., independent of the element sizes and the
aspect ratio. Although we investigate families of arbitrary polynomial degree, we focus on
an h-version of the finite element method, this means that the dependence of the constants
on the polynomial degree is not elaborated.

2 Proof on the reference element

2.1 Background

For the proof of Lemma 1 we will use Lemma 2.2 of [1], see also [2, Lemma 3] for a more
general version. We repeat it here using an adapted notation.

Lemma 2 Let T be a reference element and IT : C(T ) → PT be a linear operator. Fix
` ∈ N and p, q ∈ [1,∞] such that 1 ≤ ` ≤ k + 1 and W `−1,p(T ) ↪→ Lq(T ). Consider a
multi-index γ with |γ| = 1 and assume that there is a set F of linear functionals such that

dimF = dim DγPT (4)

F ∈
(
W `−1,p(T )

)′
∀F ∈ F , (5)

F (Dγ(u− IT u)) = 0 ∀F ∈ F , ∀u ∈ C(T ) : Dγu ∈ W `−1,p(T ), (6)
w ∈ PT and F (Dγw) = 0 ∀F ∈ F =⇒ Dγw = 0. (7)
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Then the error can be estimated for all u ∈ C(T ) with Dγu ∈ W `−1,p(T ) by

‖Dγ(u− IT u)‖Lq(T ) ≤ C|Dγu|W `−1,p(T ). (8)

According to this lemma, the task is to define the functionals and to prove the properties
(4)–(7).

2.2 Triangles

Let T be the usual reference element with the nodes (0, 0), (1, 0), and (0, 1). For a function
u ∈ C(T ) we define the interpolant IT u ∈ PT = Pk(T ), k ≥ 1, by

(u− IT u)(V ) = 0 ∀ vertices V of T , (9)∫
E
(u− IT u)q = 0 ∀ edges E ⊂ ∂T, ∀q ∈ Pk−2(E), if k ≥ 2, (10)∫

T
(u− IT u)q = 0 ∀q ∈ Pk−3(T ), if k ≥ 3. (11)

To show that this interpolant is well defined it suffices to show for u ≡ 0 that IT u ≡ 0 is
the unique solution of the interpolation conditions. Let E be an arbitrary edge of triangle T .
Due to (9) the interpolant vanishes at the vertices of E such that the restriction if IT u on E
can be written as λ0λ1p with p ∈ Pk−2(E), where λ0 and λ1 are barycentric coordinates
of E. Using (10) leads us to ∫

E
λ0λ1pq = 0 ∀q ∈ Pk−2(E)

and thus p ≡ 0 and therefore IT u ≡ 0 on ∂Ω. Therefore we can write IT u = λ0λ1λ2p with
p ∈ Pk−3(T ) and obtain from (11)∫

T
λ0λ1λ3pq = 0 ∀q ∈ Pk−3(T ),

thus p ≡ 0 and, consequently, the desired result IT u = 0.
We will now prove Lemma 1 for γ = (1, 0). Therefore E is in the following the edge of T

in x1-direction. The case γ = (0, 1) can proved by analogy where the edge in x2-direction
is used. In view of Lemma 2 we define the set F to include the following functionals

v 7→
∫

E
vq, q ∈ Pk−1(E), (12)

v 7→
∫

T
vq, q ∈ Pk−2(T ). (13)

This notation is to be understood that for the definition of F the function q in (12) and
(13) varies only in a basis of Pk−1(E) and q ∈ Pk−2(T ), respectively. Hence we can show
condition (4) by the calculation

dimPk−1(E) + dimPk−2(T ) =
(

k

1

)
+

(
k

2

)
=

(
k + 1

2

)
= dimPk−1(T ).

3



These functionals are well defined for v ∈ L1(E) ↪→ W 1,p(T ), p ≥ 1. Thus we obtain (5) for
` ≥ 2 as assumed in Lemma 1.

To prove (6) we integrate partially and use the definition (9)–(11) of IT :∫
E

∂1(u− IT u)q = (u− IT u)q|∂E −
∫

E
(u− IT u)∂1q = 0 ∀q ∈ Pk−1(E),∫

T
∂1(u− IT u)q =

∫
∂T

(u− IT u)qn1 −
∫

T
(u− IT u)∂1q = 0 ∀q ∈ Pk−2(T ).

It remains to show the independence property (7). Consider a polynomial w ∈ Pk(T ),
i. e. v := ∂1w ∈ Pk−1(T ). From ∫

E
vq = 0 ∀q ∈ Pk−1(E)

we obtain v ≡ 0 on E and thus v = x2p with p ∈ Pk−2(T ). Consequently we get from∫
T

vq =
∫

T
x2pq = 0 ∀q ∈ Pk−2(T )

that p ≡ 0 and thus the desired result v = ∂1w ≡ 0. In this way we have proved all necessary
properties of F and, as a conclusion of Lemma 2, Lemma 1 is proved in the triangular case.

2.3 Tetrahedra

The interpolant IT u ∈ PT = Pk(T ), k ≥ 1, is defined in analogy to the triangular case by

(u− IT u)(V ) = 0 ∀ vertices V of T , (14)∫
E
(u− IT u)q = 0 ∀ edges E ⊂ ∂T, ∀q ∈ Pk−2(E), if k ≥ 2, (15)∫

F
(u− IT u)q = 0 ∀ faces F ⊂ ∂T, ∀q ∈ Pk−3(F ), if k ≥ 3, (16)∫

T
(u− IT u)q = 0 ∀q ∈ Pk−4(T ), if k ≥ 4. (17)

It can be proved as in the triangular case that this interpolant is well defined.
The peculiarity of anisotropic tetrahedral elements is that we have to consider more than

one reference element T , see the discussion in [1, Section 2.3]. The common property of the
reference elements is that they have three edges of unit length and parallel to the coordinate
axes. We prove here Lemma 1 in the case γ = (1, 0, 0) and denote therefore by E the edge
of T which is parallel to the x1-axis. Moreover, let SF be the set of the two faces of T that
share the edge E and note that these two faces are also parallel to the x1-axis.

In full analogy to the triangular case we define the functionals

v 7→
∫

E
vq, q ∈ Pk−1(E), (18)

v 7→
∫

F
vq, q ∈ Pk−2(F ), F ∈ SF , (19)

v 7→
∫

T
vq, q ∈ Pk−3(T ). (20)
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The number of functionals satisfies (4) since(
k

1

)
+ 2 ·

(
k

2

)
+

(
k

3

)
=

(
k + 2

3

)
= dimPk−1(T ).

These functionals are well defined for v ∈ L1(E) ↪→ W `−1,p(T ) for which we need the
condition (1). The interpolation property (6) is proved analogously to the triangular case
by partial integration and the definition (14)–(17) of IT .

Let us finally sketch the proof of the independence property (7) For v := ∂1w ∈ Pk−1(T )
we conclude v ≡ 0 on E from the vanishing functionals (18). With the same argument as
in the proof of the triangular case we find that v ≡ 0 on the two faces S1, S2 ∈ SF . Let now
λ1 and λ2 be the barycentric coordinates of T that vanish on S1 and S2, respectively, such
that we can write v = λ1λ2p with p ∈ Pk−3(T ). With∫

T
vq =

∫
T

λ1λ2pq = 0 ∀q ∈ Pk−3(T )

we get p ≡ 0 and thus v := ∂1w ≡ 0.

2.4 Quadrilaterals

Let T = (0, 1)2 be the reference element and Qk(T ) be the space of polynomials of order
less than or equal to k in each variable. For later use we introduce also the space Qk,m(T )
of polynomials of order less than or equal to k in the first variable and of order less than
or equal to m in the second variable. For a function u ∈ C(T ) we define the interpolant
IT u ∈ PT = Qk(T ), k ≥ 1, by

(u− IT u)(V ) = 0 ∀ vertices V of T , (21)∫
E
(u− IT u)q = 0 ∀ edges E ⊂ ∂T, ∀q ∈ Pk−2(E), if k ≥ 2, (22)∫

T
(u− IT u)q = 0 ∀q ∈ Qk−2(T ), if k ≥ 2. (23)

In order to prove that the interpolant is well defined we consider u ≡ 0 as in the triangular
case and conclude from conditions (21) and (22) that IT u ≡ 0 on ∂T . We can write IT u = bp
with p ∈ Qk−2(T ) and a bubble function b ∈ Q2 that vanishes on ∂T . Hence the condition
(23) becomes ∫

T
bpq = 0 ∀q ∈ Qk−2(T ).

Since b does not change sign in T we conclude p ≡ 0 and, consequently, IT u = 0.
The proof of Lemma 1 is also similar to the triangular case. Care must be taken about

the polynomial spaces and its dimensions. First note that ∂1Qk = Qk−1,k. Let SE be the
set of the two edges of T which are parallel to the x1-axis. Consider the functionals

v 7→
∫

E
vq, q ∈ Pk−1(E), E ∈ SE , (24)

v 7→
∫

T
vq, q ∈ Qk−1,k−2(T ). (25)
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The number of functionals satisfies (4) since

2 · dimPk−1(E) + dimQk−1,k−2(T ) = 2k + k(k − 1) = k(k + 1) = dimQk−1,k(T ).

These functionals are well defined for v ∈ L1(E) ↪→ W `−1,p(T ) with ` ≥ 2. The interpolation
property (6) is proved again by partial integration and the definition (21)–(23) of IT . Here
we need in particular that ∂1q ∈ Qk−2(T ) for q ∈ Qk−1,k−2(T ).

In order to prove the independence consider v := ∂1w ∈ Qk−1,k(T ). From (24) we obtain
that v ≡ 0 on the two edges E ∈ SE , and thus v = x2(1−x2)p with p ∈ Qk−1,k−2(T ). With
(25) we obtain p ≡ 0 and thus v := ∂1w ≡ 0.

2.5 Hexahedra

The reference element is T = (0, 1)3 and Qk(T ) is again the space of polynomials of order
less than or equal to k in each variable. The space Qk,m,n(T ) is defined in analogy to the
quadrilateral case. For a function u ∈ C(T ) we define the interpolant IT u ∈ PT = Qk(T ),
k ≥ 1, by

(u− IT u)(V ) = 0 ∀ vertices V of T , (26)∫
E
(u− IT u)q = 0 ∀ edges E ⊂ ∂T, ∀q ∈ Pk−2(E), if k ≥ 2, (27)∫

F
(u− IT u)q = 0 ∀ faces F ⊂ ∂T, ∀q ∈ Qk−2(F ), if k ≥ 2, (28)∫

T
(u− IT u)q = 0 ∀q ∈ Qk−2(T ), if k ≥ 2. (29)

It can be proved as in the quadrilateral case that this interpolant is well defined.
In order to prove Lemma 1 we note first that ∂1Qk = Qk−1,k,k. Let SE and SF be the set

of the four edges/faces of T which are parallel to the x1-axis. Consider the functionals

v 7→
∫

E
vq, q ∈ Pk−1(E), E ∈ SE , (30)

v 7→
∫

F
vq, q ∈ Qk−1,k−2(F ), F ∈ SF , (31)

v 7→
∫

T
vq, q ∈ Qk−1,k−2,k−2(T ), (32)

such that

dimF = 4k + 4k(k − 1) + k(k − 1)2 = k(k + 1)2 = dimQk−1,k,k.

The boundedness is proved using condition (1) as in the tetrahedral case. The interpolation
property follows again by partial integration. Concerning the independence we conclude
from (30) that v = ∂1w vanishes at the edges of SE and, consequently, via (31) also at the
faces of SF and, finally, with (32) in T .
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3 Error estimates in general elements

As in Section 2.2 and Subsections 2.3.1, 2.4.1, and 2.5.1 of [1] we can now consider elements T
that are affine images of a reference element from Section 2, and that satisfy the maximal
angle condition and the coordinate system condition as stated in [1]. Using Lemma 1 we see
that Theorems 2.1, 2.2, 2.6, 2.9 and Corollaries 2.1, 2.2, 2.3, 2.5 which were proved in [1] for
the Lagrangian interpolant, hold also for the interpolant under consideration here. These
theorems can be subsumed in the following one.

Theorem 3 Assume that T is a triangle, tetrahedron, parallelogram or parallelepiped which
satisfies the maximal angle condition and the coordinate system condition. Let be u ∈
W `,p(T ) where ` ∈ N, ` ≤ k+1, p ∈ [1,∞] satisfy (1). Fix q ∈ [1,∞] such that W `−1,p(T ) ↪→
Lq(T ). Then the anisotropic interpolation error estimate

|u− IT u|W 1,q(T ) ≤ C|T |1/q−1/p
∑

|α|=`−1

hα |Dαu|W 1,p(T ) (33)

holds.

We could also repeat here the discussion of sharper estimates for rectangular and brick
elements in [1] (compare Theorems 2.7 and 2.10 of [1]), or of estimates for functions u ∈
W k+2(T ) with additional regularity (compare Theorems 2.3 and 2.11 of [1]). Moreover,
following [1, Subsection 2.3.2] it is also possible to extend the results to the case in which
the regularity of u is described in certain classes of weighted Sobolev spaces. — Rather, we
elaborate here the case of certain non-affine elements as in Subsections 2.4.3 and 2.5.2 of [1]
since these results seem to be of importance and not widely known yet.

The difficulty with non-affine elements is that second order derivatives of the transforma-
tion do not vanish. Hence, by the chain rule, the transformation of any mixed derivatives
of order ` includes also lower order derivatives which lead to lower order terms in the right
hand sides of estimates like (33). The remedy is to use sharper estimates on the reference
element, see, for example, the discussion in [5, Section A.2], or to restrict the shape of the
elements to small perturbations of affine elements.

For our purposes, let us deal with a class of quadrilateral or hexahedral elements T . The
coordinates of the vertices of T are perturbations of the vertices of an axiparallel rectan-
gular/brick element T̃ by vectors a(j) = (a(j)

1 , . . . , a
(j)
d ), j = 1, . . . , 2d, d = 2, 3. We restrict

ourselves to the case that the edges of T are straight such that the reference square/cube
can be mapped to the element T by a bi-/trilinear coordinate transformation. This class
of elements is sometimes called subparametric since, contrary to isoparametric elements, in
general only a subspace of PT is used for the transformation.

For the perturbations we demand the existence of non-negative constants a0, . . . , ad with

|a(j)
i | ≤ aihd,T , i = 1, . . . , d, j = 1, . . . , 2d, (34)

1
2
− hd,T

d∑
i=1

ai

hi,T
≥ a0 > 0. (35)

Condition (34) ensures that the perturbation is only of order hd,T and hence the element
T is anisotropic with essentially the same stretching direction and aspect ratio as T̃ . The
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other condition, (35), ensures that the mapping from the reference element to the element
T is invertible; see also Remarks 2.10 and 2.11 of [1] for further discussion. In particular,
trapezoidal elements are included where the length of the parallel sides is of order h1,T and
the length of the other two sides is of order h2,T .

Theorem 4 Consider a quadrilateral or hexahedral element T from the class just described.
As in Theorem 3, let be u ∈ W `,p(T ) where ` ∈ N, ` ≤ k + 1, p ∈ [1,∞] satisfy (1). Fix
q ∈ [1,∞] such that W `−1,p(T ) ↪→ Lq(T ). Then the anisotropic interpolation error estimate
(33) holds.

The proof of this theorem differs not much from that for Lagrangian elements. Therefore
we refer to Subsections 2.4.3 and 2.5.2 of [1] and sketch here only the main ideas. The
first ingredient is a sharper estimate on the reference element. In view of Lemma 2.15 and
Remark 2.8 of [1], we have proved for the unit square/cube T in Subsections 2.4 and 2.5
the estimate

‖Dγ(u− IT u)‖Lq(T ) ≤ C[Dγu]W `−1,p(T )

where [ · ]W `−1,p(T ) denotes the seminorm in W `−1,p(T ) where only pure derivatives are
included. Nonetheless, the non-affine transformation with the restrictions above leads in
the first place to a weaker estimate than (33). For simplicity of presentation, we add more
terms on the right hand side such that the estimate becomes

|u− IT u|W 1,q(T ) ≤ C|T |1/q−1/p
∑

|α|≤`−1

hα |Dαu|W 1,p(T ),

compare Lemma 2.17 of [1]. Thereafter, we get rid of the lower order terms by a Deny–Lions
type argument having observed that IT w = w for all w ∈ P`−1(T ), see the proof of Theorem
2.8 in [1] for details.
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