Volker Kempf M.Sc.
Professur für Mathematik
Gebäude 41/100, Zimmer 5123 | |
+49 89 6004-3408 | |
volker.kempf@unibw.de |
Volker Kempf M.Sc.
Career
07/2018 - | Research Associate Universität der Bundeswehr München, Germany, Institute for Mathematics and Computer-Based Simulation |
05/2017 - 06/2018 | Battalion Maintenance Officer, Health and Safety Officer Bruchsal, Germany |
10/2015 - 04/2017 | Ammunition Technical Officer, Health and Safety Officer Bruchsal, Germany |
01/2013 - 10/2015 | Explosive Ordnance Disposal Officer Stetten a.k.M. and Gera, Germany |
Academic Education
04/2014 - 03/2019 | Master of Science, Mathematics FernUniversität in Hagen, Germany |
01/2010 - 09/2011 | Master of Science, Mathematical Engineering Universität der Bundeswehr München, Germany |
10/2007 - 12/2009 | Bachelor of Science, Mathematical Engineering Universität der Bundeswehr München, Germany |
Research Interests
- Numerical Analysis of PDEs
- Finite Element Methods
- Pressure-robust Discretizations for (Navier-)Stokes equations
- Anisotropic Finite Elements
Publications
Articles in Peer-Reviewed International Journals
- Apel, T.; Kempf, V.: Pressure-robust error estimate of optimal order for the Stokes equations: domains with re-entrant edges and anisotropic mesh grading, Calcolo (accepted), arXiv
- Apel, T.; Kempf, V.; Linke, A.; Merdon, C.: A nonconforming pressure-robust finite element method for the Stokes equations on anisotropic meshes, IMA Journal of Numerical Analysis, DOI: 10.1093/imanum/draa097
arXiv
- Apel, T.; Kempf, V.: Brezzi--Douglas--Marini interpolation of any order on anisotropic triangles and tetrahedra, SIAM Journal on Numerical Analysis, 58(3):1696-1718, DOI: 10.1137/19M1302910
arXiv
- Kempf, V.: Approximated analytical approach for temperature calculation in pulsed arc welding, International Journal on Interactive Design and Manufacturing, 14(2):675-681, DOI: 10.1007/s12008-019-00638-8
Peer-reviewed Conference Proceedings
- Apel, T.; Eckardt, L.; Haubner, C.; Kempf, V.: The maximal angle condition on finite elements: useful or not?, Proceedings in Applied Mathematics and Mechanics, 20(1):e202000116, DOI: 10.1002/pamm.202000116
International Conference Contributions
- Kempf, V.: Pressure-robust discretization of the Stokes equations on domains with edges, CFES 2020, Chemnitz/Online, Germany, September 14-17, 2020
- Kempf, V.: Anisotropic pressure-robust discretizations of the Stokes equations, ALGORITMY 2020, Podbanske/Online, Slovakia, September 10-15, 2020
- Kempf, V.: A non-conforming pressure-robust finite element method for the Stokes equations on anisotropic meshes, International Congress on Industrial and Applied Mathematics (ICIAM2019), Valencia, Spain, July 15-19, 2019
Teaching
Courses & Exercises
- Übung Mathematik I, II, III (HT2018, WT2019, HT2019, WT2020, HT2020, WT2021)
- Übung Partielle Differentialgleichungen (WT2021)
Supervised Student Projects / Theses
- Finite-Elemente-Netze ohne Maximalwinkelbedingung in dreidimensionalen Gebieten, Wilhelm Böhme, Master's Thesis (2020)
- Implementierung eines a-posteriori Fehlerschätzers für die Stokes Gleichungen, Wilhelm Böhme, Student Project (2019)
- Finite-Elemente-Lösung einer Randwertaufgabe mit nichtglatter Randbedingung, Wilhelm Böhme, Bachelor's Thesis (2019)