Selected Research Topics

  • Standard Lagrange multiplier bases for Mortar FEM
  • Dual (biorthogonal) Lagrange multiplier bases for Mortar FEM
  • 1D-/2D-/3D Mortar coupling
  • Full and partial mesh coupling schemes (e.g. sliding ALE methods)
  • Efficient algebraic multi-level solvers for Mortar methods
  • Numerical integration for Mortar FEM
  • Mortar-based projection operators for multi-physics applications
  • Isogeometric Mortar methods
  • Skalable parallel algorithms for Mortar methods
  • and many more...

 

Contact Person at IMCS

 

Key Publications

  • Seitz, A., Farah, P., Kremheller, J., Wohlmuth, B., Wall, W.A., Popp, A. (2016): Isogeometric dual mortar methods for computational contact mechanics, Computer Methods in Applied Mechanics and Engineering, 301:259-280
  • Ehrl, A., Popp, A., Gravemeier, V., Wall, W.A. (2014): A mortar approach with dual Lagrange multipliers for mesh tying within a variational multiscale method for incompressible flow, International Journal for Numerical Methods in Fluids, 76:1-27
  • Popp, A., Wohlmuth, B.I., Gee, M.W., Wall, W.A. (2012): Dual quadratic mortar finite element methods for 3D finite deformation contact, SIAM Journal on Scientific Computing, 34:B421-B446