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Abstract. Software bots operating in multiple virtual digital platforms
must understand the platforms’ affordances and behave like human users.
Moreover, bots in such platforms could cooperate with humans or other
software agents for work or to learn specific behavior patterns. Platform
affordances or features change from one application platform to another
or through a life cycle, requiring such bots to be adaptable. However,
present-day bots, particularly chatbots, other than language processing
and prediction, are far from reaching a human user’s behavior level within
complex business information systems. They lack the cognitive capabil-
ities to sense and act in such virtual environments, rendering their de-
velopment a challenge to artificial general intelligence research. In this
study, we problematize and investigate assumptions in conceptualizing
software bot architecture and direct attention to significant architectural
research challenges in developing cognitive bots endowed with complex
behavior, aka cognitive architectures, operating on information systems.
As an outlook, we propose alternate architectural assumptions to con-
sider in future bot design and bot development frameworks.
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1 Introduction

Bots are software agents that operate in digital virtual environments [33, 10]. An
example scenario would be a “user-like” bot that could access web platforms as a
user and behave like a human user. Ideally, such a bot could autonomously sense
and understand the platforms’ affordances. Affordances in digital spaces are,
for example, interaction possibilities and functionalities on the web, in software
services, or on web application platforms [42, 3, 35]. The bot would recognize
and understand the differences and variability between different environments.
If the platform or service has extensions to devices or bodies, as in the Web of
Things (WoT), it would also have control or possibilities to interact with an outer
web or service application world. Furthermore, a bot can be independent of a
specific platform. A user-like social bot, for instance, would be able to recognize
and understand social networks and act to influence or engage in belief sharing
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on any social platform. It would also adjust with the changes and uncertainty
of the affordances in a specific digital environment, such as when hypermedia
interactivity features and functionalities change. Such a bot could also learn and
develop to drive its goals and intentions from these digital microenvironments
and take goal-directed targeted action to achieve them [17]. Such bots could
also communicate and cooperate with other user agents, humans or bots, to
collaborate and socialize for collective understanding and behavior.

The example scenarios described above convey the problems of perception
and action in bots, similar to how a human user would perceive and act in digital
spaces. To date, bots are incapable of the essential cognitive skills required to en-
gage in such activity since this would entail complex visual recognition, language
understanding, and the employment of advanced cognitive models. Most bots are
instead conversational interfaces or question-and-answer knowledge agents, and
others only perform automated repetitive tasks based on pre-given scripts, lack-
ing autonomy and other advanced cognitive skills [14, 34]. The problems are,
therefore, complex and challenging [41, 58]. Solutions must address different ar-
eas, such as transduction, autonomous action, and reasoning cases, to realize
advanced generalizable intelligent behavior [18].

Problems spanning diverse domains require architectural solutions. Accord-
ingly, these challenges also require researchers to address such systems’ structural
and dynamical elements from an architectural perspective [19, 45, 36]. For this
reason, this paper aims to outline the architectural research agendas to address
the problems toward conceptualizing and developing a cognitive bot with gen-
eralizable intelligence.

The paper is divided into sections discussing each of the research challenges.
In Sect. 2, we discuss the challenges related to efforts and possible directions in
enabling bots to sense and understand web platforms. Next, Sect. 3 describes
the challenges related to realizing advanced cognitive models in software bots.
Sect. 4 and 5, discuss the research issues in bot communication and cooperation,
respectively. The remaining two sections provide general discussions on bot ethics
and trust and conclude the research agenda.

2 The Transduction Problem

Web platforms can be seen as microenvironments or as distinct nature of dig-
ital microcosms [12]. They offer a microhabitat for their users’ diverse digital
experiences. These experiences mainly transpire from the elements of interac-
tion and action, the hypermedia within web environments [12, 40]. Hyperme-
dia connects and extends the experience, linking to further dimensions of the
web-worlds, which means more pages and interactive elements from the user’s
perspective. Analogous to the biological concept of affordances from environ-
mental pyschology [15], the interaction elements are considered affordances in
the digital space [3, 42, 35]. Similarly, signifiers can also accompany affordances.
Signifiers reveal or indicate apparent possibilities for actions associated with af-
fordances [35, 52]. An example on the web would be a button affording a click
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action and a text signifier hinting “Click to submit”. A human user understands
the web environment, its content or affordances, and navigates reasonably eas-
ily. However, enabling software bots to understand this digital environment and
its affordances the way human users do is a challenging task. It is a complex
problem of translating and mapping perception to action, i.e., the transduction
problem [57, 2].

Today, there are different approaches to these challenges. The first category
of approaches depends on providing knowledge about the environment for dif-
ferent levels of observability using APIs or knowledge descriptions. With API-
based approaches, bots are developed for a specific platform, constantly putting
developers in the loop. Bots do not have the general perceptual capability to
understand and navigate with autonomous variability. Other architectures in
this category, originating from the Web of Things (WoT), attempt to address
the challenge using knowledge models and standards that could enable agents to
perceive the web by exposing hypermedia affordances and signifiers [3, 5]. The
knowledge descriptions carry discoverable affordances and interpretable signi-
fiers, which can then be resolved by agents [3, 35]. This approach might demand
extended web standards that make the web a suitable environment for soft-
ware agents. It might also require introducing architectural constraints that web
platforms must adhere to in developing and changing their platforms, such as
providing a knowledge description where bots can read descriptions of their af-
fordances.

The second category of approaches focuses on using various behavioral cloning
and reinforcement learning techniques [22]. One example is by Shi et al. [47],
where they introduce a simulation and live training environment to enable bots
to complete web interaction activities utilizing keyboard and mouse actions. Re-
cent efforts extend these approaches by leveraging large language models (LLMs)
for web page understanding and autonomous web navigation [21, 25]. The results
from both techniques and similar approaches reveal the size of the gap between
human users and bots [47, 21]. Both approaches still need to solve the problem of
variability and generalizability of perception and action. Though approaches that
leverage the hypermedia knowledge of platforms with affordance and signifier de-
scriptions could serve as placeholders, real bots with generalizable capabilities
would need more autonomous models yet.

Besides this, some design assumptions consider the environment and the bot
as one. As a result, they may attempt to design agents as an integrated part of
the platforms or try to “botify” and “cognify” or orient web services as agents.
However, alternatively, the whole notion of a user-like bot inherently considers
the bot to have an autonomous presence separate from the web platforms it
accesses. Fig. 1 illustrates the basic perspective in a vertically separate design
and development of the bot and the web platforms it operates in. This strict
separation enables both the environment and the bot to evolve independently.
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Fig. 1. A decoupled bot-environment viewpoint. Fig. 2. Separate bot and
behavior models.

3 The Behavior Problem

Most user activities on digital platforms are complex behaviors resulting from
human users’ underlining intentions, goals, and belief systems. Although a bot
operating in digital spaces need not fully emulate humans to achieve general-
izable behavior, it is essential to consider the intricacies and sophistication of
human users’ behavior on the web as an example [44]. To that end, engineering
bots with similar behavior models might take account of existing approaches
to measuring generalizable user behavior while not having to replicate human
cognition as such [51].

Fig. 3. The abstraction ladder in modeling machine intelligence.

Current models for engineering intelligent behavior come from three prospec-
tive categories of approaches. Each approach takes natural or human intelligence
as its inspiration and models it at different levels of abstraction. The three meth-
ods differ mainly in how they try to understand intelligence and where they
start the abstraction for modeling intelligence. Fig. 3 illustrates this ladder of
abstraction in modeling machine intelligence. The abstractions start either at
artificial cognition, artificial neurons, or artificial life or consciousness [18, 49,
49]. These relate to models and techniques for each approach to enacting in-
telligent behavior based, respectively, on high-level cognitive functions, artificial
neural networks (ANNs), or more physical and bottom-up approaches starting
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at molecular or atomic levels.
Artificial Cognition: in cognitive modeling, efforts to model cognition are in-

spired by the brain’s high-level cognitive functions, such as memory. Abstraction
is at the topmost level compared to the other two. Most assumptions come from
studies and understanding of the cognitive sciences. Cognitive models use diverse
techniques, such as production rules, dynamical systems, and quantum models,
to model particular cognitive capabilities [46]. Although cognitive models use
methods from other approaches, such as ANNs, they do not necessarily adhere
to underlying mechanisms in the brain [53, 18]. Promising experimental research
examples that heavily rely on artificial cognitive models, aka cognitive architec-
tures, are works such as the OpenCog (Hyperon) and the iCub project [18, 53].

Artificial Neurons: artificial neurons as brain models aim to understand,
model, and simulate underlying computational mechanisms and functions based
on assumptions and studies from the neurosciences [11]. Discoveries from neu-
roscience are utilized to drive brain-based computational principles. Sometimes,
these approaches are referred to as Brain-derived AI or NeuroAI models [55,
32, 39]. Due to the attention given to the underline principles of computation in
the brain, they strictly differ from the brain-inspired cognitive models. Practices
are mainly advancements in artificial neural networks, such as deep learning.
Large-scale brain simulation research and new hardware in neuromorphic com-
puting, such as SpiNNaker and Loihi, also contribute to research efforts in this
area. Computational capabilities in neuromorphic computing enable particular
types of neural networks closer to brain computational principles, such as Spik-
ing neural networks [37]. Brain-derived AI approaches, with neurorobotics, aim
to achieve embodiment using fully developed morphologies, either physical or
virtual models. The Neurorobotics Platform (NRP) is an example of such efforts
to develop and simulate embodied systems. The NRP is a neurorobotics simula-
tion environment to connect simulated brains to simulated bodies of robots [31,
30].

Artificial Life (aLife) Attempts to model consciousness, particularly in the
case of artificial life, start with a bottom-up approach at a physical or molecular
level [49]. Most synthesizing efforts to models of intelligence in artificial life are
simulations with digital avatars.

However, in the context of bots on web platforms, employing similar inte-
grated behavior models to those mentioned above is still a challenge. Thus, in
addition to the proposed separation of the bot and environment, decoupling a
bot’s basic skeleton and behavior models is architecturally significant. Fig. 2
illustrates the separate structure of a bot and its behavior models. The vertical
separation allows behavior models and bot skeletons to change independently,
maintaining the possibility of dynamic coupling.

4 Bot Communication Challenges

In Multi-Agent Systems (MAS), agent-to-agent communication heavily relies
on agent communication languages (ACLs) such as FIPA-ACL, standardized
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by the Foundation for Intelligent Physical Agents(FIPA) consortium [48, 57, 26,
23]. However, in mixed reality environments, where bots and humans share and
collaborate in digital space and beliefs, communication cannot rely only on ACLs
and APIs [24].

To that end, a cognitive bot with artificial general intelligence (AGI) must
possess communications capabilities to address humans and software agents with
diverse communication skills. Communication capabilities should include diverse
possibilities like email, dialogue systems, voice, blogging, and micro-blogging.

Large language models (LLMs) have recently shown significant progress in
natural language processing and visual perception that could be utilized for bot
and human communication [25, 21].

5 Integration and Cooperation Challenges

Researchers assert that the grand challenge in AGI remains in integrating differ-
ent intelligence components to enable the emergence of advanced generalizable
behavior or even collective intelligence [38, 18, 50, 13]. The intelligence solutions
to integrate include learning, memory, perception, actuation, and other cogni-
tive capabilities [16]. Theories and assumptions developed by proponents include
approaches based on cognitive synergy, the free energy principle, and integrated
information theory [17, 13, 50].

In practice, however, integration and cooperation of software agents are im-
plemented mainly by utilizing methods such as ontologies, APIs, message rout-
ing, communication protocols, and middleware like the blackboard pattern [8,
57, 1].

From a software engineering perspective, basic architectural requirements
for the context of bots operating on digital platforms are possibilities for the
evolvability of bots into collective understanding with shared beliefs, stigmergy,
or sharing common behavior models to learn and evolve. Other minor concerns
are the hosting and distribution of bots and their behavior models, which could
be on a cloud or individual nodes.

Fig. 4 shows a simple diagram representing the integrated parts, i.e., bots,
shared behavior models, and the environment. B represents the possible num-
ber of bots. BM represents the shared behavior models. E represents the web
environment and its variability. The lines represent communication channels. H
denotes the human users that participate and share the digital space.

6 Bot Ethics and Trust

Concerns and challenges in AGI are diverse. They touch on various aspects of
society and politics. One such case is the impact, real-world implications, of such
user-like bots on privacy, security, ethics, and trust with humans [20, 4, 6, 7].

User-like bots, emulating human users’ perceptual and interaction techniques,
can easily pass bot detection tests and risk exploitation for malicious use cases



Towards Cognitive Bots: Architectural Research Challenges 7

Fig. 4. Representation of integrated parts, i.e., bots, shared behavior models, and the
environment.

to deceive and attack web platforms. They could also extend their perceptual
capabilities beyond the web with connected devices, such as microphones and
cameras, affecting the personal privacy of others. Possible threats include spam-
ming, cyberattacks to overwhelm platforms, and even unfair use of web plat-
forms, for surveillance or illicit financial gains. In WoT context, for instance,
bots could affect the real world, such as smart factories and automated services,
compromising physical devices and processes with significant security implica-
tions [29].

Hypothetically, intelligent social bots could share their beliefs on social plat-
forms as any human user or beyond with superb reasoning and argumentation
skills. These cases could negatively impact society by exposing people and soft-
ware agents to unexpected, misaligned norms and moral beliefs. Furthermore,
deploying advanced cognitive bots as digital workforces may result in unforeseen
negative economic consequences. Short-term issues could include unemployment,
while long-term concerns may involve ethical dilemmas surrounding bot owner-
ship rights, bot farming, or ’enslavement’ [20]. Accordingly, these ethical con-
cerns may affect the legality of cognitive bot development, potentially impeding
their engineering and deployment. Alternatively, this could introduce new legal
aspects regarding regulation, standards, and ethics for integrating and governing
bots within emerging socio-technical ecosystems [29].

Despite these concerns, software agents’ current and promising applications
can positively impact numerous aspects of society. Cognitive automation, for
example, is driving increased demand for cognitive agents in Industry 4.0, dig-
ital twins, and other digital environments [9, 54, 28]. Early implementations,
like Wikipedia bots, already play a significant role in fact-checking and other
knowledge-based tasks. On platforms like GitHub, bots assist and automate
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development tasks [56, 27]. Future cognitive bots could also benefit society in
advancing scientific research, like medical research, by participating in knowl-
edge processing and providing valuable new scientific insights, which significantly
outweigh their potential risks.

Today, digital platforms handle simple crawling and API-based bots with
crawling policies and controlled exposure of APIs. However, advanced user-like
bots like the ones envisioned in this report will require more complex mecha-
nisms to govern and control behavior and belief-sharing [20, 29]. One approach
towards this, ethics and trust by design, emphasizes providing protocols and
policies to be followed by developers and engineering organizations to incorpo-
rate trust models and ethical frameworks at design and architectural stages [20].
Another approach proposes norms and user policies with penalties for agents to
acknowledge, understand, and adhere to, similar to what human users would do
on digital platforms [29]. In return, norm and value-aware bots could establish
participation, trust, and compliance while facing the consequences of noncom-
pliance. They may also contribute to the collective value and norm revisions or
creations becoming part of possible viable socio-technical ecosystems [29, 43].

However, ensuring safety and trust in such ecosystems will require diverse
approaches. In addition to the machine-readable norms and policies targeting
cognitive agents, tackling ethical and trust issues with transparent and explain-
able design and engineering processes is also essential. As a result, research on
developing advanced cognitive bots must also address critical challenges in en-
gineering trustworthy, secure, and verifiable AGI bots within the design and
architecture [7].

7 Conclusion

The study presented architectural research challenges toward designing and de-
veloping a new line of user-like cognitive bots operating autonomously on digital
platforms. Key challenges, such as the transduction problem, are discussed in
the context of digital web platforms’ access, user-like visual interaction, and au-
tonomous navigation. Bot-environment separation for autonomy and bot skele-
ton and behavior model separation for better evolvability are also discussed as
architectural recommendations.

Furthermore, challenges in enacting generalizable behavior, communication,
and cooperation are also presented. Finally, challenges on cognitive bots’ ethics,
trust, implications, and future impacts are also discussed as part of architectural
concerns.

As an outlook, a good starting point for future work would be to concep-
tualize a detailed implementation architecture and construct a software bot by
utilizing existing cognitive models. These systems can demonstrate the concept
and allow further detailed analysis through empirical data and benchmarks.
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