

Einführung, Motivation

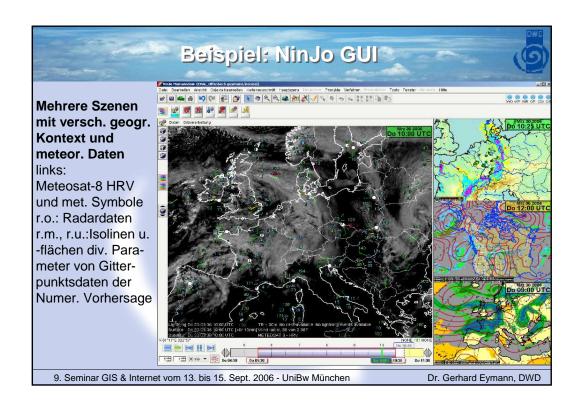
- Meteorologische Information hat <u>immer</u> einen geografischen Kontext
- Verwendungszweck von Geodaten:
 - ▶ Numerische Wettervorhersage (hier unberücksichtigt)
 - Visualisierung
- Meteorologische Datenarten:
 - ▶ Beobachtungen (Stationen, Ballonaufstiege, Blitze, etc.), Strassen, Luftfahrt, Schifffahrt etc.
 - ▶ Satelliten- und Radardaten
 - ▶ Numerische Vorhersagen (Gitterpunktsfelder) des DWD u.a. Dienste
 - ▶ ca. 15 unterschiedl. Anwendungen (sog. Layer)
 - ▶ Datenumsatz ~120 Gbyte / Tag

9. Seminar GIS & Internet vom 13. bis 15. Sept. 2006 - UniBw München

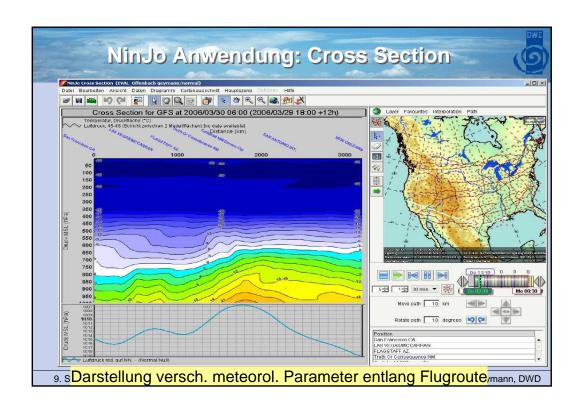
Nutzeranforderungen

- Inhaltliche Nutzeranforderungen: bei Bildoperationen....
 - ▶ Automatische Anpassung des Informationsgehalts (Objektdichte) an Maßstab bzw. Ausschnittsgröße
 - ▶ Automatische Anpassung der Auflösung (Stützpunktdichte)
- Technische Nutzeranforderungen
 - ▶ Darstellung des Maßstabzahlenbereichs von 10⁴ bis 10⁷
 - ▶ hohe Performanz (Bildaktion <= 1 Sek. für alle Daten)
 - ▶ Layerstruktur ähnl. GIS (für Vektordaten, hier "Themen")
 - ▶ beliebige Kombination mit meteorologischen Daten
 - ▶ interaktive Einstellung graphischer Attribute

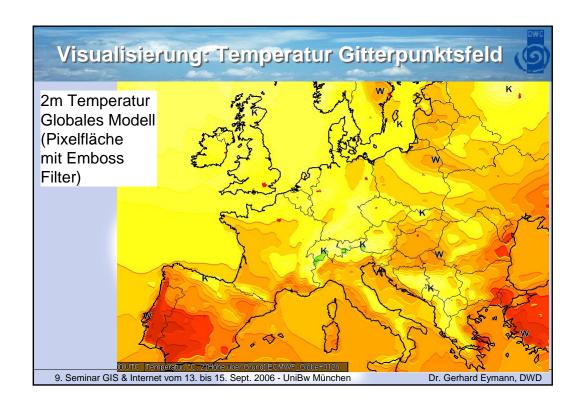
9. Seminar GIS & Internet vom 13. bis 15. Sept. 2006 - UniBw München

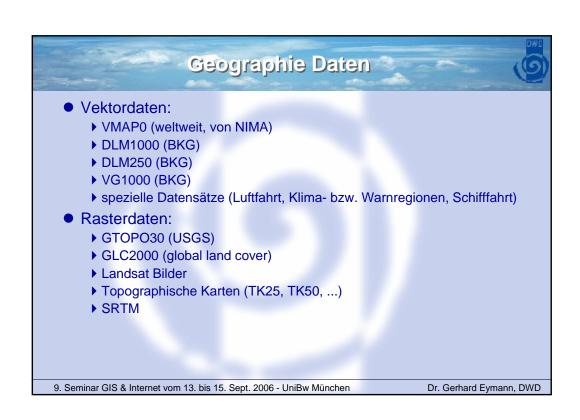

Dr. Gerhard Eymann, DWD

Projekt NinJo



- Realisierung im Rahmen des Projektes NinJo
 - ▶ Internationale Kooperation
 - ▶ GeoInfoDienst Bw, Schweiz, Dänemark, Kanada
- Ziel: Entwicklung einer (generischen) Meteorologischen Workstation
 - pure Java
 - ▶ Client Server (multi-tier) Anwendung
 - ▶ mehrere Lizenznehmer
- auch in Bezug auf Geodaten vollständige Neuentwicklung
 - ▶ Aufbereitung
 - Datenhaltung
 - ▶ Visualisierung


9. Seminar GIS & Internet vom 13. bis 15. Sept. 2006 - UniBw München



Geodatenhaltung und -speicherung

- RDBMS Oracle Spatial
- Software zum Im- und Export
 - ▶ mit GUI und API, in C++
 - ▶ während Import Aufbereitung (s.u.)
 - ▶ entw. von Fa. E. Basler & Partner, Potsdam
- Zweck: Speicherung von Vektordaten
 - ▶ Importformat ESRI Shapefile
 - ▶ Schnittstellen zum Export, div. Formate (s.u.)
- GeoDB speichert auch Rasterdaten (+ MediaExtension)
 - ▶ als BLOBs (Binary Large OBject)
 - ▶ Format GeoTIFF (Import, Export)
 - verschiedene geodät. Abbildungen möglich

9. Seminar GIS & Internet vom 13. bis 15. Sept. 2006 - UniBw München

Dr. Gerhard Eymann, DWD

Vorüberlegungen (Rasterdaten)

- Datenhaltung <u>und</u> Input für Visualisierung?
- Anforderungen leicht realisierbar mit GeoTIFF
 - ▶ erfüllt Voraussetzungen (s.o.) durch...
 - ▶ Kachelung ("tiling")
 - ► Auflösungsstufen ("pages")
- Georeferenzierung
 - ▶ Speicherung als lat-lon Werte
 - ▶ nur 2 Tags zusätzl. notwendig
 - GeoPixelScale
 - GeoTiePoint

9. Seminar GIS & Internet vom 13. bis 15. Sept. 2006 - UniBw München

Vorüberlegungen (Vektordaten)

- wie Realisierung der inhaltl. und techn. Vorgaben?
 - Im GIS Umfeld keine praktikable Lösung vorhanden
- Anpassung der Objektdichte bzw. des Informationsgehalts:
 - ▶ bei grosser Maßstabzahl (Weltkarte) niedriger Informationsgehalt (z.B. nur Küstenlinie, sehr große Flüsse u. Städte etc.)
 - ▶ bei kleiner Maßstabzahl (Landkreis, Region) hoher Informationsgehalt (z.B. Landkreisgrenzen, kleinere Orte u. Flüsse etc.)
 - setzt "Objekte" voraus, d.h. geometrisch und fachlich geeignet attributierte Gebilde
 - ▶ z.B. intuitiver Vorstellung folgend: ein Fluss, Nebenfluss 1. Ordnung, Nebenfluss 2. Ordnung etc. sind jeweils individuelle Objekte
 - ▶ Daten liegen nicht in dieser Strukturierung vor

9. Seminar GIS & Internet vom 13. bis 15. Sept. 2006 - UniBw München

Dr. Gerhard Eymann, DWD

Vorüberlegungen II (Vektordaten)

- Anpassung der Auflösung:
 - ▶ optional Reduktion der Anzahl von Stützstellen
 - ▶ fachlich und technisch auf ~ 1% aller Punkte, bei Erkennbarkeit
 - ▶ Visualisierung stufenweise in höchstmöglicher bis niedrigster Auflösung
 - ▶ Algorithmen in Eigenentwicklung + Sichtung Publikationen
- Konsequenzen für Datenhaltung
 - > separate Speicherung verschiedener Auflösungsstufen
 - Reduktion des zu lesenden u. zu verarbeitenden Volumens
 - ▶ Kachelung
 - s.o., nur Daten im Bildausschnitt sind zu behandeln

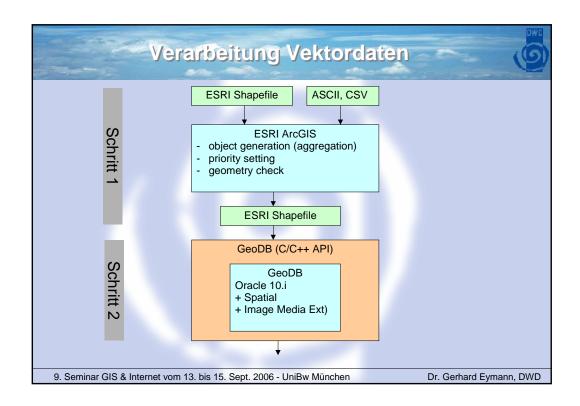
9. Seminar GIS & Internet vom 13. bis 15. Sept. 2006 - UniBw München

Konsequenzen (Vektordaten)

- zusätzliches Attributs "Priorität"
 - ▶ Eigenschaft eines [ggf. zu bildenden] "Objektes"
 - ▶ Shapefile Terminologie: zusätzl. Spalte in Attribut-Tabelle
 - ▶ ermöglicht maßstab-abhängige Darstellung der Objektdichte
- zusätzlicher Parameter "Genauigkeit"
 - ▶ Eigenschaft jedes einzelnen Stützpunktes / jeder Koordinate
 - ▶ entpricht "level of detail" (LOD)
 - ▶ ermöglicht maßstab-abhängige Darstellung der Auflösung bzw. Stützpunktdichte

9. Seminar GIS & Internet vom 13. bis 15. Sept. 2006 - UniBw München

Dr. Gerhard Eymann, DWD


Konsequenzen II (Vektordaten)

- Berechnung der "Genauigkeit" themenweise
- Problem bei gemeinsamen Linien
 - ▶ z.B. Grenze = Gewässer
 - ▶ Werte nicht identisch (außer originale bzw. max. Auflösung)
 - ▶ bei Visualisierung Klaffungen und Abweichungen
- Lösung: "Adaption" der Themen
 - ▶ Vergleich der "Genauigkeiten" für jeden Stützpunkt
 - bei ident. Koordinate (mit Toleranz): verwende h\u00f6chste Genauigkeit (d.h. numer. Minimum beider Werte)

9. Seminar GIS & Internet vom 13. bis 15. Sept. 2006 - UniBw München

(1) Visualisierung & Aufbereitung mittels GIS ESRI ArcGIS "zur Objekt"-Bildung bzw. -Aggregation (2) Datenhaltung, -speicherung: GeoDB basierend auf Oracle Spatial (3) Berechung auflösungs-abhängiger Parameter (LOD) C, C++ Programme (während Import in GeoDB oder nach Export) (4) [für NinJo] Konversion für effiziente Visualisierung LOD-weise, gekachelte Speicherung binäres Format 9. Seminar GIS & Internet vom 13. bis 15. Sept. 2006 - UniBw München Dr. Gerhard Eymann, DWD

Aufbereitungung vektorieller Daten

- Schritt (2): Import in GeoDB / Oracle Spatial
 - ▶ fungiert als Permanentspeicher
 - ▶ Speicherung jeder Koordinate in 3 Dimensionen (lat, lon, accuracy)
 - ▶ Importformat Shapefile
- Export
 - ▶ kein geeignetes, standardisiertes Format vorhanden (Jahr 2000)
 - ▶ Spezifikation eines proprietären ASCII Formats
 - ▶ Alternativen:
 - SVG (Scalable Vector Graphics)
 - GML-3 (Teststadium, noch keine Visualisierung)
 - ◆ Konsolidierung zu erwarten
 - ◆ Unterstützung durch ArcGIS 9.x ?

9. Seminar GIS & Internet vom 13. bis 15. Sept. 2006 - UniBw München

Dr. Gerhard Eymann, DWD

Aufbereitung vektorieller Daten

- Schritt (3): "Ausdünnung" der Objektgeometrie
- 3a: Ermittlung von Genauigkeitsstufen
 - ▶ modifizierter Douglas-Peucker-Algorithmus
 - ▶ für <u>jede</u> Genauigkeitsstufe liegt ein vollständiges, geometrisch korrektes Objekt vor
 - Nachbearbeitung: Glättung und Schnittpunktfreiheit (s.u.)
- 3b: Adaption einzelner Themen
 - ▶ Anpassung der Genauigkeitswerte unterschiedl. Themen (s.u.)

9. Seminar GIS & Internet vom 13. bis 15. Sept. 2006 - UniBw München

Aufbereitung: Berechnung Genauigkeit Berechnung der "Genauigkeiten" ▶ Basis ist Douglas-Peucker-Algorithmus (DPA) ▶ mehrfacher Durchlauf für jede Genauigkeitsstufe ▶ bei jedem Schritt Vergabe eines Genauigkeitswertes (0 - 9) Erklärung zum Bild: 0: ursprüngliche Linie bestehend aus 8 Punkten 1-3: drei Iterationen bis Abstand kleiner als ε (zuvor festgelegter Grenzwert) 4: geglättete Linie bestehend aus nunmehr 5 Punkten a = Verbindungslinie zwischen Anfangs- und Endpunkt b = maximaler Abstand zwischen Punkt und Linie c = Punkt mit maximalem Abstand Verfahrensschritte: 1. konstruiere Verbindungslinie zwischen Anfangs- und Endpunkt 2. suche Punkt mit maximaler lotrechter Entfernung zu dieser Verbindungslinie 3. wenn Abstand > ϵ , dann behalte Punkt und gehe zu 1. (nächste Iteration); wenn Abstand < ϵ , dann Ende Quelle: http://de.wikipedia.org/wiki/Douglas-Peucker-Algorithmus 9. Seminar GIS & Internet vom 13. bis 15. Sept. 2006 - UniBw München Dr. Gerhard Eymann, DWD

- - erzielt durch geeignete, heuristische Vorgabe von Schwellwerten ε
- Ablauf:
 - ▶ (1) definiere ε so, dass (4) für ~1% der Stützpunkte erfüllt ist
 - ▶ (2) konstruiere Verbindungslinie (wie oben beschr.)
 - ▶ (3) suche Punkt mit max. Abstand
 - ▶ (4) wenn Abstand > ε gehe zu (1), sonst Ende
 - ▶ (5) verringere ε so, dass (4) für ~2% der Stützpunkte erfüllt
 - ▶ (6) Wiederholung für alle restlichen Punkte (8 mal, jeweils mit anderem ε)
 - ▶ (7) Ende: restlichen Punkte erhalten Genauigkeitswert 9
- Eigenschaften, Vorteile:
 - ▶ keine Modifikation der Objektgeometrie
 - ▶ keine weiteren Stützpunkte
 - max. originale Auflösung bleibt erhalten

9. Seminar GIS & Internet vom 13. bis 15. Sept. 2006 - UniBw München

Aufbereitung: Nachbearbeitung

- Nachbearbeitung 1: Glättung (beseitigt schroffe Übergänge)
 - ▶ für alle Genauigkeitsstufen:
 - berechne Gradient zu Nachbarpunkten
 - Vergleich mit Schwellwert δ (entspricht Winkel)
 - falls Gradient > δ & Abstand < ε: erhöhe Genauigkeitswert
 - ◆ sonst keine Änderung
- Nachbearbeitung 2: Elimination von evtl. Schnittpunkten
 - ▶ für ein Objekt mit best. Genauigkeitsstufen können Schnittpunkte auftreten
 - führt zu Problemen bei Visualisierung (innen/aussen?)
 - ▶ berechne für jeden Linien/Polygonabschnitt Umhüllende mit allen Koordinaten
 - bei Überlappung: Test auf Schnittpunkt
 - ja: erhöhe Genauigkeitswert eines Punktes zwischen Anfangs- und Endpunkt der Schnittlinie (d.h. erniedrige numer. Wert)

9. Seminar GIS & Internet vom 13. bis 15. Sept. 2006 - UniBw München

Dr. Gerhard Eymann, DWD

Aufbereitung: Adaption

- Nachbearbeitung: Adaption
 - ▶ die Genauigkeitswerte werden zunächst themenweise berechnet
 - verschiedene Themen haben identische Bedeutung (z.B. Gewässer ist Grenze)
 - ▶ gleiche Koordinaten sollten ident. Genauigkeitswerte haben
 - ▶ nicht für alle Themen notwendig
 - ▶ negativer Einfluß auf erwünschte Häufigkeitsverteilung bzw. Datenreduktion
- Vorgehen:
 - ▶ Vergleich der Koordinatentripel (lat, lon, accuracy) jedes Stützpunktes eines Themas mit allen Stützpunkten des zu adaptierenden Themas:
 - ▶ falls lat₁≈ lat₂ & lon₁ ≈ lon₂ & accu₁ ≠ accu₂:
 - setze accu₁ = accu₂ = min (accu₁, accu₂)
 - ▶ Beginn und Ende von gemeinsamen (Teil)Geometrien erhalten minimalen Genauigkeitswert des Objektes

9. Seminar GIS & Internet vom 13. bis 15. Sept. 2006 - UniBw München

Ende der allg. Aufbereitung

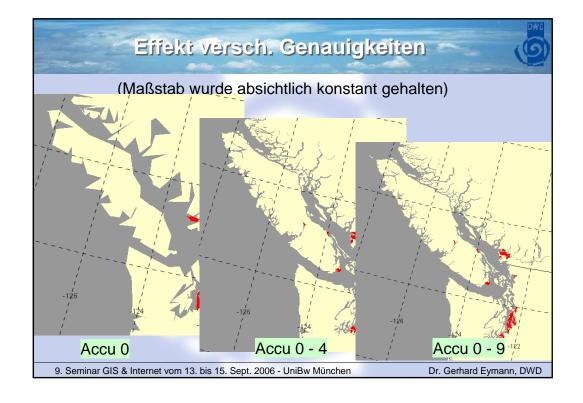
- Geodaten stehen nach Schritt (3) für Anwendungen zur Verfügung
 - ▶ Prioritäten (jedes Objektes)
 - ▶ Genauigkeitswerte (jeder Koordinate)
 - ▶ korrekte Geometrie
- Verwendung in div. Anwendungsprogrammen
 - ▶ JavaMap (meteorolog. self-briefing System)
 - kann hoheitl. Anwendern unentgeltl. zur Verfügung gestellt werden
 - ▶ skyView (web-basierte Visualisierung von Luftfahrtinformationen
 - http://www.dwd.de/de/SundL/Luftfahrt/Flugwetter/skyview/index.htm
 - ▶ webKonrad: web-basierte Visualisierung von Radardaten
 - interne Anwender und geschl. Benutzergruppe
 - ▶ QualiMet (Qualitätsmonitoring von Beobachtungsdaten)
 - DWD interne Anwendung
 - ▶ TriVis (TV Visualisierung)
 - http://www.trivis.de
 - ▶ NinJo: Meteorologische Workstation, s.u.

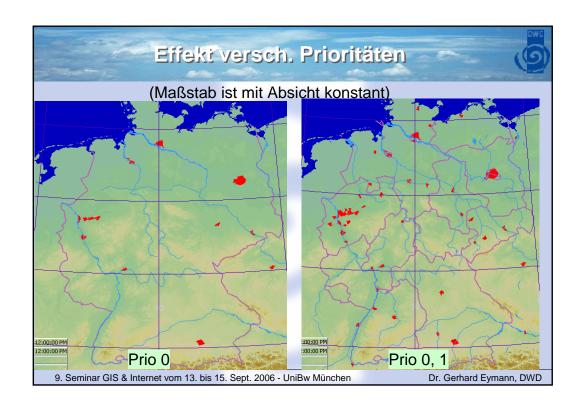
9. Seminar GIS & Internet vom 13. bis 15. Sept. 2006 - UniBw München

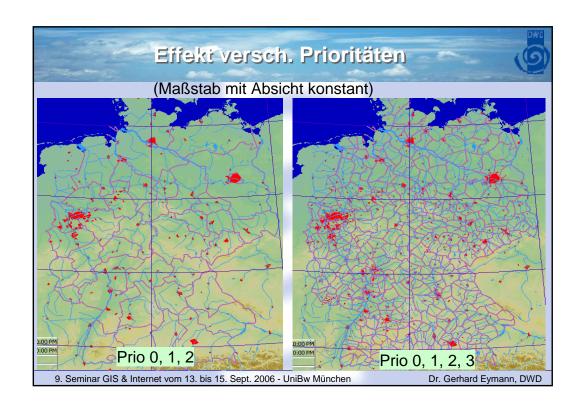
Dr. Gerhard Eymann, DWD

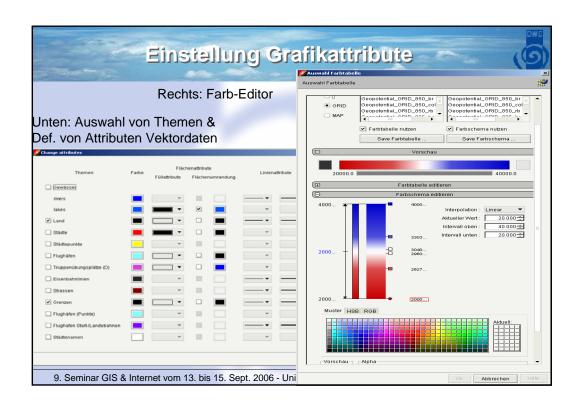
Import für NinJo

- ASCII Format ungeeignet für performanten Zugriff
 - ▶ Konsequenz: Definition eines Binärformats
- Weitere Features:
 - ▶ Kachelung (z.B. Weltkarte: 30 * 30 Grad)
 - "Zerschlagung" der Geometrie notwendig
 - geringfügiger Volumenzuwachs für Metainformation
 - ▶ (kumulative) Speicherung mehrerer LOD (Genauigkeits) Stufen
 - 3 Stufen (LOD 0-3, LOD 0-6, LOD 0-9)
 - Erhöhung des Speichervolumens
- Volumenvergleich
 - ► Shapefiles: DLM1000: 300 Mbyte, VMAP0: 950 Mbyte
 ► GeoDB : DLM1000: 45 Mbyte, VMAP0: 230 Mbyte
 - ▶ NinJo: : DLM1000: 85 Mbyte, VMAP0: 300 Mbyte
 - ▶ Gesamtvolumen vektorieller Daten NinJo: 420 Mbyte


9. Seminar GIS & Internet vom 13. bis 15. Sept. 2006 - UniBw München


Visualisierung Vektordaten in NinJo



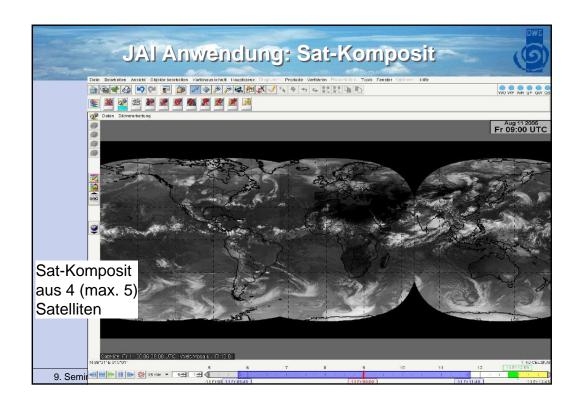

- spezif. Komponente (Graphics Object Factory)
 - ▶ Schnittstelle zur Kapselung spezif. Java-APIs (z.B. Java-2D, Java-3D)
 - ▶ enthält Renderer für Grafikexport (PNG, JPG, PDF, ...)
 - ▶ Verwendung: JOGL (Java for OpenGL)
 - ▶ Anbindung von OpenGL via JNI (Java Native Interface)
- Konfiguration mit XML
 - ▶ alle graphischen Attribute
 - ▶ "Priorität" und "Genauigkeit" sind Funktion des Maßstabs
 - ▶ Auswahl der Daten (global, national) als Funktion des Maßstabs
- Erstellung eines Scenegraphen
 - ▶ unabhängige Behandlung von Geometrie und Attributen
- geodätische Transformation "on the fly"
 - ▶ ca. 10 Methoden, gängige Abbildungen
 - pure Java

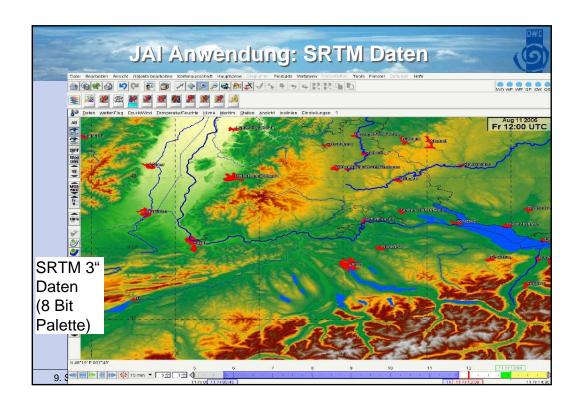
9. Seminar GIS & Internet vom 13. bis 15. Sept. 2006 - UniBw München

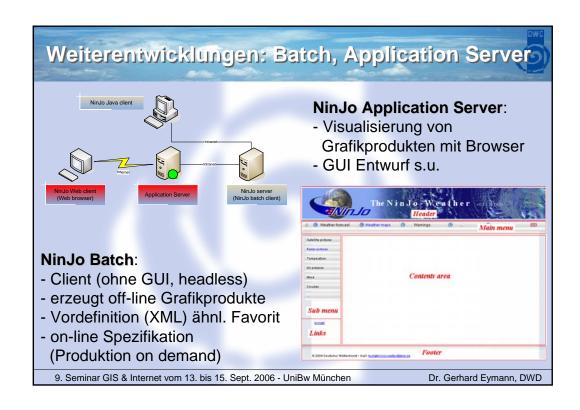
Projektion von Rasterdaten

- "warping" Methoden, basierend auf Gitter
 - package javax.media.jai, Klasse WarpGrid
 - ▶ geeignet für geodätische Transformationen
 - Berechung eines Gitters mit exakter Transformation
 - affine Interpolation für Zwischenraum
- Kapselung der JAI Funktionalität in API
 - ▶ Verwendung für alle Arten Rasterdaten (Satellit, Radar, ...)
- JAI unterstützt lineare (affine) u. nicht-lineare Abbildungen

9. Seminar GIS & Internet vom 13. bis 15. Sept. 2006 - UniBw München


Dr. Gerhard Eymann, DWD


Arten von Rasterdaten



- Prototypischer Test zur Eignung
 - ► Erzeugung eines Komposits aus GTOPO30 Daten (ca. 90 Mbyte, Palettenbild)
 - ▶ Visualisierung und Bildfunktionen auf Büro-PC in (nahezu) Echtzeit
- Datenbestand:
 - ▶ GTOPO30
 - ▶ Landsat
 - ▶ Topograph. Karten
 - ▶ Komposits aus SRTM-3 Daten (Europa, Südafrika, Nordamerika)
 - ggf. weitere, je nach Kundenanforderung
 - ▶ 8 Bit Palettenbild wg. Performance (Mitteleuropa ca. 240 Mbyte)
 - ▶ auch 16-Bit/Pixel, RGB u. RGBA Bilder möglich
 - ▶ Speicherung als GeoTIFF (multi-page, tiled, 2 geo tags)

9. Seminar GIS & Internet vom 13. bis 15. Sept. 2006 - UniBw München

