

# 37<sup>th</sup> EARSeL Symposium 2017, Prague, Czech Rep.



## Quality Assessment of an Extended Interferometric Radar Data Processing Approach

## Winhard Tampubolon, Wolfgang Reinhardt

AGIS, Universität der Bundeswehr München, Institute for Applied Computer Science, Werner-Heisenberg-Weg 39, 85577, Munich, Germany

### Introduction

- Legislation act about Geospatial Information in Indonesia initiated the massive production of Large Scale Topographical Maps since 2011 (Table 1).
- Conventional lengthy method by using Airborne data acquisition e.g. Digital Metric Camera, LiDAR, IFSAR.
- Satellite-based data as an alternative to perform Large Scale Topographical Mapping.
- Rapid Mapping needs Ground Control Point (GCP) and Digital Surface Model (DSM) to support "Village

## Interferometric SAR Data Processing

- IFSAR DSM generation in SNAP Desktop [5]:
- 1. Phase Unwrapping in Statistical-Cost Network-Flow
  - Algorithm for Phase Unwrapping (SNAPHU).
- 2. Extended IFSAR in Phase to Elevation step (Figure 2).



### **Results and Discussion**

- Absolute height accuracy assessment using 4,333,640 gridded points (Leica RCD30 DSM) and 35 Checkpoints (GNSS)
- The Terrain profile from the DSM calculated with the extended tool shows better similarity with Leica RCD30 DSM rather than IDEM (Figure 5).

| From Pos: 704458.887, 9282340.690 | To Pos: 704560.638, 9282011.675 |  |  |
|-----------------------------------|---------------------------------|--|--|
|                                   |                                 |  |  |
| 162 m                             |                                 |  |  |
|                                   |                                 |  |  |

Mapping" in a scale of 1:5,000.

|    | Map scale<br>(1:M) | Map Coverage<br>(Length×Width) in<br>Km | Map Sheets<br>(Numbers) | Availability<br>(%) |
|----|--------------------|-----------------------------------------|-------------------------|---------------------|
| 1  | 1,000,000          | 668 × 442                               | 37                      | 100                 |
| 2  | 500,000            | 334 × 221                               | 103                     | 100                 |
| 3  | 250,000            | 167 × 111                               | 309                     | 100                 |
| 4  | 100,000            | 55.6 × 55.6                             | 1,245                   | 100                 |
| 5  | 50,000             | 27.8 × 27.8                             | 3,899                   | 100                 |
| 6  | 25,000             | 13.8 × 13.8                             | 13,020                  | 40                  |
| 7  | 10,000             | 4.6 × 4.6                               | 91,547                  | 1.5                 |
| 8  | 5,000              | 2.3 × 2.3                               | 379,014                 | 0.2                 |
| 9  | 2,500              | 1.15 × 1.15                             | 880,206                 | 0                   |
| 10 | 1,000              | 0.58 × 0.58                             | 2,729,319               | 9                   |

 Table 1. : Indonesian Topographical Maps Volume (2017)

 Research Objectives and Motivation

- Evaluate and identify potential drawbacks in the DSM generation workflow of the Sentinel Application
   Platform (SNAP) Desktop.
- Present a more robust approach for the TanDEM-X Coregistered Singlelook Slant-range Complex (CoSSC) DSM generation in order to comply with High Resolution Terrain Information (HRTI) Level 4 Specification.
- Investigate the height accuracy of the DSM calculated with our extended solution.

#### Figure 2. : IFSAR Data Processing Workflow

**Extended Tool** 

- Pre-condition and workflow:
- 1. Input parameters : (Unwrapped Phase, Effective Baseline, Initial Phase Offset)
- 2. Constants : Wavelength ( $\lambda$ ), Speed of light (C<sub>0</sub>)
- 3. Phase Offset Functions introduced by [4].
- 4. GCP data to provide Initial height reference based on Indonesian Geospatial Reference System (SRGI)



Figure 5. : Building profile in BIG Office : IDEM (upper part), Leica RCD-30 DSM (middle), Generated DSM from Linearized approach (lower)

- Without GCP, leads to an inaccurate DSM i.e. 12-19 m Absolute Height Acc.
- With GCPs our generated DSM comply with HRTI Level 4 Specification i.e. 2 - 3.5 m Absolute Height Accuracy (Figure 6)

## **Area of Interest**

- The Geospatial Information Agency of Indonesia in Cibinong, supported by the available reference data and services including Continuous Operating Reference System (CORS).
- Urban area of approximately 15 Km<sup>2</sup> with an approximate elevation of 140 meters above mean sea level (msl).
- The terrain condition is classified as medium undulated urban region with a lot of hilly and vegetated areas.



Figure 1. : Area of Interest (BIG's office, Cibinong, Indonesia)

- 5. Linear adjustment of 3 parameters : Height Reference  $(h_{ref})$ , Absolute Phase Offset  $(\Delta \Phi)$ , and Baseline  $(\Delta B_P)$
- Output : Unwrapped Phase, Final Height Reference, Adjusted Baseline
- 7. Unwrapped Phase to Elevation: Calculated height based on adjusted parameters



Figure 3. : TanDEM-X Bi-static Geometric Consideration

#### **Absolute Height Accuracy Assessment**

Measure the deviation of each grid point on Leica RCD30 DSM (10x10cm) and GNSS Checkpoints (cm absolute height accuracy) to the corresponding points on our



## **Conclusions and Further Work**

- An extended tool to determine height reference, the phase offset estimation, and baseline for a more accurate IFSAR DSM generation has been presented.
- Our approach for TanDEM-X CoSSC data processing is appropriate for 1:10,0000 Large Scale Topographical Mapping in Indonesia
- Simultaneous implementation on multi TanDEM-X CoSCC datasets

#### Acknowledgements

I would like to thank both German Aerospace Center (DLR) for providing the TanDEM-X CoSSC data and Geospatial Information Agency of Indonesia (BIG) for providing the

#### Data Used

1. TanDEM-X Stripmap product (Table 2) i.e. CoSSC format [1].

| Scenes | HOA* / Baseline (m) | Looking<br>Direction | Acquisition Date |
|--------|---------------------|----------------------|------------------|
| S01    | 135.280 / 040.394   | Descending           | 30-01-2012       |
| S02    | 034.090 / 146.064   | Descending           | 31-10-2012       |
| S03    | 061.715 / 095.550   | Ascending            | 09-01-2013       |
| S04    | 120.747 / 052.689   | Ascending            | 11-10-2013       |

Table 2. : TanDEM-X CoSSC Data (\*Height of Ambiguity) **2. Reference data:** 

- GCPs
- Intermediate DEM TanDEM-X Scientific [3]
- Aerial Photo using Digital Camera:
  - 1. Leica RCD30 (Metric Camera)
  - 2. Trimble Phase One (P65+)





Figure 4. : Data used for Absolute Height Accuracy Assessments

#### Digital Metric Aerial Photo as well as the GCP data.

#### References

[1] DLR, 2012. TanDEM-X Payload Ground Segment CoSSC Generation and Interferometric Consideration (version 1.0), Oberpfaffenhofen, Germany, TD-PGS-TN-3129, pp. 20-21.

[2] FGDC, 1998. Geospatial Positioning Accuracy Standards Part 3: National Standard for Spatial Data Accuracy (version 2.0), Washington, D.C., FGDC-STD-001-1998: Federal Geographic Data Committee, pp.3-4.

[3] Krieger, G., Fiedler, H., Hajnsek, I., Eineder, M., Werner, M., Moreira, A., 2005, TanDEM-X: Mission Concept and Performance Analysis, Proceedings of IGARSS 2005. Seoul, Korea.

[4] Mura, J.C., Pinheiro, M., Rosa, R., Moreira, J.R., 2012. A Phase-Offset Estimation Method for InSAR DEM Generation Based on Phase-Offset Functions. Remote Sensing Journal, ISSN 2072-4292, pp.745-761.

[5] Veci, L., 2016. Interferometry Tutorial. Array Sytems Computing Inc.,http://sentinel1.s3.amazonaws.com/docs/S1TBX%20Stripmap%20Interfero metry%20with%20Sentinel-1%20Tutorial.pdf (28 Mar. 2017)

[6] Zhou, Y., Zhou, C., E, D., Wang, Z., Tian, X., 2011. InSAR DEM Reconstruction with ICESAT GLAS Data of the Grove Mountains Area. Fringe 2011 Workshop, Frascati, Italy.