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Abstract 
Recent catastrophic landslide events caused large 

human and material damages. This shows again, that 
there is still not enough protection against such kinds 
of natural hazards. In an ongoing research project a 
new approach to improve early warning systems of 
landslides is pursued: complex simulations of 
landslides are coupled with geoinformation systems 
(GIS). This allows on the one hand for a detailed 
investigation of unstable slopes with the help of the 
simulation and on the other hand for a user friendly 
preparation of the complex simulation results in the 
GIS for decision support. In this paper the 
interconnection between a GIS and a simulation system 
is briefly introduced and the main focus is put on 
cluster methods for the processing of the complex 
simulation results in a suitable way to support the user 
in the decision support and in the learning system, 
respectively. 

1. Introduction  

Recent catastrophic landslide events caused a large 
human and material dam-age. The landslide in Angras 
dos Reis in Brazil in January 2010, which killed 74 
people [15], demonstrated again, that there is still not 

enough protection against such kinds of natural 
hazards. In order to advance research in the field of 
early warning systems of land-slides the joint project 
“Development of suitable Information Systems for 
Early Warning Systems” was launched. The project 
aims at the development of components of an 
information system for the early recognition of 
landslides, their prototypical implementation and 
evaluation [6]. One subproject of the joint project 
addresses the coupling of complex finite element (FE) 
simulations with geoinformation systems [16,20]. In 
the project numerical simulations are setup to calculate 
the stability of slopes and to improve the understanding 
of the causes of slope instability and triggers of ground 
failure. This allows for the evaluation of unstable 
slopes and their imminent danger for humans and 
infrastructures. Because of the complex procedure of 
performing a simulation and the bulky simulation 
results such numerical simulations are mostly used by 
experts and scientists. For disaster prevention and 
management they are currently not available in 
practice, but would obviously be very helpful. The 
interconnection of the simulation with the 
geoinformation system (GIS) enables a broader use of 
such a complex system as the handling of it becomes 
more intuitive and user-friendly and GIS methods can 

2012 45th Hawaii International Conference on System Sciences

978-0-7695-4525-7/12 $26.00 © 2012 IEEE

DOI 10.1109/HICSS.2012.484

1089



be used to prepare the input data as well as to make the 
bulky results usable. 

In this paper the interconnection between a GIS 
and a simulation system is introduced and two 
operational modes of the coupled system are presented: 
the learning and the decision support system. The main 
focus will be put on cluster methods for processing of 
the complex simulation results in a suitable way to 
support the user in the decision support and in the 
learning system, respectively. 

2. Application area 

The methods developed in the framework of this 
project are evaluated on the basis of manifold data sets 
and specific application scenarios. Therefore as 
suitable application area a part of the slopes in the Isar 
valley in the south of Munich, Germany, has been 
selected in cooperation with the Bavarian Authority of 
Environment (see figure 1). In this area the Isar eroded 
a deep valley into layers of quaternary gravels and 
tertiary sediments of partially high plasticity [21]. 
Consequently, steep and unstable slopes were formed, 
where landslides occurred from time to time [2]. 

 

 
Figure1. Application Area 

 
In the application area, the height difference of the 

slope reaches up to almost 40 meters and the 
potentially endangered infrastructure is located close to 
the edge of the slope. In the early and the mid-
seventies there have been several landslides in this 
area. As a reaction to these events and because of the 
risk potential several sensors (extensometer, 
inclinometer and ground water level tubes) were 
installed and geodetic measurements were initiated by 
the Bavarian Authority of Environment. Further, the 
soil layers of the slope were investigated through 
numerous outcrops and boreholes. Today, after more 
than thirty years of investigations, extensive 
knowledge of the subsoil structure and the failure 
mechanism are available and can be used in the present 
project. 

3. Operational modes and data flow of the 
coupled system 

Complex simulations are computationally 
intensive and may be, in case of a rapidly required 
decision for early warning, too time consuming. 
Therefore two main operational modes of the coupled 
system have been identified: the use as decision 
support system for prevention or reaction to a 
hazardous event, which requires very fast results, and 
the use as learning system for better understanding and 
prognosis of landslide movements. The use as decision 
support system was designed within this project in 
principle, but for a usage by decision makers further 
extension would be necessary. The main focus was put 
on the learning system mode, which is provided for 
experts (e.g. geologist, geotechnical engineers), and 
which additionally supports the assessment and further 
GIS based analysis of the simulation results [16]. In 
this mode normally many simulations are performed 
and can be stored in the data base. In figure 2 the 
architecture of the coupled simulation and 
geoinformation system is shown. First, the required 
input data for the analysis is selected and prepared in 
the GIS. These parameters describe basically the 
geometry and the subsoil structure of the slope, the so 
called impacting loads and several boundary 
conditions. The impacting loads define the event, 
which influence to the stability of the slope shall be 
estimated by means of the simulation. For example a 
rainfall event may destabilize the slope and cause a 
potential danger. 

 
Figure 2. Architecture of the coupled system 

 
The transfer of the input data to the simulation 

system is controlled by the GIS. The stability and 
deformation of the slope is investigated within the 
simulation system by application of the FE-method 
[20]. Therefore a FE-mesh is needed. An example of a 
FE-mesh for a 2D-simulation is shown in figure 3. 
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Figure 3. Example of a FE-mesh 

 
After all information required for the FE-analysis 

has been collected, the data is put together in a single 
input file which then is used as  the basis for 
computation (within the simulation). During the 
computation, the defined loads are applied 
incrementally on the slope and their influence on the 
slope stability is determined. The result of the 
simulation is a bulky field of vectors which indicate the 
instability of the slope. These vectors are transferred to 
the GIS for processing into a form which is 
understandable for decision makers and also more 
handsome for experts. 

4. Preparation of complex simulation 
results with clustering approaches 

Results of the simulations are vectors, which 
represent e.g. stresses, strains or deformation. In figure 
4 deformation vectors are visualized. To identify the 
most important outcome of the simulation, namely the 
deformation direction and the length of the 
deformation vectors, the depiction has to be strongly 
enlarged. But therewith the overview of the slope 
situation as a whole will be lost. The problem is that 
the simulation results (vectors at mesh nodes) are too 
complex and confusing to be presented as a base for 
decision support (fig. 4). 

 
 
 

 
 
Figure 4. Visualized 3D simulation results 
 
 

A first step to reduce the complexity of the 
simulation results is the division of the slope into an 
area where significant deformations occurred (sliding 
body) and in an area with no or minor deformations by 
means of a given threshold value which is used to 
separate these areas. In figure 5 a section through the 
slope with the identified sliding body is shown. But on 
the basis of this depiction it is not possible to 
distinguish between regions with similar deformation 
characteristics indicated by the direction and length of 
the vectors. 

 
Figure 5. Deformation 

5. Clustering approach 

To prepare the complex simulation results a 
clustering algorithm is used. Cluster algorithms are 
statistical classification techniques for dividing a 
population into homogenous groups (“a cluster”). The 
similarities between members belonging to a cluster 
are high, while similarities between members 
belonging to different clusters are low [22]. In this 
study the single linkage algorithms was used [19]. This 
agglomerative hierarchical clustering approach was 
investigated in earlier studies and has performed best 
to group the simulation results [18]. Within this 
method at the beginning each object (in this case FE-
nodes) is placed in a separate cluster, and at each step 
the closest pair of clusters is merged until a certain 
termination condition is satisfied. To decide which 
objects have to be merged a notion of cluster proximity 
has to be defined. In the single linkage, the proximity 
of two clusters is defined as the minimum of the 
distance between any two points within the two 
clusters. As distance function the widely used 
Euclidian distance is used. In the formula three 
features, which describe the to-be-clustered 
deformation vectors, are considered: 

 
d = [(X1-X2)2 + (Y1-Y2)2 + (L1-L2)2 + (R1-R2)2]1/2 
 

• X, Y: Location of the FE-node, 
• L: Deformation length and 
• R: Deformation direction of the deformation vector. 
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The features have different ranges of values. To 
make them comparable a standardization function is 
used. An often used aid for this purpose is the z-
transformation, which converts the values of a sample 
into z-scores [13]: The z-scores are calculated by 
subtracting the features mean (M) from the original 
value of the feature (xi) and dividing the result by the 
standard deviation of the feature (s), according to the 
formula: 

 
zi = (xi- M) / s. 
 
A major issue in clustering is the determination of 

the appropriate number of clusters. Several methods 
have been proposed for this issue. In this study, the 
stopping rule from Mojena [14] is used. To cluster the 
deformation vectors a multivariate single-linkage 
cluster analysis is carried out. That means, all features 
(location, deformation length and direction) are 
considered in the distance function. The result of the 
multivariate cluster analysis in conjunction with the 
stopping rule from Mojena is shown in figure 6. 

 

 
Figure 6. Result of the multivariate cluster analysis 

 
Nine clusters have been determined. The 

deformation vectors in the clusters have been 
aggregated to one single deformation vector 
representing the vectors of theses cluster and the 
boundaries for the clusters have been determined 
according to [17]. But if we have a detailed look at 
some clusters, some malformations can be identified 
(see figure 7). First there are deformation vectors with 
different lengths and different directions, which belong 
to one cluster (e.g. cluster 7). Second there are 
deformation vectors with similar lengths and similar 
directions, which are splitted in two clusters (cluster 5 
and 8). 

 

 
 
Figure 7. Malformations of the multivariate cluster 
analysis 

 
Theoretical investigations have shown that these 

malfunctions are caused by the fact that the effect of 
the position within the cluster determination process is 
too large. Two of the four summands in the distance 
function are depending on the position. Because the 
deformation vectors in cluster 7 are positioned close to 
each other they are aggregated to one cluster although 
they have slightly different directions and lengths. In 
cluster 5 and 8 the deformation vectors are far apart, 
therefore they are splitted in two clusters. These 
examples have shown that the algorithm used is not 
suitable to cluster areas with vectors of similar lengths 
and directions as intended. To overcome this problem 
several other approaches have been selected. As one 
possible solution first a double bivariate cluster 
analysis was tested. This procedure starts with a first 
cluster analysis which considers only direction and 
length of the deformation vectors in the distance 
function. The following second bivariate cluster 
analysis considers only the position in the distance 
function. The result of the first bivariate cluster 
analysis is shown in figure 8. 

 

 
Figure 8. Result of the first bivariate cluster analysis 

 

1092



The cluster 7 from the result of the multivariate 
cluster analysis is now divided in two clusters (cluster 
5 and cluster 8). And the former clusters 5 and 8 are 
now assembled to one cluster (cluster 6). But in this 
step another problem arises. With this bivariate cluster 
analysis, clusters are produced, which aggregate 
deformation vectors, which are not spatially adjacent to 
each other (cluster 2). This methodology now has to be 
extended to be able to overcome this problem and to 
separate these clusters. The result of the second 
bivariate cluster analysis, which now considers only 
the position is shown in figure 9. Like expected the 
cluster 2 is divided correctly in two subclusters (cluster 
2_1 and 2_2). But with this second bivariate cluster 
analysis also other clusters (e.g. cluster 1) are divided 
in subclusters. Because this approach leads not to the 
desired results the approach of double bivariate cluster 
analysis was rejected. 

 

 
Figure 9. Result of the second bivariate cluster analysis 

 
As another possible solution a bivariate cluster 

analysis with a subsequent investigation of the 
neighbourhood relations was tested. First the cluster 
analysis which considers only direction and length of 
the deformation vectors in the distance function is 
again carried out. The result is shown in figure 8. 
Subsequent to that it is investigated for each cluster, if 
the aggregated deformation vectors are spatially 
adjacent. Therefore the FE-mesh is used, which 
consists of a collection of nodes and edges, which 
defines the finite elements. The edges define the 
neighbourhoods between the nodes of the mesh and 
their corresponding deformation vectors. As a result of 
the neighbourhood analysis the cluster 2 from figure 8 
is subdivided correctly into two subclusters (cluster 
2_1 and 2_2). The other clusters remain the same, 
because all aggregated deformation vectors are 
spatially adjacent (see figure 10). 

 

  
Figure 10. Result of the bivariate cluster analysis with 
subsequent examination of the neighbourhood 

 
The results of this method are clusters, with 

aggregated deformation vectors with small, moderate 
and large deformation lengths. These clusters can be 
visualized according to the deformation length of the 
corresponding deformation vector, to support users in 
the learning and the decision support system, 
respectively (see figure 11). 

 

  
Figure 11. Classified deformation areas 

 

6. Fuzzy Clustering Approach 

For a user of the decision support system the division 
of all the FE-nodes to sharply separated clusters where 
each node is member of exactly one cluster provides a 
good basis for the determination of the deformation 
areas of the slope and is in most cases sufficient. For a 
user of the learning system this information is often not 
satisfactory. In particular, for the assessment and 
evaluation of the complex simulation results further 
information, like uncertainties, should be recognizable, 
in order to allow for a validation. Therefore a fuzzy 
clustering approach is used as another approach. In this 
approach the FE-node can belong to more than one 
cluster. The membership of a node to a cluster is 
defined on a scale from zero to one, where zero is no 
membership and one is full membership. The results 
are clusters with boundaries, which have vague or 
indeterminate locations, or which are gradual 
transitions between two zones [22]. In this study the 
prominent fuzzy c-means approach [5,11] is used. This 
method minimizes the intra-cluster variance, but like 
many other partitional clustering algorithms, fuzzy c-
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means requires the number c of clusters as an input 
variable. Once a fuzzy partition is determined by fuzzy 
c-means, the user has to decide whether or not it 
accurately presents the data structure. Various cluster 
validity indexes have been proposed to evaluate the 
quality and fitness of partitions produced by the 
clustering algorithm [24]. However, validity indexes 
are considered to be independent of the clustering 
algorithm and standard measures like the partition 
coefficient [3,4], modified partition coefficient [7] and 
partition entropy [3,4] are not directly related to the 
geometrical structure of the data. As different validity 
indexes can lead to variations in the number of 
clusters, the choice of an appropriate validity measure 
becomes an important issue. Fukuyama and Sugeno 
[10] proposed a validity function that measures 
compactness and separation of clusters in a noisy 
environment simultaneously. The evaluation of the 
fuzzy-c-means algorithm for different choices of c and 
a subsequent evaluation of the validity function enables 
the user to determine the optimal number of clusters 
with the best clustering performance. 
 

 
Figure 12. Fuzzy partition 

 
For comparative studies, a fuzzy cluster analysis is 
performed with regard to the bivariate data from 
section 5 where the direction and the length of the 
deformation vectors are considered. Subsequent to that 
it is investigated for each cluster, if the aggregated 
deformation vectors are spatially adjacent. Figure 12 
shows the results obtained with fuzzy c-means and 
subsequent neighbourhood examination. As each node 
can now belong to more than one cluster, the 
corresponding degree of membership is depicted by a 
pie chart. When each node is assigned to the cluster 
with maximal degree of membership, the underlying 
cluster partition can be revealed. In addition, cluster 
uncertainties can be visualized (cf. figure 13) offering 
more detailed information about the internal structure 
of clusters and the quality of cluster separation. 

Figure 13. Fuzzy cluster 
 
The cluster analysis performed in this study focussed 
on four features (location of the FE-node, deformation 
length and deformation direction of the deformation 
vector). In future studies, additional geophysical 
features will be available that allow for a deeper 
analysis and a more detailed description of clusters. 
For this reason, each region (cluster) is expected to be 
characterized by a specific group of features. Several 
methods have been proposed for feature selection, 
usually assigning binary relevance weights to the 
features to indicate whether or not a particular feature 
is considered important [1,12,23]. Such an approach is 
often applied to reduce the dimensionality of the 
problem by completely eliminating irrelevant features, 
but it is not suffcient here, because it does not reflect 
the relation between clusters and features. This relation 
is usually established by feature weighting, which 
assigns different feature subsets to distinct clusters. As 
some features might be useful but less important with 
regard to a specific cluster, continuous feature 
weighting can be applied as a further extension of 
feature selection in order to obtain a more balanced and 
cluster-dependent representation of feature relevance in 
an uncertain environment. Fuzzy c-means, like other 
clustering algorithms, does not provide cluster 
dependent feature weights. Any given feature must 
either be used (completely relevant) or ignored 
(irrelevant) for all clusters. Frigui and Nasraoui [9] 
pro-posed an extension of fuzzy c-means called 
Simultaneous Clustering and At-tribute Discrimination 
(SCAD) that performs clustering and feature weighting 
simultaneously. This algorithm learns the feature 
relevance for each cluster independently and it uses 
continuous feature weighting and so it provides much 
richer features relevance representation. SCAD can 
adapt to the variations that exist within the data set by 
categorizing it into distinct clusters, which are allowed 
to overlap because of the use of fuzzy membership 
degrees. This algorithm can be further extended and 
combined with competitive agglomeration [8] in order 
to determine the number of clusters automatically [9]. 

We tested SCAD to the simulation results with 
regard to the features position, deformation length and 
deformation direction. As number of c of clusters we 
used 8 and 9. This matches the number of clusters 
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determined with the hard clustering approach. Nine 
clusters with subsequent examination of the 
neighbourhood and eight clusters without. The use of 
eight and nine clusters leads to the cluster partitions 
depicted in figure 14 and figure 15. Since SCAD 
obviously generates the same cluster structure as the 
bivariate cluster analysis with and without subsequent 
examination of the neighbourhood, the results obtained 
with hard clustering become validated. 

Figure 14. Fuzzy clusters based on SCAD 
 
In case of the of nine clusters the position turns out to 
be an irrelevant feature. Deformation length and 
deformation direction mainly influence the assignment 
of objects and, thus, the shape of clusters. Table 1 
shows the feature weights of the different clusters. 
 

Cluster Deformation 
length 

Deformation 
direction 

1 1.0000 0.0000 
2 0.5813 0.4187 
3 0.9961 0.0039 
4 0.7763 0.2237 
5 0.9998 0.0002 
6 0.0002 0.9998 
7 1.0000 0.0000 
8 0.6765 0.3235 
9 1.0000 0.0000 

 
Table 1. Feature weights of the different clusters 

 
Deformation length is the main feature for most 
clusters. Clusters 2,4,8 show a rather balanced 
influence of deformation length and direction. Only 
cluster 6 strongly depends on the deformation 
direction. 

Figure 15. Fuzzy clusters based on SCAD 

 7. Conclusion  

In this paper a coupled simulation and geoinformation 
system has been introduced. The main focus was put 
on cluster methods to prepare the complex simulation 
results in such a way that they are understandable and 
easy to use for decision makers in the learning and the 
decision support system respectively. Therefore a hard 
clustering approach was used, which divides all 
deformation vectors to exactly one cluster. Further a 
fuzzy clustering approach was used to allow for an 
evaluation of the complex simulation results (cf. table 
1 for comparison of the applied cluster techniques). 
Both cluster algorithms deliver good results, which are 
comparable to each other. While the hard clustering 
approach offers information about the deformation 
areas the fuzzy clustering approach offers more 
detailed information about the quality of the cluster 
separation and the incorporated uncertainties. Hard and 
fuzzy algorithms complement and validate one another 
in identifying clusters which can be  used for learning 
and decision support with respect to landslide analysis. 
 

Table 1. Overall clustering approach 
 

Cluster technique Results 
Single linkage with 
Mojena stopping rule 

Not suitable to  areas 
with vectors of similar 
lengths and directions as 
intended                              

Double bi-variate 
cluster analysis 

Clusters not spatially 
adjacent 

Fuzzy c-means 
clustering 

Confirms hard clustering 
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