

ArcGIS tool for creating equitable regions

AGIS – Geoinformatics Research Group

der Bundeswehr Universität

Faculty of Computer Science Institute for Applied Computer Science Md Imran Hossain and Wolfgang Reinhardt

Background

Feature grouping/regionalization in a meaningful way is often required in the domain of optimization and spatial decision support.

Scenario 1: Assisted evacuation planning

- The assisting providing authority has 2 evacuation units (vehicle) to cover the area

An area to be evacuated

Background

Scenario 2: Service coverage plan

- A service provider want to cover a certain area with their service
- Assume that they can provide only 3 service center of same capabilities
- Interested to divide the area into 3 equitable regions

Problem statement

Task

- \rightarrow A geographic area **G** \rightarrow Defined by a feature set consisting of *n* number of connected/non-connected features \rightarrow With a numeric attribute A \rightarrow Has to be completely divided into **N** number of equitable regions
 - Geographic area *G*, Where n = 25Numeric attribute *A* = Population Output equitable region *N* = 4

Problem statement

Criteria

1. Feature splitting is not allowed 2. Sum of |A| of each output region should be equal to $T \pm d$ (Except one region)

$$T = \frac{\sum_{f=1}^{fn} |A|(G)}{N}$$

 $d \in \mathsf{D} = \{\mathsf{q} \in \mathbb{Q} \mid \mathsf{0} \leq q < MAX (|A|(G)) \}$

3. The output regions should be

disjoint, must not overlap

29.06.2016

Geographic area G, Where n = 25Numeric attribute A = Population Output equitable region N = 4

The algorithm

General overview

- 1. Region formation starts from a suitable corner of input dataset
- 2. It continues along the bounding line of the input dataset.
- 3. If all features along the bounding line are already classified into

regions, region formation again starts from a suitable corner of

unclassified features set

4. Continue the process

AGIS 29.06.2016

Step 1: Selecting the seed feature for first region

5. After Choen Bare and Distance with the state of the st

29.06.2016

Step 2: Formation of the first region

Step3: Seed feature selection for subsequent regions

2. Betweet to feed to the solution of the solu

2. Repetithstegionaisdogroedswiththelyemainthg freaturesgiatterare formed the formation of N-1th region

29.06.2016

a. Reputered feating the design of the second states and the second feating the second feating the second feating the second second feating the second secon 29.06.2016

Implementation and Result

A = Population, **n** = 341, **N** = 3 **SUM (|A|)** = 3654, **T** = 1218, **d** = 0-21

Region	Features	Sum Population
0	107	1209
1	122	1224
2	112	1221

A = Population, **n** = 341, **N** = 7 **SUM (**|**A**|**)** = 3654, **T** = 522, **d** = 0-21

Region	Features	Sum Population
0	50	504
1	56	522
2	52	522
3	45	525
4	41	528
5	46	528
6	51	525

Performance

29.06.2016

Processor: Intel i5 @ 2.60 GHz

Memory (RAM): 8 GB

Operating system: Windows 7, 64 bit

Conclusion and future works

- 1. The algorithm is applicable for polygon and point features set.
- Dealing with multiple attributes would be interesting future works
- The algorithm could be further enriched by introducing constraints (e.g. major roads, other important structure etc.)
- 4. Moreover, computing time for lager input datasets could be improved with techniques like spatial indexing.

Thank you for your attention!!

Md Imran Hossain

Tel.: +49 89 6004 2454 E-Mail: <u>imran.hossain@unibw.de</u>

AGIS

University of the Bundeswehr Munich Institute for Applied Computer Science 85577 Neubiberg

Related works

Automated Zone Design (AZD)

- 1. Automated Zonig Procedure (AZP) (Openshaw, 1977)
- 2. Modifiable Areal Unit Problem (MAUP) (Openshaw, 1984)
- 3. Automatic Zone Matching (AZM) (Martin, 2003)

Main Task of the algorithms

- Aggregation of N zones into M regions (N>M)
- Based on an Objective Function
- Works by iteratively combining and recombining zones into

. . . .

Related works

Problems of AZD we addressed in our algorithm

AZDpwlonglist allotowidu itycischineretedelfæatueiteset 29.06.2016

Content

- 1. Background
- 2. Problem statement
- 3. Related works
- 4. The algorithm
- 5. Implementation
- 6. Concluding remarks

Implementation and Result

As an Add-In for ArcGIS 10.1

Application Programming Interface (API): ArcObjects

Programming Language: c#

Add-in Implemented in: ArcGIS 10.1

