
On the Consistency of Spatial Semantic

Integrity Constraints

Stephan Mäs

Vollständiger Abdruck der von der Fakultät für Bauingenieur- und Vermessungswesen der
Universität der Bundeswehr München zur Erlangung des akademischen Grades eines Doktor-
Ingenieurs (Dr.-Ing.) genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. habil. Wilhelm Caspary (i.R.),

Universität der Bundeswehr München

1. Berichterstatter: Prof. Dr.-Ing. Wolfgang Reinhardt,

Universität der Bundeswehr München

2. Berichterstatter: Prof. Dr.-Ing. Max J. Egenhofer,

University of Maine, Orono, USA

Diese Dissertation wurde am 20.Oktober 2009 bei der Universität der Bundeswehr München
eingereicht.

Tag der mündlichen Prüfung: 22.Dezember 2009

To Heike and Ronja

Abstract

Geographical data are the core of any Geographical Information System (GIS) and any Geo-
graphic Information (GI) application. Because of the increasing use of decentrally held data
and networked services, detailed knowledge about the existing data (i.e., its origin, structure,
formats, quality, availability and reference applications) becomes more and more important.
The availability of such metadata and the evaluation of the fitness for use based on these
metadata are vital.

With this thesis the author intents to contribute to the development of meaningful and
machine-interpretable quality descriptions of GI. The work focuses on semantic integrity
constraints (SIC). In general, integrity constraints define basic assumptions on the part of
real world, which is represented by the data. They enable to detect inconsistencies, that is,
unacceptable differences between the data and the data model. SICs are defined as specific
integrity constraints, whose defined restrictions are based on the semantics of the modelled
entities. They reflect business, legal and other required rules and regulations in the database.
For spatial data, many SICs are based on spatial properties like topological or metric relations.
Reasoning on such spatial relations and the corresponding derivation of implicit knowledge
allow for many interesting applications.

Currently the potential of SICs is far from being exploited and SICs are hardly supported
by available GISs or spatial database systems. Their effective use mainly requires a formal
description of the constraints that enables to transfer and compare the sets of SICs of different
data sources. This thesis contributes to the second requirement. Currently, there is no solution
for the comparison of SICs pairs and the detection of any conflicts or redundancies in sets
of SICs. This also required the inference of implicit restrictions defined by the SICs. In
consequence, the quality assurance of a data set is possibly more extensive than necessary,
because sets of SICs might define redundant restrictions, the integration of SICs sets from
multiple data sources is impossible and the assessment of the fitness for use based on the
SICs cannot be supported. These are significant shortcomings for quality assurance and the
knowledge sharing within the frame of spatial data infrastructures.

5

Three major contributions are elaborated in the thesis: (i) a detailed categorisation of SICs,
(ii) a framework for the formal definition of SICs and (iii) a reasoning methodology for the
detection of conflicting and redundant SICs.

(i) The classification distinguishes the SICs according to the involved types of spatial and
non spatial relation and profoundly differentiates the properties and aspects restricted
by spatio-temporal SICs.

(ii) The framework for formal definition of SICs is based on a set of 17 class-level relations.
Such qualitative description of cardinality restrictions is novel. The definitions and
reasoning rules of the class relations are described independently of concrete spatial or
non-spatial relations, what makes them applicable for many types of SICs.

(iii) The introduced reasoning methodology enables for a detection of conflicts and redun-
dancies in sets of SICs, which has hardly been a research topic before. The overall
reasoning algorithm is based on the symmetry, composition and conceptual neighbour-
hood of class relations.

The feasibility of the proposed algorithm has been verified through a prototypical implemen-
tation as a plug-in extension of the ontology modelling and knowledge acquisition platform
Protégé. Possible application areas are quality assurance of geodata, geodata integration and
harmonisation, data modelling and ontology engineering, semantic similarity measurements
and usability evaluation.

6

Contents

1 Introduction 11

1.1 Application Scenario 1: Quality Assurance . 12
1.2 Application Scenario 2: Data Harmonisation and Integration 14
1.3 Objectives of Research . 16
1.4 Outline of the Thesis . 17

2 Fundamentals of Spatial Integrity Constraints 19

2.1 Levels of Data Modelling . 19
2.2 Quality of Geodata . 21
2.3 Formalisation of Integrity Constraints . 22
2.4 Spatio-temporal Relations and Reasoning . 24

2.4.1 Spatial and Temporal Relations . 24
2.4.2 Composition of Spatio-temporal Relations 26
2.4.3 Constraint Satisfaction Problems . 27
2.4.4 Conceptual Neighbourhood . 32

3 Categories of Integrity Constraints 35

3.1 Approaches to Categorisation of Integrity Constraints 35
3.1.1 General Integrity Constraints for Database Systems 35

3.1.1.1 Specification Technique of Integrity Constraints 36
3.1.1.2 Specified Conditions of Integrity Constraints 36
3.1.1.3 Number of Constrained Database States 36
3.1.1.4 Data Model Elements Restricted by Integrity Constraints . . 37

3.1.2 Spatial Data Integrity Constraints . 37
3.2 A Refined Categorisation of Spatio-temporal Integrity Constraints 39

3.2.1 Domain Constraints . 40
3.2.2 Key and Relationship Constraints . 41
3.2.3 General Semantic Integrity Constraints 41

3.2.3.1 Thematic SICs . 42
3.2.3.2 Temporal SICs . 42
3.2.3.3 Spatial SICs . 43

7

Contents

3.2.3.4 Complex SICs . 47
3.2.3.5 Change and Representation SICs 48

3.3 Summary . 49

4 A Framework for the Formal Definition of Semantic Integrity Constraints 51

4.1 Instance-Level vs. Class-Level Relations . 51
4.2 Cardinality Properties of Class Relations . 52
4.3 Definition of a Set of Class Relations . 57
4.4 Summary . 63

5 Reasoning Properties of Class Relations 65

5.1 Correlation Between the Number of Instances and the Feasibility of Class Re-
lations . 65

5.2 Reasoning on the Symmetry of Class Relations 67
5.3 Composition of Class Relations . 68
5.4 Conceptual Neighbourhood of Class Relations 76
5.5 Summary . 80

6 Basics for Checking the Consistency of Semantic Integrity Constraints 83

6.1 Constraint Satisfaction Problems in Class Relation Networks 83
6.1.1 Node Consistency in Class Relation Networks 84
6.1.2 Arc Consistency in Class Relation Networks 85
6.1.3 Path Consistency in Class Relation Networks 85

6.2 Detection of Redundancies . 89
6.3 Detection of Conflicts . 90
6.4 Restriction of Class Relations . 92
6.5 Summary . 93

7 Application 95

7.1 Prototypical Implementation . 95
7.2 User Interface . 97
7.3 Harmonisation and Integration of Semantic Integrity Constraints 99
7.4 Further Application Areas . 106

8 Discussion of Results 109

8.1 Summary of Contributions . 109
8.2 Restrictions and Future Research Topics . 111

Abbreviations and Acronyms I

List of Symbols III

8

Contents

Bibliography V

List of Figures XIII

List of Tables XV

Danksagung XVII

Curriculum Vitae XIX

9

Chapter 1

Introduction

Geographical data are the core of any Geographic Information System (GIS) and any Geo-
graphic Information (GI) application. Because of the increasing use of decentrally held data
and networked services, detailed knowledge about the existing data (i.e., its origin, structure,
formats, quality, availability and reference applications) becomes more and more important.
The availability of such metadata and the right evaluation of the fitness for use based on these
metadata are vital.

In Europe these issues have already led to political consequences: in 2001 the European
Commission initiated the Infrastructure for Spatial Information in Europe (INSPIRE) and in
2007 the INSPIRE directive became effective. It aims at the implementation of a European-
wide Spatial Data Infrastructure (SDI). Some main principles of INSPIRE are the provision
of access to relevant, harmonised and quality GI and the support to seamlessly combining
spatial data from different sources for the formulation, implementation and evaluation of EU
policies.1 There is limited value in improving access to and sharing of geospatial data across
the Web if the data quality is unknown or assumed to be assured (Sanderson et al., 2009). This
makes obvious, that data quality and especially integrity are important aspects to enable such
interoperable data exchange among different systems. Also the Open Geospatial Consortium
(OGC), as a major standardisation body for GI, has paid attention to this by establishing a
new Data Quality Working Group (DQWG) in 2007. Its mission is “to establish a forum for
describing an interoperable framework or model for OGC Quality Assurance measures and
Web Services to enable access and sharing of high quality geospatial information, improve
data analysis and ultimately influence policy decisions.”2

With this thesis the author intents to contribute to the development of meaningful and
machine-interpretable quality descriptions of GI. The work focuses on semantic integrity con-
straints (SIC), which are sometimes also called user-defined integrity constraints (Codd, 1990).
In general, integrity constraints (IC) define basic assumptions on the part of real world, which

1http://inspire.jrc.ec.europa.eu/ last visited at August 19th 2009
2http://www.opengeospatial.org/projects/groups/dqwg , last visited at August 13th 2009

11

Chapter 1 Introduction

is represented by the data. They enable to detect inconsistencies that is, unacceptable differ-
ences between the data and the data model (Egenhofer, 1997). For database systems ICs are
commonly classified according to the conditions they specify into domain constraints, key and
relationship constraints and SICs (Elmasri and Navathe, 1994). A SIC is defined as a specific
IC, whose defined restrictions are based on the semantics of the modelled entities. SICs can
also be seen as descriptions of how the semantics of the modelled concepts are enforced in the
data. They reflect business, legal and other required rules and regulations in the database.

Currently the potential of SICs is far from being exploited and SICs are hardly supported by
available GISs or spatial database systems (Louwsma et al., 2006). Their effective use mainly
requires a formal description of the constraints that enables to transfer and compare the sets
of SICs of different data sources. This thesis contributes to the second requirement. Currently
there is no solution for the comparison of pairs of SICs and the detection of any conflicts or
redundancies in sets of SICs. In consequence, the quality assurance of a data set is possibly
more extensive than necessary, because sets of SICs might define redundant restrictions, the
integration of sets of SICs from multiple data sources is impossible and the assessment of the
fitness for use based on the SICs cannot be supported. These are significant shortcomings for
quality assurance and the knowledge sharing within the frame of an SDI.

The following two scenarios illustrate two of the main application areas of the methodologies
developed in this work. The resolution of the scenarios is given later on in the thesis.

1.1 Application Scenario 1: Quality Assurance

Efficient maintenance of data integrity has become a critical problem in large databases, since
it is an expensive task to check the validity of a large number of ICs after each transaction
(Doorn and Rivero, 2002). As part of a quality assurance check, data are proven against ICs
to assure the logical consistency of the data set (Becker et al., 1999; Servigne et al., 2000;
Pundt, 2002; Mostafavi et al., 2004; Mäs et al., 2005a; Vallieres et al., 2006). Before checking
whether a dataset conforms to a set of ICs, it must be assured that the constraints themselves
are not in conflict (Bravo and Rodŕıguez, 2009). If a set of ICs is internally inconsistent, there
is no data set that complies with all ICs. Furthermore, a set of ICs might contain redundant
restrictions, such that it is unnecessary to prove all constraints to assure consistency.

In the following application example three SICs between the entity classes airport, forest and
airport tower are defined for quality assurance.

• All airports and forests are either disjoint or meet (i.e., their boundaries externally
touch, otherwise the two geometries do not intersect).

12

1.1 Application Scenario 1: Quality Assurance

• Every airport tower is contained in an airport (i.e., the airport tower is fully inside the
airport and the boundaries of their geometries do not intersect). Every airport contains
at least one airport tower.

• All forests are disjoint from all airport towers.

These conceptual definitions are shown in the left part of Figure 1.1 in an Entity Relationship
Diagram (ERD). The right part of the figure contains the same diagram, but the third relation
has been removed.

Figure 1.1: Example set of semantic integrity constraints in an ERD

An analysis of the three SICs reveals that the third constraint about the disjointness of forests
from airport towers can be deduced from the other two. This means that the total amount of
information of both diagrams of Figure 1.1 is the same, despite the removed relation in the
right version. The left diagram contains redundant information, because two of the defined
SICs implicitly contain the third. A generic and formal description of this deduction is derived
in Chapter 5.

For quality assurance this means that the third SIC does not need to be proven if a data
set is conform to the first two constraints. This shows that such a detection and removal of
redundant constraints enables the reduction of the calculation costs of a quality check. In
practice, this can be of great value, since the constraint sets used, for example, by utility
companies or public agencies can easily contain hundreds of constraints.

As claimed above, the internal consistency of sets of SICs must be assured. Two constraints
that apply to the same elements of a model can specify contradicting restrictions. For a triple

13

Chapter 1 Introduction

of SICs, like in the example constraint set, it is easy to imagine that the third constraint can
also be in contradiction to the restrictions implied by the other two.

The aim of this work is to develop a methodology for checking consistency and detecting
redundancies in sets of SICs. As the application example shows, this requires not only the
check of explicitly defined SICs, but also the disclosure of implicit restrictions.

1.2 Application Scenario 2: Data Harmonisation and Integration

At a recently held workshop on the challenges in geospatial data harmonisation the following
definition was given:

“Data harmonisation is about creating the possibility to combine data from heterogeneous
sources into integrated, consistent and unambiguous information products, in a way that is

of no concern to the end-user.”3

Therewith data harmonisation concerns such issues as heterogeneities of spatial reference
systems, semantics, terminology, application schemas, metadata and quality descriptions and
geometric inconsistencies of adjacent or overlapping datasets. Heterogeneities and conflicts
of SICs must also be considered, which is illustrated by the following scenario (Figure 1.2).

A user wants to analyse the flooding risk of a particular area. Therefore he or she needs
corresponding information about floodplains and streams. A search in the Internet leads the
user to two data providers that offer data for the required region. An integration of the data
has many facets. Here the semantics of the entity classes are considered as similar and only
the harmonisation of the SICs is taken into account. For this purpose, the user specifies a
SIC, which the data must hold, in order to enable the analysis:

• All floodplains must overlap with at least one stream.

To check whether the two data sets conform with this requirement the user downloads infor-
mation about the SICs, which have been checked during the quality assurance of the data sets.
The first data source offers data for the three entity classes floodplain, stream and alluvial
forest with the following SICs:

• All alluvial forests must be inside or covered by a floodplain.

• All alluvial forests must meet with at least one stream.

3http://www.esdi-humboldt.eu/events/agile2009.html (last visited at 12th June 2009)

14

http://www.esdi-humboldt.eu/events/agile2009.html

1.2 Application Scenario 2: Data Harmonisation and Integration

Figure 1.2: Scenario for the harmonisation of spatial semantic integrity constraints

Similar the second data source offers three entity classes with the constraints:

• All nuclear power stations must be disjoint from all floodplains.

• All nuclear power stations must meet with exactly one stream.

In both available data sets the required SIC has not been proven. Obviously the data providers
were more interested in the consistency of the alluvial forests or nuclear power stations,
respectively, and did not constrain the relation between floodplains and streams. For the user
in the scenario this raises the following questions:

1. Are there implicit SICs defined within the two constraint sets?
Although not as obvious as in the example of the first application scenario, there might
be implicit SICs defined between the entity classes floodplain and stream. Answering
this question requires again a methodology to deduce the implicitly defined constraints.

2. Is it possible to integrate the two data sets or are there explicit or implicit SICs that
contradict each other?

15

Chapter 1 Introduction

For an integration of the data sets also the two constraint sets must be integrated.
Therefore, the implicitly and explicitly defined SICs between the common entity classes
of both data sets have to be checked for contradictions and inequalities. Differing SICs
between the common classes indicate different quality requirements of the two data sets
so that the differing quality of the data sets has to be aligned before data integration.
Contradicting SICs between common classes indicate that an integrated data set cannot
hold all quality requirements of the two data sets.

3. How does the integrated data fit to the user’s SIC and the planned analysis?
The integrated SICs must be compared with the SIC, which is representing the require-
ments of the user. This proves whether the data can be used for the intended tasks and
whether the data meet the user’s quality requirements.

The methodologies for deducing implicitly defined SICs and checking sets of SICs for contra-
dictions, which are developed in this work, support the alignment of the quality of data sets
as part of the data integration and harmonisation. Moreover, they enable the evaluation of
the integrated data set regarding the requirements, that a specific application demands.

A resolution of this application scenario is given in Section 7.3.

1.3 Objectives of Research

The two application scenarios demonstrate the need of a methodology to compare, manage
and integrate SICs. The objective of this work is to develop such a methodology that supports
the detection of explicit and implicit redundancies and contradictions and inequalities in sets
of SICs. The actual evaluation of geodata against ICs is not part of this work, as this thesis
investigates the internal consistency of the ICs. If ICs contradict each other, then the data
model itself is inconsistent and it is impossible to acquire a consistent data set.

The restrictions defined by ICs and SICs are multifaceted and not all of them can be considered
in this work. Spatio-temporal SICs constrain different aspects of geodata, like for example
metric, topology or shape. It is obvious that conflicts and redundancies can particularly
occur between constraints that restrict the same aspect. Therefore, this work analyses which
spatio-temporal aspects are restricted by SICs. Based on the well-established classification of
database ICs according to the involved types of conditions of Elmasri and Navathe (1994),
an enhanced categorisation is developed that profoundly distinguishes SICs according to the
restricted aspects and the involved spatio-temporal properties and relations.

For the consistency check of sets of SICs, the constraints have to be formally described. As the
application scenarios show, such a check must include implicitly defined constraints, because

16

1.4 Outline of the Thesis

the constraints do not necessarily directly contradict. Conflicts might, for example, result
from other constraints defined within a triple of classes. Therefore the formalisation must en-
able for an inference of implicit constraints. Existing approaches of SIC formalisation neglect
this requirement. A major concern of this work is to develop a logically sound formalisation
of SICs and, based on this, investigate reasoning methodologies to infer implicit SICs. The
clear and unique representation of the cardinality restrictions is a central issue of the required
formalisation. The framework for SIC formalisation developed in this work defines SICs as re-
lations among classes (Mäs, 2007b; Tarquini and Clementini, 2008). These class relations base
on binary spatio-temporal relations (e.g., meet or disjoint) and a new qualitative description
of cardinality restrictions. Both components have an influence on the logical properties of a
class relation. The reasoning properties of spatio-temporal relations, such as their symmetry
and compositions, are well researched (Cohn and Hazarika, 2001). This thesis investigates
the reasoning properties of class relations (that is, SICs) and how these properties can be
deduced from the reasoning properties of the spatio-temporal relations and the cardinality
restrictions. For this purpose the symmetry, composition and conceptual neighbourhood of
the cardinality restrictions are studied. The influence of both class relation components is
analysed separately, such that the overall approach is generic and independent of specific
spatio-temporal relations. It can be applied to sets of SICs that constrain different aspects
of space and time.

A prototypical implementation shall verify the feasibility of the overall approach and demon-
strate the use in the application scenarios. The results can help GISs to cope with inconsis-
tencies between different data sources and also inconsistencies of the data with regard to user
requirements.

1.4 Outline of the Thesis

This thesis is organised into eight chapters. Following this introduction, the second chapter
reviews some fundamentals and the state-of-the-art in the area of spatial data modelling,
quality assurance, formalisation of SICs and spatial relations and reasoning. Chapter 3 pro-
vides a detailed categorisation of ICs and SICs, which serves as a basis for the further work.
Chapters 4 and 5 address the formal definition of spatial SICs, based on class relations and the
analysis of their reasoning properties. The focus is here on the symmetry, composition and
conceptual neighbourhood of class relations. The results are used for checking the consistency
of spatial SICs, which is studied in Chapter 6, including the proof of a Constraint Satisfaction
Problem (CSP) at the class level and the detection of restrictions, conflicts and redundancies
in pairs of SICs. Chapter 7 illustrates the use of the developed concepts through an applica-

17

Chapter 1 Introduction

tion scenario. Here the results of a prototypical implementation are used for demonstration.
Chapter 8 concludes this work and gives an outlook on possible future research directions.

18

Chapter 2

Fundamentals of Spatial Integrity Constraints

This chapter summarises some fundamentals regarding the role of integrity constraints (ICs) in
spatial data modelling and spatial data quality description and evaluation. It reviews current
research that relates to ICs and their formalisation, spatial relations and spatial reasoning.

2.1 Levels of Data Modelling

Modelling is the process of selecting geographical entities and defining how they shall be
represented in a GIS or in a geographical database (Bartelme, 2005). This selection is always
depending on the application in mind. Since not all properties of the real world entities can
be represented in an application neutral fashion, geodata modelling is always an abstraction
process. Commonly, it is subdivided into three abstraction levels (Figure 2.1).

The conceptual data model expresses the meaning of required terms and concepts, to
identify their characteristic properties and to find the correct interrelationships between dif-
ferent concepts. It defines which and how entities and their properties and relationships
are to be acquired (Joos, 1999b). The conceptual schema should represent how domain ex-
perts understand the modelled entities, and express the requirements of users and application.
Conceptual models are independent of any implementation and database management system
(DBMS).

A conceptual schema is a formal description of a conceptual model (Elmasri and Navathe,
1994), usually using notations like ERDs or Unified Modeling Language (UML). The Interna-
tional Organization for Standardization (ISO) has specified conceptual schemas for describ-
ing the spatial and temporal characteristics of GI in corresponding standards (ISO/TC211,
2002a,b). The application of these standards to build a conceptual schema of a particular
application, a so-called application schema, is described in (ISO/TC211, 2000). A gen-

19

Chapter 2 Fundamentals of Spatial Integrity Constraints

Figure 2.1: The three levels of data modelling

eral introduction into modelling based on the ISO 19xxx standards series has been given by
Brodeur and Badard (2008).

The specification of ICs is part of the conceptual data modelling (Borges et al., 1999). ICs
and SICs are part of the entity class definitions (Ditt et al., 1997; Friis-Christensen et al.,
2001; Oosterom, 2006) and have a corresponding validity. In (Friis-Christensen et al., 2001)
the specification of ICs has been pointed out as one of the requirements on notations used for
geographic data modelling. Wang (2008) intensively studied the integration of the definition
of spatial SICs into the conceptual modelling workflow and conceptual schema descriptions.

The conceptual model is mapped onto the logical data model, which provides the foundation
for the design of the database. The logical data model describes the logical structure of the
data, like, for example, the representation of the modelled relations in tables for relational
databases. A logical data model bears on the entities defined in a conceptual model expressed
in terms of a particular data management technology.

A physical data model as the last data modelling level describes the particular physical
mechanisms used to represent data in a storage medium. A physical data model is a single

20

2.2 Quality of Geodata

logical model instantiated in a specific database management product. It includes detailed
specification of data elements, data types, indexing, etc.

2.2 Quality of Geodata

The information obtained from a GIS rest upon data, which are representing parts of the real
world. The reliability of the information and the reliability of decisions people make based
on that information depends on the quality of these data. Quality is defined as “the totality
of characteristics of a product that bear on its ability to satisfy stated or implied needs”
(ISO/TC211, 2002c). The evaluation of data quality, and in particular the evaluation with
regard to a particular application, can be very complex. The ISO defines the following five
data quality elements (ISO/TC211, 2002c) to categorise quality information of GI:

• completeness: presence and absence of features, their attributes and relationships;

• logical consistency: degree of adherence to logical rules of data structure, attribution
and relationships;

• positional accuracy: accuracy of the position of features;

• temporal accuracy: accuracy of the temporal attributes and temporal relationships
of features and

• thematic accuracy: accuracy of quantitative attributes and the correctness of non-
quantitative attributes and of the classifications of features and their relationships.

The ISO also defines corresponding quality evaluation procedures (ISO/TC211, 2003), quality
measures (ISO/TC211, 2005) and metadata elements for the documentation and assessment
of the quality of a GI resource (ISO/TC211, 2002d). This work focuses on logical consistency
(sometimes also called integrity (Egenhofer, 1997)), which has according to the ISO standard
the following subelements:

• conceptual consistency: adherence to rules of the conceptual schema;

• domain consistency: adherence of values to the value domains;

• format consistency: degree to which data is stored in accordance with the physical
structure of the dataset and

• topological consistency: correctness of the explicitly encoded topological characteristics
of a dataset.

Comparable, logical consistency comprises simple attribute ranges or value rules, basic geo-
metric and topological constraints and specific consistency rules on spatial relationships
(Kainz, 1995). ICs are such definitions or rules in data models. They must hold for individ-
ual data elements or among several data elements to unambiguously represent the intended

21

Chapter 2 Fundamentals of Spatial Integrity Constraints

semantics of the data model. Therefore, ICs enable the detection of inconsistencies, that
is, unacceptable differences between the data and the data model (Egenhofer, 1997). They
delimit correctness of a data set. Therefore, ICs are part of the data model and have to be
considered during the development of a GIS and the data acquisition (Wang, 2008).

The actual evaluation of geodata against ICs is not part of this work, as this thesis investigates
the internal consistency of the ICs. If ICs contradict each other, then the data model itself is
inconsistent and it is impossible to acquire a consistent data set.

The consistency between the data model and the reality, that is the model quality, cannot
be examined by ICs. Model quality describes how appropriately a model represents real-world
phenomena (Joos, 1999a). Thus, a model with poor model quality also defines in many cases
improper ICs. The evaluation of the model quality can only be made with regard to the
specific requirements of an application.

Also the ISO - Technical Committee 211 (ISO-TC211) identifies ICs as one of the concepts
used to define types of features. Constraints may be associated with feature types and prop-
erties of feature types. As part of an application schema (ISO/TC211, 2000) they are used
to prevent users from the creation of erroneous data and thereby assure the integrity of the
data. But the standard does not define a particular formal definition of ICs. It suggests that
schema developers use a constraint language specific to their implementation environment.
The following section reviews some approaches to IC formalisation.

2.3 Formalisation of Integrity Constraints

Nowadays, ICs which cannot be inherently or implicitly expressed in the data model, are
usually hardcoded in the application software for the assurance of logical consistency. This
particularly concerns SICs. The separation from the data model has significant disadvantages
for their transfer, management, adaptability and reuse in different application components or
systems (Louwsma et al., 2006; Oosterom, 2006).

A formal description of SICs would overcome these problems and enable the transfer of the
integrity rules between different systems and system components. Approaches aiming at a
formalisation are for instance based on:

• pictures of inconsistent scenes with corresponding interpretation rules (Pizano et al.,
1989),

• first-order logic and topological relations (Hadzilacos and Tryfona, 1992),

• a generic structure based on two related entity classes, a topological relation and a
cardinality specification (Ubeda and Egenhofer, 1997; Servigne et al., 2000),

22

2.3 Formalisation of Integrity Constraints

• specifically defined rule languages (Joos, 1999a,b),

• an integration of ICs in a data modelling notation called OMT-G (Borges et al., 1999),

• UML and Object Constraint Language (OCL) with corresponding spatial extensions
(Casanova et al., 2000, 2001; Duboisset et al., 2005; Louwsma et al., 2006; Oosterom,
2006; Belussi et al., 2006),

• UML in combination with so-called constraint decision tables (Wang and Reinhardt,
2007; Wang, 2008),

• semantic web languages like

- Resource Description Framework (RDF) (Pundt, 2002),

- formal ontology languages (Mostafavi et al., 2004),

- rule languages such as Semantic Web Rule Language (SWRL) (Mäs et al., 2005b;
Watson, 2007) or Rule Markup Language (RuleML) (Wang and Reinhardt, 2007),

• spatial relations between classes of individuals (so-called class relations) (Tarquini
and Clementini, 2008),

• first-order logic predicates expressed in an Extensible Markup Language (XML) based
rule language called Spatial QUality and Integration Rules Language (SQUIRL) (San-
derson et al., 2009) and

• an extended relational database model (Bravo and Rodŕıguez, 2009).

A more extensive overview of existing approaches to the formalisation of ICs has been given by
Werder (2009). A general comparison of specification languages, which also includes natural
languages, was made by Salehi et al. (2007).

These approaches to SIC formalisation aim at the definition and transfer of the constraints
and an automatic setup of the quality assurance. For checking the internal consistency of
SICs, their logical properties, and in particular the correlation with the logical properties of
the spatial relations, have to be researched. This is not included in most of the approaches,
although some of them mention the check of conflicts in sets of constraints as a future require-
ment (Louwsma et al., 2006; Oosterom, 2006). Only Bravo and Rodŕıguez (2009) investigated
the consistency of spatial SICs. They found that for their formalisation the consistency check
is computationally not tractable.

This work also requires a formalisation of SICs, but the focus is on the investigation of the
logical properties of the constraints. It typically uses class relations, originally introduced by
Donnelly and Bittner (2005), for SIC formalisation (Chapter 4).

23

Chapter 2 Fundamentals of Spatial Integrity Constraints

2.4 Spatio-temporal Relations and Reasoning

A critical foundation of SICs is the formalisation of spatio-temporal relations and their logical
inferences. This section provides an overview on spatio-temporal relations and reasoning
techniques.

2.4.1 Spatial and Temporal Relations

The representation of space and time in a GIS can be manifold. A generic differentiation
can be into quantitative and qualitative representation approaches (Hernández, 1994). The
former rely on quantitative measurements or calculations, whereas qualitative representations
are non-numerical descriptions of a situation. Typically, continuous properties are represented
by discrete sets of relations of and between spatial entities. Qualitative representations are
characterised by making only as many distinctions in the domain as necessary in a given con-
text. Thus, qualitative descriptions are less precise than quantitative ones. For the definition
of SICs this abstraction is in many cases sufficient and preferable, since verbal descriptions
of SICs are usually also not numerically precise. Some of the advantages of qualitative over
quantitative representations are their closeness to human cognition, communication and rea-
soning, their ability to deal with incomplete knowledge and, depending on the application,
their computational efficiency (Hernández, 1994; Renz, 2002). This particularly holds for spa-
tial relations of and between spatial entities (in this thesis also called instance relations).
Typical examples are “a is inside b”, “c is north of d” and “e is longer than f”.

The different aspects of space, like topology, orientation, distance and shape, are usually
represented by different spatial relations. A qualitative representation of one of these aspects
is based on a jointly exhaustive and pairwise disjoint (JEPD) set of relations. This means that
for all possible situations exactly one of the relations holds. Because of the qualitativeness,
the number of possible relations must be finite.

The focus in this work is on binary spatial relations, that is, spatial relations between
two entities, although other relations, such as unary or ternary relations, are also used for
the definition of SICs. A typical example of a JEPD set of such relations is the topological
relations between areal entities (Figure 2.2).

Further examples of spatial and temporal relations can be found for temporal intervals (Allen,
1983; Freksa, 1992a; Hornsby et al., 1999), for topological relations (Egenhofer and Herring,
1990; Kurata, 2008), for directional relations (Freksa, 1992b; Frank, 1992; Goyal and Egen-
hofer, 2001; Skiadopoulos and Koubarakis, 2001; Yan et al., 2006), metric relations (Frank,

24

2.4 Spatio-temporal Relations and Reasoning

Figure 2.2: Set of topological relations between areal entities (Egenhofer and Herring, 1990)

1992), and shape relations (Cohn, 1995; Clementini and Felice, 1997). Cohn and Hazarika
(2001) gave an extensive overview on spatial relations and their reasoning properties.

A qualitative set of relations only makes as many distinctions as necessary. This enables
the coverage of the corresponding aspect of space with the desired granularity (Renz, 2002).
Depending on the spatial situation and the acceptable precision, it is possible to use sets
of relations with different resolutions. For example, in comparison to the set of relations
shown in Figure 2.2, Grigni et al. (1995) defined sets of topological relations with different
resolutions.

For the further work with spatial relations, the following operations are defined:

• ri : converse/symmetric instance relation of r, for instance
insidei(a, b) ⇒ contains(b, a).

• r1 ∪ r2 : union / disjunction of the two instance relations, for instance if
r1 := meet(a, b) and r2 := equal(a, b) then
r1 ∪ r2 corresponds to either meet(a, b) or equal(a, b) (logical XOR).

• r1 ∩ r2 : intersection of the two instance relations, for instance if
r1 := meet(a, b) and r2 := covers(b, c) then
r1 ∩ r2 corresponds to meet(a, b) and covers(b, c).

For further operations and mathematically precise definitions see Maddux (2006).

25

Chapter 2 Fundamentals of Spatial Integrity Constraints

The formalisation framework for SICs, developed in this work (Chapter 4), bases on some
specific properties of binary relations (Ebbinghaus, 1977; Maddux, 2006):

left-total: for all x in set X there exists a y in set Y such that r(x, y)
∀x ∈ X : ∃y ∈ Y ∩ r(x, y)

right-total or surjective: for all y in set Y there exists an x in set X such that r(x, y)
∀y ∈ Y : ∃x ∈ X ∩ r(x, y)

left-definite or injective: for all x and z in set X and y in set Y it holds that if r(x, y)
and r(z, y) then x = z
∀x, z ∈ X, ∀y ∈ Y : (r(x, y) ∩ r(z, y))⇒ x = z

right-definite: for all x in set X and y and z in set Y it holds that if r(x, y)
and r(x, z) then y = z

∀x ∈ X, ∀y, z ∈ Y : (r(x, y) ∩ r(x, z))⇒ y = z

bijective: left-total, right-total, left-definite and right-definite

The following subsections discuss reasoning techniques and properties of spatial and temporal
relations.

2.4.2 Composition of Spatio-temporal Relations

The composition is an operation of relation algebra. It is also called the relative product
(Tarski, 1941). The composition of binary relations enables the derivation of implicit know-
ledge about a triple of entities. If two binary relations are known, the corresponding third
relation can potentially be inferred or some of the possible relations can be excluded. In this
work, the following symbology is used for the composition:

r1 ; r2 ⇒ r3 The composition of r1 and r2 implies r3.

If the composition imposes no constraints, it results in a universal disjunction U , which is the
disjunction of all relations of the corresponding set.

U Universal disjunction of the corresponding set of relations.

Figure 2.3 provides a composition example for the topological relations between three regions.
Two topological relations between the three regions can describe the scene shown on the left

26

2.4 Spatio-temporal Relations and Reasoning

of the figure: “a meets b” and “b contains c”. Although the third relation is missing and the
other two topological relations only provide an imprecise qualitative description of the scene,
it is possible to deduce the third relation “a is disjoint from c”.

meet ; contains ⇒ disjoint

Figure 2.3: Example scene of three regions (left) and a corresponding composition of two topological
relations (right)

Such a derivation can also be used to discover conflicts in case that all three relations are
known. The composition rules of a set of relations are usually represented in a composition

table (sometimes also called transitivity table) like the one compiled for the topological
relations between areal entities in (Egenhofer, 1994)(Table 2.1). The examples throughout
this work base on this composition table.

Many other sets of binary spatial relations also allow for such derivations. Further composition
tables can be found for topological relations (Hernández, 1994; Grigni et al., 1995; Kurata and
Egenhofer, 2006), directional/orientation relations (Frank, 1992; Freksa, 1992b; Hernández,
1994; Papadias and Egenhofer, 1997), distance relations (Hernández et al., 1995) and temporal
relations (Allen, 1983; Freksa, 1992a).

2.4.3 Constraint Satisfaction Problems

The composition of relations can also be used to check the logical consistency in relation sets
with more than three related entities. Such a network of binary relations can be expressed
by a graph, in which the nodes represent the entities and the arcs the relations. Figure 2.4
shows an example graph of the topological relations of four regions. Such a graph does not
need to be fully determined; it can also represent incomplete knowledge if some relations are
unknown or not precisely known.

27

Chapter 2 Fundamentals of Spatial Integrity Constraints

Table 2.1: Composition table of the eight topological relation between areal entities (d =
disjoint, m = meet, e = equal, i = inside, cB = coveredBy, ct = contains, cv =
covers and o = overlap)(Egenhofer, 1994)

disjoint
(b,c)

meet
(b,c)

equal
(b,c)

inside
(b,c)

covered-
By(b,c)

contains
(b,c)

covers
(b,c)

overlap
(b,c)

disjoint
(a,b)

d ∨m ∨
e ∨ i ∨
cB∨ct∨
cv ∨ o

d ∨
m∨ i∨
cB ∨ o

d d ∨m ∨
i ∨

cB ∨ o

d ∨
m ∨ i ∨
cB ∨ o

d d d ∨
m ∨ i ∨
cB ∨ o

meet
(a,b)

d ∨m ∨
ct ∨

cv ∨ o

d∨m∨
e∨cB∨
cv ∨ o

m i ∨
cB ∨ o

m ∨ i ∨
cB ∨ o

d d ∨m d ∨
m ∨ i ∨
cB ∨ o

equal
(a,b)

d m e i cB ct cv o

inside
(a,b)

d d i i i d ∨m ∨
e ∨ i ∨

cB∨ct∨
cv ∨ o

d ∨
m ∨ i ∨
cB ∨ o

d ∨
m ∨ i ∨
cB ∨ o

covered-
By(a,b)

d d ∨m cB i i ∨ cB d ∨m ∨
ct ∨

cv ∨ o

d ∨m ∨
e∨cB∨
cv ∨ o

d ∨
m ∨ i ∨
cB ∨ o

contains
(a,b)

d ∨m ∨
ct ∨

cv ∨ o

ct ∨
cv ∨ o

ct e ∨ i ∨
cB∨ct∨
cv ∨ o

ct ∨
cv ∨ o

ct ct ct ∨
cv ∨ o

covers
(a,b)

d ∨m ∨
ct ∨

cv ∨ o

m∨ct∨
cv ∨ o

cv i ∨
cB ∨ o

e ∨ cB ∨
cv ∨ o

ct ct ∨ cv ct ∨
cv ∨ o

overlap
(a,b)

d ∨m ∨
ct ∨

cv ∨ o

d∨m∨
ct ∨

cv ∨ o

o i ∨
cB ∨ o

i ∨
cB ∨ o

d ∨m ∨
ct ∨

cv ∨ o

d ∨m ∨
ct ∨

cv ∨ o

d ∨m ∨
e ∨ i ∨
cB∨ct∨
cv ∨ o

28

2.4 Spatio-temporal Relations and Reasoning

Figure 2.4: Example scene of four regions (left) and the corresponding topological relation graph
(right)

The proof of consistency of such a graph is a Constraint Satisfaction Problem (CSP). CSPs
are mathematical problems that are defined by those entities, that are restricted by a number
of constraints. Formally, it is defined by a set of variables, the domain of values for these
variables and a set of constraints, which are restricting a subset of the variables. These
constraints define what combinations of values for the variables are valid. When reasoning on
spatial relations, the variables represent the relations between the spatial entities, the domain
of values is the corresponding set of relations (e.g., the eight topological relations between
areal entities) and the constraints are defined by the logical properties of the relation set
(symmetry and composition rules).

In a consistent network of JEPD relations, the following three requirements are fulfilled
(Rodŕıguez et al., 2004):

• Node consistency is ensured if every node has a self-loop arc, which corresponds to
the identity relation (i.e., relation of an entity to itself).

• Arc consistency is ensured if every edge of the network has an edge in the reverse
direction, that is, every relation has a converse binary relation.

• Path consistency is ensured if all relations are consistent with their induced relations,
determined by the corresponding intersection of all possible composition paths of length
two (n = number of nodes):

∀i,j ri,j =
n⋂

k=1

rik ; rkj (2.1)

29

Chapter 2 Fundamentals of Spatial Integrity Constraints

Since sets of binary spatial relation usually have a defined identity relation (for example
equal for the topological relations of Figure 2.2) and converse relations, the proof of node
consistency and arc consistency is relatively simple. Node and arc consistency are prerequisites
for checking path consistency and the corresponding identity and converse relations must be
added to the relation network.

Many algorithms that check path consistency have been proposed (Allen, 1983; Mackworth
and Freuder, 1985; Papadias and Egenhofer, 1997). The following path consistency algorithm
is a slightly adjusted version of the one published by Hernández (1994), which is based on
Allen’s algorithm. It consists of three parts:

1 To ADD rij

2 begin

3 0ld ← N(i,j);

4 N(i,j) ← N(i,j) ∩ rij;

5 If (N(i,j) = ∅)

6 then Inconsistency found;

7 If (N(i,j) 6= 0ld)

8 then put pair <i,j> on Queue;

9 Nodes ← Nodes ∪ {i,j};
10 end;

The first part adds the new relation rij of the entities i and j to the set of relations N , which
contains all known relations. If it is the first inserted relation, the set of relations contains
universal disjunctions for all possible relations. If the intersection between the new relation
and the known set of relations is empty a contradiction / inconsistency between the new
and the known relations is detected. If the intersection results in a more constrained set of
relations, the pair of nodes i, j (i.e., pair of entities) is put to the queue for propagation.

1 To CHECKCONSISTENCY

2 While Queue is not empty do

3 begin

4 Get next <i,j> from Queue;

5 PROPAGATE(i,j);

6 end;

30

2.4 Spatio-temporal Relations and Reasoning

The consistency check of the relation set is then started by the CHECKCONSISTENCY procedure,
which calls the following procedure as long as there are entries in the queue.

1 To PROPAGATE i,j

2 begin

3 For each node k do

4 . begin

5 . New ← N(i,k) ∩ (N(i,j);N(j,k));

6 . If (New = ∅)

7 . then Inconsistency found;

8 . If (New 6= N(i,k))

9 . then add <i,k> to Queue;

10 . N(i,k) ← New;

11 . end;

12 For each node k do

13 . begin

14 . New ← N(k,j) ∩ (N(k,i);N(i,j));

15 . If (New = ∅)

16 . then Inconsistency found;

17 . If (New 6= N(k,j))

18 . then add <k,j> to Queue;

19 . N(k,j) ← New;

20 . end;

21 end;

The PROPAGATE procedure determines, whether the new relation between i and j effects the
results of the compositions in the network. It proves if the compositions of the new relation
with known relations (and vice versa) constrain the relation between i and other nodes k, or
relations between other nodes k and j. In these cases the constrained pair of nodes i, k or k, j

is placed in the queue for further propagation. An inconsistency is detected if the intersection
of the composition and the known relations of nodes i, k or k, j results in an empty set.
Hernández (1994) also investigated algorithms for the resolution of such contradictions (so-
called constraint relaxation algorithms) and for the deletion of relations from the network.

The elucidated algorithm can also be used if the knowledge is incomplete, that is, not all
relations of the network are known. In general, CSP algorithms can be used to infer implicit
knowledge and to check consistency in constraint networks, but also to detect redundancies
allowing for data compression and minimisation of the number of constraints in database

31

Chapter 2 Fundamentals of Spatial Integrity Constraints

queries. The application of CSP algorithms for checking consistency in relation networks
has been demonstrated for topological relations (Egenhofer and Sharma, 1993; Grigni et al.,
1995; Hernández, 1994), directional/orientation relations (Papadias and Egenhofer, 1997;
Hernández, 1994) and temporal relations (Allen, 1983; Rodŕıguez et al., 2004).

CSP algorithms are not infallible, however. Some relation networks are unsatisfiable and
therefore inconsistent, even if its correctness has been proven with a CSP. This is due to
the restricted expressive power and precision of qualitative relations. Grigni et al. (1995)
showed a network of topological relations of areal entities that is consistent with respect to
the composition inferences and the CSP, but there is no set of regions that realise it, because of
restrictions related to planarity. However, the CSP satisfiability answer may be false positive,
but never false negative.

2.4.4 Conceptual Neighbourhood

The notion of conceptual neighbourhood has been introduced by Freksa (1992a). In this work,
the definition provided by Cohn et al. (1998) is used:

“Two relations drawn from a pairwise exclusive and jointly exhaustive set can
be called immediate conceptual neighbours if one can be transformed into the

other by a process of gradual, continuous change that does not involve
passage through any third relations.”

In other words: “a pair of two relations r1 and r2 are conceptual neighbours if it is possible
for r1 to hold at a certain time, and r2 to hold later, with no third relation holding in
between”(Cohn, 2008).

The conceptual neighbourhoods of relations of a JEPD set are usually represented by a
conceptual neighbourhood graph, like the one shown in Figure 2.5 for the set of topological
relations between areal entities (Figure 2.2).

Further examples of conceptual neighbourhood networks of spatio-temporal relations can be
found for temporal interval relations (Freksa, 1992a; Hornsby et al., 1999), for topological re-
lations between regions (Egenhofer and Al-Taha, 1992), between regions and lines (Egenhofer
and Mark, 1995), and between directed lines (Kurata and Egenhofer, 2006).

Knowledge about the conceptual neighbourhood of instance relations can be used to evaluate
the possible changes of a relation or to measure the similarity among the relations between
differing relation sets (Schwering, 2007).

32

2.4 Spatio-temporal Relations and Reasoning

Figure 2.5: Conceptual neighbourhood graph of the eight topological relations between areal entities
(Egenhofer and Al-Taha, 1992)

33

Chapter 3

Categories of Integrity Constraints

Integrity constraints (ICs) formalise basic assumptions on that part of the world that is
represented by the data (Gröger and Plümer, 1997). ICs constitute the conceptual consistency,
that is, the consistency of the data with respect to the conceptual data schema. Wang (2008)
provides the following definition for spatial ICs, which is also used in this work:

Spatial integrity constraints are formal and accepted statements, definitions or qualifications
for describing data consistency requirements in order to constrain spatial data to represent

the reality in the context of a GIS application correctly.

This chapter reviews established approaches to IC classification and provides a definition of
semantic integrity constraints (SICs). Furthermore a profound categorisation is proposed,
which classifies SICs according to the semantic domains of the properties involved. This
categorisation provides the preconditions for the formal definition of the constraints and the
identification of conflicts and redundancies in sets of ICs.

3.1 Approaches to Categorisation of Integrity Constraints

The following section reviews existing approaches to categorising ICs, starting with general
constraint categories in database systems and proceeding with the specific constraint types
for spatio-temporal data.

3.1.1 General Integrity Constraints for Database Systems

Some basic categories of ICs for data modelling are fundamental to database systems (Elmasri
and Navathe, 1994). They classify ICs according to their specification technique, the type of
conditions they specify and the number of database states they constrain.

35

Chapter 3 Categories of Integrity Constraints

3.1.1.1 Specification Technique of Integrity Constraints

The specification of ICs in a database system can be inherent, implicit or explicit. Inherent

constraints are directly associated with the constructs of the data model itself and do not
need to be specified in the data schema. They specify rules that define the inherent properties
of the data model constructs. Likewise as inherent constraints, Implicit constraints are
contained in the database schema, but they are specified by the Data Definition Language
(DDL) through the database schema definition. Implicit constraints restrict each entity type,
attribute and relationship through the specification possibilities implied by the particular
schema DDL. An example is the uniqueness constraint that is forced on an attribute when
it is specified as a key of an entity type. More complex constraints, that are not expressed
by the DDL and therefore have to be additionally specified, are called explicit constraints.
Typical examples are the general semantic integrity constraints.

3.1.1.2 Specified Conditions of Integrity Constraints

A second classification identifies the following types of ICs applying to the specified conditions
(Elmasri and Navathe, 1994):

• domain constraints restrict the allowed types of values of an attribute, for example
Integer or Boolean.

• key and relationship constraints refer to the possibility to define key values (i.e.,
unique values) for entity classes, cardinality restrictions for relationships between en-
tities and participation requirements.

• general semantic integrity constraints are explicitly specified and usually more
complex. They refer to semantics of the modelled entity classes, which are not repre-
sentable through the other two categories. They specify relations between the modelled
concepts, that are usually not explicitly represented in the data.

3.1.1.3 Number of Constrained Database States

Elmasri and Navathe (1994) also distinguish ICs based on whether they restrict a single
database state (state constraints) or multiple states (transition constraints). Thereby
one database state includes all data of the database at a particular point in time. State
constraints assure the consistency of a database before and after an update transaction. Ex-
amples are domain and key constraints. Transition constraints are restrictions on the changes
between successive database states. The corresponding integrity checks analyse different ver-

36

3.1 Approaches to Categorisation of Integrity Constraints

sions of entities, their attributes and relations. For example, a transition constraint can assure
that the value of an attribute is not decreased during a database update.

3.1.1.4 Data Model Elements Restricted by Integrity Constraints

A fourth approach was made by Ditt et al. (1997) and later on extended by Friis-Christensen
et al. (2001). They classified ICs according to the involved elements of data models:

1. ICs referring to an attribute of a single entity;

2. ICs referring to at least two attributes of a single entity;

3. ICs referring to all entities of a single entity class;

4. ICs referring to an entity and its associated entities of various classes; and

5. ICs referring to operations of entities.

This classification is particularly useful to differentiate the restrictions of SICs.

3.1.2 Spatial Data Integrity Constraints

The categorisations listed so far do not address the particularities of spatial data. These spe-
cific properties allow for spatial analysis methods that can also be used for integrity checking
and, therefore, enable the definition of spatial ICs. These constraints particularly deal with
things like location, extent, shape or topology. Approaches to classify spatial ICs in order to
comprehend the peculiarities of spatial data can be found in (Servigne et al. (2000); Cockcroft
(1997, 2004); Borges et al. (1999); Frank (2001) and Louwsma et al. (2006)).

Servigne et al. (2000) define three kinds of spatial ICs that apply to structural, geometric and
topo-semantic conditions:

Structural errors result from an insufficient implementation of the data model through in-
adequate data structures provided by the GIS. To overcome such shortcomings structural

constraints have to be defined. Structural constraints are “programming tricks” used to
handle entities that cannot be appropriately represented by the available data structures. In
the categorisation following in the next section, structural errors are not considered, since it
is assumed that the data structures sufficiently represent the data model.

Geometric constraints refer to the general geometric and topological assumptions of the
geometry types of the data model. They define and restrict properties and relations of geo-

37

Chapter 3 Categories of Integrity Constraints

metric and topological primitives independently of the semantics of specific entity classes.
Common examples of geometric ICs are the closedness of polygons:

“All Polygons must be closed.”

and the forbidden intersection of edges in a planar graph network:

“The edges of a graph network are not allowed to share any point, except their incident
nodes.”

or more general conditions for the primitives of a geometric complex according to ISO/TC211
(2002a):

“The interiors of the geometric primitives must be disjoint. If two primitives touch, the
common boundary must be a primitive of lower dimension.”

Such constraints can be used, for example, to assure a redundancy-free topology. Correspond-
ing computable checking algorithms are based on axiomatic characterisations of the geometry
types and apply graph theory. Plümer and Gröger (1997) define a set of geometric ICs for
areal features. This example shows the optimal case, where a minimal and complete set of
ICs can be defined for a specific geometry type. A set of ICs is minimal if no subset exists,
that is also ensuring the integrity, that is, there is no redundancy in the set of constraints. A
set of ICs is complete for a certain concept (in this case of the concept of a geometry type) if
it logically implies this concept.

The topo-semantic constraints of Servigne et al. (2000) refer to topological relations be-
tween two entities. Since the validity of the topological relation depends on the semantic
of the entities, topo-semantic constraints are a subtype of the general SICs (Elmasri and
Navathe, 1994). Ubeda and Egenhofer (1997) gave a generic structure for the definition of
topological ICs. They define a topological constraint as an association of two geographical
entity classes, a binary relation, which is in this case a topological relation such as touch or
intersect, and a specification, which can have one of the following values:

• forbidden (i.e., relation is not allowed),

• at least n times (i.e., relation is n times required),

• at most n times (i.e., relation is n times allowed), or

• exactly n times (i.e., relation is exactly n times required).

38

3.2 A Refined Categorisation of Spatio-temporal Integrity Constraints

Such a structure cannot cover all possible kinds of topological ICs. As the classification
according to the involved data model elements (Section 3.1.1.4) demonstrates, ICs can refer
to more than two entity classes as well as their attributes and operations.

Cockcroft (2004) subdivides topo-semantic constraints into semantic and user-defined con-
straints. The former are based on the nature and the physics of the objects, for instance
“roads are not running through lakes”. User-defined ICs are of more artificial nature and
describe social or business rules or laws defined by humans, for instance “a fuel station should
not be within a certain distance of a school.” A more extensive classification of constraint
background or contexts can be found in Frank (2001). He demonstrated how ICs are part of
GIS ontology and showed that different constraints are appropriate to different tiers of ontol-
ogy. This points out the importance to treat the constraints not independently of the context
for which they are valid. Nevertheless, if a set of ICs is checked according to their internal
consistency, all constraints have to be considered independently of their context. Thus the
context is understood as metainformation of the constraints and not further considered in
this work.

3.2 A Refined Categorisation of Spatio-temporal Integrity

Constraints

These IC categorisations are either not practical for constraint formalisation and validation,
as they leave out spatial aspects, or they do only cover some spatial aspects like topology.
A refined categorisation (Figure 3.1), which particularly incorporates the different aspects
of spatio-temporal data integrity, distinguishes the ICs according to the involved types of
conditions and profoundly differentiates the aspects of spatial SICs (Mäs and Reinhardt,
2009).

In the scope of this work, this differentiation of SICs is necessary, because the developed
reasoning concepts are based on the reasoning properties of the relation sets of each spatio-
temporal aspect. The consistency of the constraints has to be separately checked for the
constraints of each of these SIC classes. In general, the categorisation provides a basis for
further work on SIC formalisation, management and validation. It points out the properties
that can be constrained through the integrity rules and, thereby, identifies aspects, where
presently the potential of the constraints is by far not yet exploited. The new concepts extend
the well-established classification of database ICs (Elmasri and Navathe, 1994). The top level
of Figure 3.1 contains these three basic types of ICs. The middle level distinguishes SICs
according to the involved properties and relations. The bottom level regards to the spatial

39

Chapter 3 Categories of Integrity Constraints

Figure 3.1: Categorisation of integrity constraints (Mäs and Reinhardt, 2009)

aspects that are restricted by spatial SICs. The following subsections provide definitions and
examples of the defined IC classes, with a particular focus on ICs required by spatial data.

3.2.1 Domain Constraints

Domain constraints restrict the allowed types of values of an attribute. The value domain of
an attribute is usually defined by a data type, such as a numerical data type (integer or real),
character and string data type, Boolean data type, date and time data type or enumerated
data type (Elmasri and Navathe, 1994). Database systems and schema description languages
commonly include these data types and have the corresponding ICs inherently defined. More-
over, some applications require so-called user-defined data types, which are defined by the
designers of the (database) schema.

Spatial and temporal information require data types and corresponding domain constraints,
which restrict all kinds of defined primitives and complexes like for example geometric /
topological and temporal primitives / complexes. The primitives and their corresponding
ICs are defined independently of the semantics of entity classes. Currently, a variety of
database systems is already capable of handling the particular requirements of spatial data
and provides predefined spatio-temporal data types. For these systems, the corresponding
ICs do not have to be explicitly specified. Domain constraints on geometric and topological
primitives correspond to the geometric constraints defined by Servigne et al. (2000), which
have been itemised in the previous section. International standards (e.g., ISO/TC211 (2002a,

40

3.2 A Refined Categorisation of Spatio-temporal Integrity Constraints

2004)) specify names and geometric definitions for geometry types and geometric primitives.
Since the constraints are part of the geometry type definition of the data model, they are also
included in these standards.

Temporal primitives also define domain constraints, but since time is unidirectional, temporal
primitives are less complex than the potential geometrical primitives of the two or three-
dimensional space. For many applications, the interval type is the only temporal primitive
beside the common date and time data types. A simple constraint like:

“the beginning of an event (i.e., interval) must be before the ending”

is the only internal assumption for time intervals and it sufficiently assures their integrity.
Temporal primitives are also standardised by ISO/TC211 (2002b).

3.2.2 Key and Relationship Constraints

For the definition of key and relationship constraints Mäs and Reinhardt (2009) also refer to
(Elmasri and Navathe, 1994). These constraints are mostly incorporated in the schema of the
database and, therefore, do not need to be additionally specified. Examples are cardinality
restrictions of associations. Since spatial and temporal information does not have particu-
lar requirements on key and relationship constraints they are not further researched in this
work.

3.2.3 General Semantic Integrity Constraints

Following the definition of Elmasri and Navathe (1994) general SICs are based on relations
between the involved entities or on specific properties of a single entity. The validity of
the relations is based on the semantics of the entities. SICs are defined on the level of
the entity classes and have to be explicitly specified. A further subdivision of SICs can be
made by grouping the restricted properties according to their semantic domain. Extending
the approaches of Servigne et al. (2000) and Cockcroft (2004) the proposed categorisation
(Figure 3.1) does not only consider topological relations. It includes thematic, temporal,
spatial and change relations as well as relations between multiple representations of an entity.
Additionally it defines complex SICs, which combine relations of more than one of the semantic
domains, mereological relations and domain specific associations. Furthermore, constraints
are not restricted to only two entity classes. SICs allow for the definition of restrictions
affecting single or multiple entity classes in combination with their attributes and relations

41

Chapter 3 Categories of Integrity Constraints

in a single constraint. Subsequently, descriptions and examples of the subtypes of SICs and
references to relations and properties appropriate for the constraint definition are provided.

3.2.3.1 Thematic SICs

Thematic SICs secure the consistency of thematic attributes. They restrict the ranges of
attributes of a single entity by specifying relations between the values of two or more attributes
or one attribute value and a defined other value, for example, for a road entity class with the
attributes road type and number of driving lanes:

“Roads of the type ’Autobahn’ must have at least four driving lanes.”

The applied comparison operators for the specification of SICs are well established and have
been used in standards (OGC, 2005). Beside the common order relations (=, <,>,≤,≥, 6=),
they include operators for String and NULL comparison as well as fundamental arithmetic
operators for addition, subtraction.

3.2.3.2 Temporal SICs

To assure the logical consistency of temporal information temporal SICs can be defined. These
constraints substantiate rules that apply to temporal characteristics of the data. A simple
example is the definition of a minimal duration of a particular time interval or event. More
complex temporal SICs refer to the relation of particular points in time or time intervals like
events, processes, states or actions. An example for an entity class bridge with the temporal
attributes end of construction time and official opening date is:

“The construction time of a bridge must end before the date of the official opening.”

Allen (1983) defines a JEPD set of 13 binary relations (Table 3.1) between time intervals,
which can be used for the definition of such constraints. The intervals represent events through
an ordered pair of points in time, with the first point being earlier on the time scale than
the second (domain constraint). Every relation of two intervals can then be determined by
not more than two relations between the start- and endpoints (In− and In+) of the involved
intervals (I1 and I2). This set of temporal relations is widely used in different domains and
it is also incorporated into the ISO/TC211 (2002b) standard. Beside intervals, the standard
also includes instants (temporal points) as primitives and, due to that, the validity of the
relations is adequately adjusted. For cyclic time intervals, Hornsby et al. (1999) defined a
corresponding JEPD set of 16 binary relations.

42

3.2 A Refined Categorisation of Spatio-temporal Integrity Constraints

Table 3.1: Allens 13 binary relations between time intervals without gaps (taken from
Rodŕıguez et al. (2004))

3.2.3.3 Spatial SICs

For the definition of SICs, which restrict the spatial arrangement of entities and their spatial
properties, relations specifically considering the spatiality have to be applied. Spatial relations
between entities are usually not explicitly defined, but can be inferred from the geometries,
shapes or extents of the entities and are, therefore, also used for spatial analysis. Such spatial
relations can be subdivided into topological, directional, shape and metric relations. This
differentiation has also been made at the lower level of the classification in Figure 3.1. The
distinction of the different spatial aspects, the concepts of mereology and change is similar to
the structure proposed by Cohn and Hazarika (2001) in their overview of qualitative spatial
representation and reasoning.

Please remember that this subsection only considers ICs resulting of the entity’s semantics.
Constraints, which base on the definition of geometric and topological primitives belong to
the class of domain constraints. In the following, the differentiated subclasses of spatial SICs
are explained.

Topological SICs. Topology is probably the most fundamental perception of space (Cohn
and Hazarika, 2001) and, as shown in empirical studies, the dominating factor when humans
judge spatial configurations of entities (Knauff et al., 1997). Topology is a purely qualitative
concept, independent of any quantitative measures and concerns the spatial connectedness of
entities. Topological relations stay invariant under linear and affine transformations, such as
rotation, translation and scaling. Topological relationships between two entities have been
extensively studied in the literature. For an overview please see (Cohn and Hazarika, 2001).

43

Chapter 3 Categories of Integrity Constraints

In the GIS domain Egenhofer’s Dimensionally Extended 9 Intersection Model (DI-9IM) is
probably the most used method to analyse topological relations of two dimensional entities.
It defines topological relations through matrices, which compare the point set intersections of
the interiors, boundaries and exteriors of two entities (Egenhofer and Herring, 1990; Egenhofer
and Franzosa, 1991). Based on the DI-9IM the ISO/TC211 (2004) defines topological rela-
tionship predicates, such as intersect or overlap, which can be conveniently used in topological
SICs, for example:

“Lakes are not allowed to intersect with contour lines.”

Since not all relations are possible for all geometry types, the standard also defines the
validities of the relations4. Relations that are not expressible in natural language can be
expressed through the relate relation, which directly refers to the DI-9IM matrix.

Depending on the application it might be necessary to use a different resolution of ‘named’
relations, that is, define a more or less detailed set of relations, as it has been done by Grigni
et al. (1995). For example, the (ISO/TC211, 2004) relation within could be expressed through
the two relations inside and coveredBy, to differentiate whether or not the inner entity is inside
intersecting the boundary of the containing one. As shown by Knauff et al. (1997), sets of
named topological relations with a higher abstraction seem to be cognitively irrelevant, that
is, they do not conform to people’s conceptual awareness of spatial relationships. However, for
SICs coarse relations, such as intersects, are necessary to support a convenient definition.

Topological SICs can also restrict the topology of a single entity. Therefore, properties that
specify things like the internal connection, the number of components and presence/absence of
holes of a single entity are constrained, for example, for lake entities with polygon geometry:

“The inner rings of a lake (which represent the islands) are not allowed to intersect with
each other or with the outer ring.”5

Such restrictions extend the geometry type definitions with regard to the semantics of the
concerned entity class.

Directional SICs. Directional SICs refer to orientation relations of entities. These relations
base on the definition of a vector space. They are invariant under translation and uniform
scaling. Generally, there are two groups of directional relations distinguished by their require-
ment of a fixed reference system.

4For example crosses is only valid for two entities with one dimensional geometries.
5According to ISO/TC211 (2004) two of the LinearRings that represent the boundary of a Polygon are allowed

to intersect at a point (but only) as a tangent.

44

3.2 A Refined Categorisation of Spatio-temporal Integrity Constraints

Qualitative cardinal directional relations, like north, east or south-west, describe the relative
position of entities utilising the geographical coordinate system as reference. For the direc-
tional relation of two entities with point geometry a cone-shaped (or triangular; Figure 3.2a)
and a projection-based (Figure 3.2b) approach have been investigated by Frank (1992).

Figure 3.2: Examples of directional relations: a) cone-shaped and b) projection-based cardinal direc-
tional relations; c) left/right and front/back dichotomy for oriented entities

Cardinal directional relations for extended spatial objects have been researched by Goyal and
Egenhofer (2001), Skiadopoulos and Koubarakis (2001) and Yan et al. (2006). Most of the
proposed models are cognitively plausible, but as shown by Skiadopoulos and Koubarakis
(2005) and Cicerone and Felice (2004) lead in some special cases to inconsistencies. The main
problem is, that obviously a single model cannot handle all possible geometry types and their
relations equally well. This might be the reason why up to now none of the proposed models
has prevailed.

Cardinal directional relations are often used for verbal descriptions when people explain the
relative position of entities in geographic space or when they reason about these entities. SICs
that specify cardinal directional relations are hard to find, because usually these relations do
not restrict the occurrence or the characteristics of entities and therefore no inconsistencies
can occur. For example there is hardly any entity type that has to be north of another one
(except the North Pole). More relevant might be relations in the three dimensional space like
above and below, which also refer to a reference system.

The second group of directional relations deals with the order of entities in space, inde-
pendently of a fixed reference system. The relations are typically used for entities with a
well-defined front or back or a forward / backward orientation. Freksa (1992b) defines a set
of relations based on a left/right and front/back dichotomy for oriented entities (Figure 3.2c).

45

Chapter 3 Categories of Integrity Constraints

Entities like houses, which usually have an intrinsic front side, separate the space into a front
and back semi-plane. A resulting directional SIC could be:

“The backyard must be at the rear of a house.”

Additionally to the relations defined by Freksa, relations like parallel or perpendicular, might
be reasonable for the comparison of two directed entities. An example constraint could be
for a 3D city model:

“Road signs have to face the direction opposite of the driving lane they are attached to.”

So far only qualitative directional relations have been considered. In some contexts quanti-
tative relations referring to discrete measures, like angles, distance relations or trigonometric
calculations, might be useful as well. The disadvantage of such fixed discrete values is that
in most cases similar angles cannot be intuitively distinguished by the user.

Shape SICs. Shape SICs restrict the geometry of an entity in terms of form, shape and
stature. Since they ensure semantic integrity, they result from the entity’s semantics, that is,
the concepts of the entity classes which are represented in the data model.

Shape is a concept, that is difficult to describe qualitatively (Cohn and Hazarika, 2001) and
for many entity classes no generally valid shape property is definable. Because of this, shape is
rarely used for the definition of SICs. Nevertheless, shape constraints seem to be convenient,
in particular for 3D data (e.g., to specify roof types of houses).

Some examples for qualitative shape descriptions of single entities rest on the sequence of
the boundary extremes of areal features (Leyton, 1988; Schlieder, 1996), abstraction primi-
tives, such as a convex hull or general convexity / concavity (Clementini and Felice, 1997),
and the adjacency and relative position of concavities (Cohn, 1995). Clementini and Felice
(1997) also investigated metric properties that describe the shape of an entity. They define
a qualitative model for the definition of the symmetry of a single entity’s boundary and sets
of relations to describe the compactness, that is, the elongation of an areal entity. A qualita-
tive characterisation of the straightness of polyline geometries has been studied by Gottfried
(2007).

Metric SICs. Metric properties are based on distances between geospatial entities or their
constituent parts. They change with scale, but stay invariant under rotation and translation.
Corresponding metric SICs restrict distances and size.

Some quantitative metric properties like length, area size and radius are based on operations
on the entity’s geometry. Some of them are considered in international standards as methods

46

3.2 A Refined Categorisation of Spatio-temporal Integrity Constraints

of particular geometry types. For example, the ISO/TC211 (2002a) defines for Curve and
LineString geometries a Length method and for Surface geometries an Area method, which
return the length of the curve, respectively, the area of the surface. Such methods can be
used to constrain things like the minimum length of a linear entity or the maximum size of an
area. The ISO norm also provides the spatial analysis operators Distance and Buffer, which
are also expedient for the analysis according to metric SICs. An example of such a constraint
in context of a national law is:

“A petrol station must be in at least 300m distance from a school.”

Qualitative systems for distances have been discussed by Frank (1992). He defines sets of dis-
tance relations between two entities like far, medium and very close with varying granularity.
Hernández et al. (1995) extend this approach by using not only equally spaced distance inter-
vals. Furthermore, they capture the contextual information of the distance systems through
the definition of reference frames. Since the metric terms of qualitative distance concepts are
context-dependent, the context is important to consider for such SICs. Therefore, the use
of numerical values seems to be more convenient and expressive for the definition of metric
SICs.

3.2.3.4 Complex SICs

Many SICs combine relations of more than one of the semantic domains used in the cat-
egorisation above. They restrict relations or properties of several semantic domains in one
constraint. An example of such a complex SIC is:

“A butterfly valve must not intersect a pipe if the diameter of the pipe is greater than
40cm.”(Cockcroft, 2004)

This constraint specifies a restriction through a combination of the topological relation inter-
sect between butterfly valve and pipe and the thematic relation greater than of the pipe
attribute diameter. The thematic relation is used to define a subset of pipe entities for which
the constraint is valid.

For some of the concepts, itemised in the categorisation above, integrated algebras have
been analysed, which are useful for the definition of complex SICs. Examples are spatio-
temporal relationships between independent temporal regions (Claramunt and Jiang, 2001)
or for combinations of topological and directional relations (Hernández, 1994; Sharma and
Flewelling, 1995).

47

Chapter 3 Categories of Integrity Constraints

Beside the relations of the elucidated semantic domains, complex SICs can include mereo-
logical relations and domain specific associations that are explicitly defined in the data model.
Mereology deals with relations between parts and their respective wholes. For spatial data the
concepts of mereology and topology are usually not completely independent; the interrelations
between the two notions have been investigated by Varzi (1994). The correspondence of spatial
aggregation and the consistency of the thematic attributes of the sub-entities has been pointed
out by Plümer and Gröger (1997). They define for example:

“The number of inhabitants of a country is the sum of the numbers of the inhabitants of its
administrative districts.”

In this example administrative district entities are related to the country entity through a
partOf relation. It also shows the strong connection between mereology and topology, since
the districts are usually topologically contained by the country. In general, such dependencies
between the properties of objects of different classes are called propagation (Egenhofer and
Frank, 1992).

3.2.3.5 Change and Representation SICs

According to Hornsby and Egenhofer (1997) changes refer to operations performed on an
object or a group of objects. Thereby the changes can either preserve the object’s identity or
result in a change or a deletion of identity. Change SICs prevent forbidden modifications of
the entities and their properties, that is, they restrict the change between the two versions or
states of the entities.

In general there are two types of change SICs to consider. Firstly, there are transition con-
straints, which are restrictions on multiple states of a database (Elmasri and Navathe, 1994).
They are the only type of IC that can only be checked during a database transaction. All
other constraints can be proven independently of a transaction. Many GIS applications in-
tegrate temporal changes in their model and, therefore, store multiple states of an entity
in one database state. Therefore constraints, that restrict the differences between multiple
consecutive versions of a single entity or group of entities of one database state are included
here as a second type of change SICs.

Possible relations that represent the change operation in SICs can be found in (Hornsby
and Egenhofer, 1997), who classified operators for change actions of single entities (e.g.,
create, deconstruct), aggregates of objects (e.g., combine, compound) as well as their attributes
and relations (e.g., add, remove). An example of a change SIC could apply to a numerical
attribute, allowing the attribute value only to increase in case of change. The corresponding

48

3.3 Summary

checking algorithm would have to compare the two versions of the entity or the attribute in
the two database states.

Some geodatabases contain multiple representations of a property, for example, when an
entity has a separate geometry stored for each level of detail. As shown by Egenhofer et al.
(1994) and Tryfona and Egenhofer (1997), the consistency of those representations can also
be evaluated by SICs. They described frameworks to assess the topological consistency of
multiple representations. An example SIC is:

“The number of represented islands of a lake (e.g., holes of the lake’s geometry) is not
allowed to increase when the geometry is generalised.”

Relations that represent the connection between multiple representations in SICs can be gen-
eralisation, detailing or for two specific levels of detail something like LOD1toLOD2. In GISs
the change of representation mostly results in a generalisation of the entity’s geometry, but
thematic attributes can also be involved. The differences and restrictions between two rep-
resentations are generally comparable to those resulting from change operations. Therefore,
here a compound category for change and representation SICs is defined.

The restrictions of change and representation might refer to any relation or property of the
semantic domains. For example, Egenhofer et al. (1994) restrict the changes of the internal
topological properties of an entity and the topological relations between entities.

3.3 Summary

The categorisation of spatio-temporal ICs provides a basis for further work on SIC definition,
formalisation, management and validation of internal consistency of SIC sets. The categorisa-
tion gives an overview of the different kinds of spatio-temporal relations, which can be used to
define SICs. All relations must be linked to a corresponding mathematical definition, which
is implemented in the quality evaluation procedures. The assignment of a spatial IC to one
of the sub-classes of the categorisation is not always unambiguous, however. This is due to
influences and overlaps between the domains of the constraint classes. In such cases, it is
suggested to assign the constraint to the more abstract domain concept.

SICs can be manifold and complex and not all of them can be considered in this work. Thus the
following investigations are confined to SICs referring to all entities of a single entity class and
SICs referring to an entity and its associated entities of various classes (categories three and
four of the classification according to the restricted data model elements, Subsection 3.1.1.4),
leaving out constraints that restrict single entity’s attributes and operations of entities. Only

49

Chapter 3 Categories of Integrity Constraints

SICs on relations between the entities of a single or of two entity classes are considered.
A further limitation is that only implicitly modelled binary relations are considered.
Relations that are explicitly specified in the data model are restricted by key and relationship
constraints. An implicit relation can be deduced from the corresponding attributes of the
involved entities. A typical example of such implied relations are topological relations (Figure
2.2) between spatial entities (Egenhofer and Herring, 1990). Usually they are not explicitly
stored since they can be derived from the geometries of the involved entities. All examples
of class relations and SICs given in the following chapters base on the binary topological
relations between areal entities shown in this figure. However, the defined class relations
(Chapter 4) can also be combined with any other instance relation.

The consistency of the constraints themselves has to be separately checked for the constraints
of each of the SIC subclasses. Not all relations and constraint categories allow for the ap-
plication of the reasoning methodology introduced in the following chapters. To enable for
reasoning on the SICs (Chapter 5) the applied relations must be part of a limited JEPD
set of relations. Most qualitative spatial relations meet this requirement. Some more de-
tailed requirements on logic properties of the relations are analysed later. Clementini and
Felice (2000) presented general requirements for spatial operators usable in database query
languages. In particular requirements like expressiveness, a small number of operators in the
set, consistency, generality, hierarchical structure, linguistic and cognitive soundness, quali-
tativeness and the support of uncertainty are valid for the relations used for the definition of
SICs.

50

Chapter 4

A Framework for the Formal Definition of

Semantic Integrity Constraints

Most existing approaches for a formal definition of semantic integrity constraints (SICs)
(Werder, 2009) are either very specific, since they rely on a certain property such as the
topological relation between two entities, or they make use of specifically defined checking
procedures, and the SICs are, therefore, not interoperably exchangeable. None of the ap-
proaches investigates the logical properties of the SICs and considers the logical soundness as
a requirement on the formalisation. For the examination of the internal consistency of sets of
SICs this is a prerequisite. This chapter illustrates the importance of cardinality descriptions
for such logically sound SIC definitions and introduces a corresponding set of 17 class relations
(Mäs, 2007a,b), which can be used for SIC formalisation and reasoning.

4.1 Instance-Level vs. Class-Level Relations

Integrity constraints (ICs) are defined at the level of entity classes, since they always restrict
entire classes or subsets of classes and not (exclusively) single instances. This means the ICs
must hold for all instances of the restricted classes. When a database is checked against a
spatial SIC, the checking procedure examines spatial relations between the involved instances.
Thus a formalised description of such a SIC must be linked to the instance relation(s) which
the quality checking procedure applies. The previous chapter provides examples of such
relations for all proposed categories. In the literature, formal definitions of SICs are (following
the natural language) mostly based on instance relations, whereas cardinality restrictions are
often not or only incompletely considered (Ubeda and Egenhofer, 1997; Mäs et al., 2005b).
However, as the following example illustrates, the very instance relations are not suitable for
SIC formalisation. A natural language statement about two instances could be:

“house #12 is inside of parcel #1234”.

51

Chapter 4 A Framework for the Formal Definition of Semantic Integrity Constraints

This is a simple statement about two entities that are related by the spatial relation inside.
Since inside is the converse relation of contains (Section 2.4.1), the statement also implies:

“parcel #1234 contains house #12”.

A corresponding SIC for the entity classes building and parcel could be:

“buildings are inside of a parcels”.

Applying the converseness of the instance relation again, it becomes:

“parcels contain buildings”.

These statements can be mistaken, since they should be understood as “every building is
inside of some parcel”, but NOT as “every parcel contains a building”. This example shows
the influence of words like “all” or “some” on the semantic of a statement. They define car-
dinality restrictions on the applied relation. For a human reader it is often possible to grasp
the correct semantics, but a formal description of such a statement must explicitly contain
cardinality information. This example shows that instance relations alone cannot unambigu-
ously represent the semantic of statements about classes. A relation among the classes is
not subject to the same logical properties as a relation between instances and the cardinality
information must be considered for reasoning. Thus, a logically sound formalisation of such
statements requires specific class relations. Donnelly and Bittner (2005) also identified this
problem and proposed an approach for the definition of relations between classes (in this work
called class relations). Tarquini and Clementini (2008) confirm the suitability of these class
relations for the SIC definition. The following section reviews this solution for an application
for SIC definitions and, in particular, reasoning on them. Some class relations do not define
violable restrictions on the involved classes and are, therefore, not applicable as SICs. Fur-
ther, some additional cardinality properties of class relations, which have not been considered
by Donnelly and Bittner, are pointed out. Based on that, a new set of class relations, which
particularly supports the logical reasoning on SICs, is defined in Section 4.3.

4.2 Cardinality Properties of Class Relations

Cardinalities express the number of elements of a set. Class relations define a cardinality
restriction for a certain relation between the individuals of one or more classes. Therefore,

52

4.2 Cardinality Properties of Class Relations

it must be ensured that the classes conform to the following two requirements. Firstly, the
involved classes must have at least one instance, that is, empty classes are not feasible. Since
class relations are linked to individual relations, the second condition specifies that if a class
relation is defined there must exist at least one corresponding individual relation among the
instances of the classes involved. The investigations of this thesis are restricted to binary
relations defined between entity classes. Relations between three or more classes, or between
subsets of classes (e.g., blue houses as a subset of the class house), are not considered.

In the following definitions the lowercase letters x, y and z denote variables for instances or
individuals. Every instance must belong to an entity class. For entity classes capital letters
A, B and C are used as variables. Inst(x, A) means individual x is an instance of class
A. The function r(x, y) means instance x has the relation r to instance y; x and y are said
to participate in the relationship instance r. The meta-variable r can stand for any binary
relation between instances (e.g., a topological relation) or for a disjunction of such relations.
The validity of the binary relation depends on the properties of the instances (e.g., for spatial
relations the geometry of the instances). Instance relationships can be associated with a class
relation R. For class relation definitions R<cp>(A, B) denotes that R relates the classes A

and B. The meta-variable R can stand for any class relationship. Every R is related to an
instance relation r or a disjunction of instance relations.6 If a class relation R<cp>(A, B)
is defined, at least one r must exist between the instances of A and B. The placeholder
< cp > stands for the cardinality properties of the class relation. Based on these variables
and functions Donnelly and Bittner (2005) define the following class relations:

RD&B
some (A, B) := ∃x∃y (Inst(x, A) ∩ Inst(y, B) ∩ r(x, y)) . (4.1)

RD&B
all−1(A, B) := ∀x (Inst(x, A)⇒ ∃y(Inst(y, B) ∩ r(x, y))) . (4.2)

RD&B
all−2(A, B) := ∀y (Inst(y, B)⇒ ∃x(Inst(x, A) ∩ r(x, y))) . (4.3)

RD&B
all−12(A, B) := RD&B

all−1(A, B) ∩RD&B
all−2(A, B). (4.4)

RD&B
all−all(A, B) := ∀x∀y (Inst(x, A) ∩ Inst(y, B)⇒ r(x, y)) . (4.5)

The relation RD&B
some (A, B) (Equation 4.1) holds if at least one instance of A stands in relation

r to some (at least one) instance of B. RD&B
some (A, B) relations are very weak, but nevertheless

useful, for example, when class relations are defined in an ontology. SICs, which are only
based on such relations, are not expedient, since they only specify that a relation universally
exists, but without concrete cardinalities. Within a data set, the relation is in principle
possible, but does not necessarily occur within the modelled part of reality. This means that
a data set, which is usually representing parts of the reality, can either contain instances

6Disjunctions of all instance relations of an exhaustive set are invalid.

53

Chapter 4 A Framework for the Formal Definition of Semantic Integrity Constraints

that have the relation or it does not contain such instances; both cases are conform to the
SIC. Since a violation against constraints which are only specifying RD&B

some (A, B) relations is
impossible, such relations are not useful for quality assurance. A violation becomes possible
if RD&B

some (A, B) relations are specified in conjunction with a defined set of entities, like, for
example, a relation r holds for some entities of A and B within a certain area (possibly defined
by an individual entity of C). Therefore, the constraint is violable by the subsets of A and B

and useful for quality assurance. However, since the definition of such subsets can be manifold
and complex, the analysis is here restricted to binary relations between entire entity classes,
leaving out subsets of classes.

The relation RD&B
all−1(A, B) (Equation 4.2) holds if every instance of A has the relation r

to some (at least one) instance of B. In set theory, such relations are called left-total.
This class relation can be used to define the SIC of the parcels and buildings example:
INSIDED&B

all−1(Building, Parcel) specifies the inside relation for all buildings, but it does
not include all parcels.

The relation RD&B
all−2(A, B) (Equation 4.3) holds if for each instance of B there is some (at

least one) instance of A that stands in relation r to it. This means that every instance of B

has the converse relation of r to some instance of A. RD&B
all−2(A, B) is right-total / surjective,

like for example CONTAINSD&B
all−2(Parcel, Building).

The relation RD&B
all−12(A, B) (Equation 4.4) combines the definitions of the Equations (4.2)

and (4.3). It holds, if every instance of A stands in relation r to at least one instance of B

and if for each instance of B there is at least one instance of A, that stands in relation r to
it. R is left-total and right-total. An example SIC is CONTAINSD&B

all−12(Country, Capital),
which specifies that every country has a capital and, conversely, every capital is contained in
a country.

As these examples show, the differentiation of class relations according to the totality of the
involved individuals of the entity classes is useful for the definition of SICs. The class relations
define constraints on all individuals of A (Equation 4.2), all individuals of B (Equation 4.3)
or on all individuals of both arguments A and B (Equation 4.4). In data modelling such
definitions are called participation constraints on the relation (Elmasri and Navathe, 1994).
They specify whether the existence of an entity depends on its relation to another entity via
the relationship type. Equations 4.2 - 4.4 define total participation constraints on their
relationship instances, since at least one of the classes is totally affected. RD&B

some (A, B) defines
a partial participation constraint, since not necessarily all instances of the classes A and B

have the relationship instance.

A specific case of RD&B
all−12(A, B) is defined by the RD&B

all−all(A, B) relation (Equation 4.5), which
holds if all instances of A have a relationship instance of R to all instances of B. This relation

54

4.2 Cardinality Properties of Class Relations

is very strong, since it defines restrictions on all relations between the individuals of the argu-
ments A and B. The corresponding SICs are strongly restrictive, but useful when, for instance,
no instances of two classes are allowed to intersect: DISJOINTD&B

all−all(Streets, Lakes).

Beside the total participation constraint, the RD&B
all−12(A, B) relationship defines a so-called

cardinality ratio constraint, which specifies the number of relationship instances in which
an entity can / has to participate (Elmasri and Navathe, 1994). In this case the number of
B entities (i.e., “all” instances of B) defines in how many relationship instances r each entity
of A participates, and vice versa.

In data modelling, total participation and cardinality ratio constraints are well established,
for example when using an ERD notation. In such models a total participation is represented
by a double line for the relation and cardinality ratio for example by a N:1 next to the relation
signature (Figure 4.1). In this example, all buildings are restricted to be contained by only
one parcel, while the parcels are allowed to contain an imprecisely defined number (positive
integer) of buildings.

Figure 4.1: Total participation and cardinality ratio constraints in an ERD

Since this cardinality ratio cannot be specified with the class relations of Donnelly and
Bittner (2005), the SIC between buildings and parcels is only imprecisely represented by
CONTAINSD&B

all−2(Parcel, Building). This shows that for a sufficient representation of SICs
cardinality ratio constraints are indispensable.

Figure 4.2: Dependencies between Donnelly and Bittner’s class relations

55

Chapter 4 A Framework for the Formal Definition of Semantic Integrity Constraints

For the purpose of this work, another disadvantage of Donnelly and Bittner’s approach is that
their class relations are not pairwise disjoint. Since some of the class relations imply others
(Figure 4.2) and none of them excludes one of the others, it is impossible to define SICs which
are in conflict. Thus, a set of class relations with more expressive power is required.

The set of class relations that is used in this thesis is based on four basic cardinality prop-

erties (Equations 4.6 - 4.9), which refer to the specific properties of binary relations (Section
2.4.1). These cardinality properties define the intrinsic restrictions of the cardinalities (Mäs,
2007a,b).

LT (A, B, r) := ∀x (Inst(x, A)⇒ ∃y(Inst(y, B) ∩ r(x, y))) . (4.6)

RT (A, B, r) := ∀y (Inst(y, B)⇒ ∃x(Inst(x, A) ∩ r(x, y))) . (4.7)

LD(A, B, r) := ∀x, y, z(Inst(x, A) ∩ Inst(y, B) ∩ Inst(z, A) ∩

r(x, y) ∩ r(z, y)⇒ x = z) ∩ Ex(A, B, r). (4.8)

RD(A, B, r) := ∀x, y, z(Inst(x, A) ∩ Inst(y,B) ∩ Inst(z, B) ∩

r(x, y) ∩ r(x, z)⇒ y = z) ∩ Ex(A, B, r). (4.9)

Ex(A, B, r) := ∃x∃y (Inst(x, A) ∩ Inst(y, B) ∩ r(x, y)) . (4.10)

The cardinality properties LT (A, B, r) and RT (A, B, r) (Equations 4.6 and 4.7) define a
totality for the class A and B, respectively. These properties correspond to the left-total and
right-total class relations of Donnelly and Bittner (Equations 4.2 and 4.3).

LD(A, B, r) and RD(A, B, r) (Equations 4.8 and 4.9) define cardinality properties, that repre-
sent the concept of unambiguousness as a typical cardinality ratio constraint. Class relations
that hold LD(A, B, r) are left-definite and specify that for no instance of B there is more
than one instance of A, that stands in relation r to it. This property restricts the number of
r relations in which an instance of B can participate; the instances of A are not restricted.
The last term ensures that at least one instance relation r exists between the instances of
A and B (Equation 4.10). RD(A, B, r) specifies that no instance of A participates in a re-
lationship r to more than one instance of B. When this cardinality property is defined in
a class relation, all instances of A are restricted, while the instances of B are not affected.
The corresponding class relations are right-definite. Figure 4.3 shows the representation
of the four cardinality properties in ERDs. In general, the number of different cardinality
ratio constraints of such a notation is infinite. Thus, it is impossible to represent them all by
separate cardinality properties. The unambiguousness cardinality ratio constraints have been
chosen here, because they are commonly used for the definition of SICs and other cardinality
restrictions such as (0..2) are relatively rare. Therefore, it can be assumed that this set of
cardinality properties can precisely represent the majority of the SICs used in practice.

56

4.3 Definition of a Set of Class Relations

Figure 4.3: ERDs of the four cardinality properties

4.3 Definition of a Set of Class Relations

The four cardinality properties defined in the previous section are independent of each other
so that no property implies or precludes one of the other properties. If a class relation is
only defined as right-total (e.g., Equation 4.3) there is no information about its left-totality
and the cardinality ratio. For the formal definition of SICs this situation is insufficient,
since they base on combinations of the cardinality properties as well as their negations. For
example the SIC in Figure 4.1 is based on the topological instance relation contains and the
cardinality properties left-definite and right-total. The other two properties are invalid and
should, therefore, be excluded. An investigation of all possible combinations of cardinality
properties leads to the following categorisation:

• four class relations where one property is valid and the corresponding other three are
excluded;

• six class relations where two properties are valid and the other two are excluded;

• four class relations that combine three of the four defined cardinality properties respec-
tively and exclude the corresponding fourth;

• one class relation where all four properties are valid; and

• one class relation where none of the four properties is valid.

RLD(A, B) := LD(A, B, r) ∩ ¬RD(A, B, r) ∩ ¬LT (A, B, r) ∩ ¬RT (A, B, r). (4.11)

RRD(A, B) := ¬LD(A, B, r) ∩RD(A, B, r) ∩ ¬LT (A, B, r) ∩ ¬RT (A, B, r). (4.12)

RLT (A, B) := ¬LD(A, B, r) ∩ ¬RD(A, B, r) ∩ LT (A, B, r) ∩ ¬RT (A, B, r). (4.13)

RRT (A, B) := ¬LD(A, B, r) ∩ ¬RD(A, B, r) ∩ ¬LT (A, B, r) ∩RT (A, B, r). (4.14)

57

Chapter 4 A Framework for the Formal Definition of Semantic Integrity Constraints

Equations 4.11 to 4.14 specify class relations that are either left-definite, right-definite, left-
total or right-total. The corresponding other cardinality properties are excluded. An example
SIC is “all floodplains overlap with at least one stream”: OV ERLAPLT (Floodplain, Stream)
(Figure 4.4a).

Figure 4.4: Example scenes for the SICs between the classes a) floodplain and stream and b) parcel
and building

As shown in the figure the constraint is left-total, because all floodplains are overlapping a
stream. Right-definite, left-definite and right-total must be excluded, because a floodplain
can overlap with more than one stream (e.g., floodplain 1), a stream can have more than one
floodplain (e.g., stream 2) and streams (e.g., stream 3) do not necessarily have a floodplain.

RLD.RD(A, B) := LD(A, B, r) ∩RD(A, B, r) ∩ ¬LT (A, B, r) ∩ ¬RT (A, B, r). (4.15)

RLD.LT (A, B) := LD(A, B, r) ∩ ¬RD(A, B, r) ∩ LT (A, B, r) ∩ ¬RT (A, B, r). (4.16)

RLD.RT (A, B) := LD(A, B, r) ∩ ¬RD(A, B, r) ∩ ¬LT (A, B, r) ∩RT (A, B, r). (4.17)

RRD.LT (A, B) := ¬LD(A, B, r) ∩RD(A, B, r) ∩ LT (A, B, r) ∩ ¬RT (A, B, r). (4.18)

RRD.RT (A, B) := ¬LD(A, B, r) ∩RD(A, B, r) ∩ ¬LT (A, B, r) ∩RT (A, B, r). (4.19)

RLT.RT (A, B) := ¬LD(A, B, r) ∩ ¬RD(A, B, r) ∩ LT (A, B, r) ∩RT (A, B, r) ∩

¬RLT.RT−all(A, B). (4.20)

Equations 4.15 to 4.20 combine pairs of the four defined cardinality properties and exclude
the corresponding others. For example, Equation 4.17 can be used to define the SIC between
parcels and buildings: CONTAINSLD.RT (Parcel, Building) (Figure 4.4b). The constraint
is left-definite and right-total, since all buildings are within exactly one parcel. The other
cardinality properties are excluded, because parcels are not restricted. A special case in this

58

4.3 Definition of a Set of Class Relations

group is Equation 4.20, which also excludes RLT.RT−all(A, B).

RLT.RT−all(A, B) := ∀x∀y (Inst(x, A) ∩ Inst(y,B)⇒ r(x, y)) . (4.21)

Equation 4.21 is equivalent to Donnelly and Bittners relation RD&B
all−all(A, B) (Equation 4.5).

RLT.RT−all(A, B) is left-total and right-total and holds if all instances of A have a relationship
instance of R to all instances of B. This constraint is very restrictive and, therefore, highly
useful for the definition of SICs. RLT.RT−all(A, B) is a specific case of RLT.RT (A, B). Thus it
has been excluded in Equation 4.20 to achieve a set of pairwise disjoint relations.

RLD.RD.LT (A, B) := LD(A, B, r) ∩RD(A, B, r) ∩ LT (A, B, r) ∩ ¬RT (A, B, r). (4.22)

RLD.RD.RT (A, B) := LD(A, B, r) ∩RD(A, B, r) ∩ ¬LT (A, B, r) ∩RT (A, B, r). (4.23)

RLD.LT.RT (A, B) := LD(A, B, r) ∩ ¬RD(A, B, r) ∩ LT (A, B, r) ∩RT (A, B, r) ∩

¬RLT.RT−all(A, B). (4.24)

RRD.LT.RT (A, B) := ¬LD(A, B, r) ∩RD(A, B, r) ∩ LT (A, B, r) ∩RT (A, B, r) ∩

¬RLT.RT−all(A, B). (4.25)

Equations 4.22 to 4.25 combine three of the cardinality properties and exclude the corres-
ponding fourth. Particular attention must be given to class relations, that are left-total and
right-total (Equations 4.24 and 4.25). In case only one instance of A or B exists, left-total and
right-total class relations are always left-definite or right-definite, respectively. Furthermore,
they also hold for Equation 4.21. Thus, it is necessary to separate the relations 4.24 and 4.25
from 4.21, which is done by the exclusion of RLT.RT−all(A, B). Consequently, the relations
RLD.LT.RT (A, B) and RRD.LT.RT (A, B) are impossible if class A or class B has only one
instance. An example SIC is CONTAINSLD.LT.RT (Airport, AirportTower), which specifies
that every airport contains at least one airport tower and every airport tower is contained
in exactly one airport (Figure 4.5a). Right-definite is excluded, because some airports (e.g.,
airport 1) have more than one airport tower.

RLD.RD.LT.RT (A, B) := LD(A, B, r) ∩RD(A, B, r) ∩ LT (A, B, r) ∩RT (A, B, r) ∩

¬RLT.RT−all(A, B). (4.26)

Equation 4.26 specifies class relations, that are left-definite, right-definite, left-total and right-
total (bijective, Section 2.4.1). Again RLT.RT−all(A, B) is excluded to distinguish the rela-
tion from 4.21 for the case that A and B have only one instance. In this case the relation
cannot occur. RLD.RD.LT.RT (A, B) can for example be used to specify that every country

59

Chapter 4 A Framework for the Formal Definition of Semantic Integrity Constraints

Figure 4.5: Example scenes for the SICs between the classes a) airport and airport tower and b)
country and capital

contains exactly one capital and conversely: CONTAINSLD.RD.LT.RT (Country, Capital)
(Figure 4.5b).

Rsome(A, B) := ¬LD(A, B, r) ∩ ¬RD(A, B, r) ∩ ¬LT (A, B, r) ∩ ¬RT (A, B, r) ∩

Ex(A, B, r). (4.27)

Equation 4.27 is defined for the situation that none of the four cardinality properties is valid,
but nevertheless some instances of A stand in relation r to some instances of B7. Rsome(A, B)
is similar to Equation 4.5 of Donnelly and Bittner, but while their definition contains all other
defined class relations, these are now excluded. Rsome(A, B) is defined as not left-total and
not right-total, which implies that some instances of A and B participate in a relation r

to an instance of B and A and some do not. Furthermore the exclusions of LD(A, B, r)
and RD(A, B, r) specify that some A and some B participate in a relation r to at least two
instances of B and A. Hence Rsome(A, B) is only valid for two classes with more than two
instances each. Since Rsome(A, B) does not specify concrete cardinalities, it is relatively weak.
All cardinalities from “2” till “all − 1” are valid for both classes. Therefore, it is a relatively
imprecise representation of all SICs that the other 16 class relations do not cover.

Together, Equations 4.11 to 4.27 specify 17 class relations that can be combined with any
binary instance relation to associate classes. All relations are pairwise disjoint and the set
is jointly exhaustive if the applied instance relations are part of a JEPD set. With the ex-
ception of Rsome(A, B), all of these relations specify restrictions, that can be used as SICs
for quality assurance of the data. Subsequently relations, that are not linked to a particu-
lar instance relation are referred to as abstract class relations (e.g., RLD.RD.LT (A, B)).
Only relations that incorporate a concrete instance relation are called class relations (e.g.,

7This was one of the preconditions for class relations, mentioned earlier in this chapter.

60

4.3 Definition of a Set of Class Relations

DISJOINTLD.RD.LT (A, B)). An example for each of the abstract class relations is given in
Figure 4.68.

Figure 4.6: Examples of the 17 abstract class relations

Figure 4.6 shows example constellations for the instances of A and B and the instance relation
r. Class relations neither specify the exact number of instances of the classes nor the exact
arrangement of the instance relations.

8The order of the relations in this figure results from their conceptual neighbourhood (Chapter 5). The
numbers of the relations are used for their identification in this work.

61

Chapter 4 A Framework for the Formal Definition of Semantic Integrity Constraints

All 17 class relations can also be based on disjunctions of instance relations, for example:

[MEET ∪DISJOINT]LT.RT−all(Airport, Forest).

This class relation specifies that all airports either meet or are disjoint from each forest.9

Similar to the instance relations it is also possible to define disjunctions of class relations

if the knowledge about the relation of two classes is not unique. Such disjunctions combine
multiple class relations, while only one of them is valid (logical XOR), for example:

DISJOINTLT.RT−all(A, B) ∪MEETLT.RT (A, B).

Depending on the relations, it is possible to define more than one class relation between two
classes, even if the applied instance relations are part of the same JEPD set of relations. For
example, for the classes watermill and stream it could be useful to define that every watermill
must overlap with a stream:

OV ERLAPRD.LT (Watermill, Stream).

A second SIC between these classes could supplement that all watermills and streams either
overlap or are disjoint (this excludes all other instance relations of the set).

[OV ERLAP ∪DISJOINT]LT.RT−all(Watermill, Stream).

Nevertheless the possibilities of such combinations of class relations are limited if they are
based on instance relations that are part of a JEPD set of relations. For example, if
RLT.RT−all(A, B) (relation #17) is defined, no second RLT.RT−all(A, B) relation and no class
relation based on other instance relations of that domain are possible between the two classes.
However, this points out a major difference to the instance relations, where only one relation
of a JEPD set can be valid for two instances.

A negation of class relations is infeasible with this formal description and it does not seem
practically relevant. Some approaches enable the definition of “forbidden” relations between
instances (Ubeda and Egenhofer, 1997) in SICs, for example:

“roads and lakes are not allowed to intersect”.

9A disjunction of instance relations like for example meet(a, b) ∪ equal(a, b) corresponds to the logical XOR,
that means either meet(a, b) or equal(a, b) is valid. If a class relation is based on a disjunction of instance
relations this disjunction corresponds to the logical OR. In the example meet and/or disjoint relations are
valid between airport and forest entities.

62

4.4 Summary

Such forms of negation are also infeasible with this approach. Nevertheless it is possible to
express these constraints if the instance relation is part of a JEPD relation set. In such sets,
a negation of a relation always corresponds to another relation or a disjunction of relations.
For the example, this would be disjoint instead of not intersect:

“roads and lakes are disjoint”.

This appears to be advantageous when considering aspects of human spatial cognition as
people have more difficulties in reasoning with negated spatial relations (Schleipen et al.,
2007).

4.4 Summary

The set of 17 abstract class relations enables the definition of class relations based on any bin-
ary instance relation. Typical applications of class relations are ontologies of classes (Donnelly
and Bittner, 2005) and SICs (Tarquini and Clementini, 2008). For GI, class relations are of
particular interest, because a semantic description of such data requires class relations, that
base on spatial instance relations, such as topological or metric relations. The interoperable
exchange of data of different domains and application areas requires semantic descriptions of
the data. Class relations are useful for the formalisation of these descriptions. The logical
properties of the class relations support an automatic processing, querying and comparing of
such descriptions.

The set of abstract class relations is a qualitative representation of all (infinitely many)
possible constraints. Only SICs, that base on the four cardinality properties (Equations 4.6
- 4.9) or RLT.RT−all(A, B) (Equation 4.21) can precisely be defined. Such notations as ERDs
are more expressive with regard to the cardinality ratio constraints. However, the reasoning
concepts, investigated in the next chapter, require a discrete set of abstract class relations.
Also, it is assumed that the introduced set of abstract class relations can precisely represent
a majority of the SICs used in practice.

Compared to other approaches of SIC formalisation (Section 2.3) the advantages of class rela-
tions are their logical soundness, their independence of a specific set of instance relations, the
relatively high expressiveness and extensibility. The representation of SICs as class relations is
clearer and more obvious for users than a representation in logical languages (Hadzilacos and
Tryfona, 1992). A transformation of class relations into other formalisation formats is possible
if the spatial relations and the logical expressions used for the definition of the cardinality
properties and abstract class relations (negation ¬, universal and existential quantifiers ∀ and
∃, conjunction ∩, disjunction ∪ and membership of instances to a class) are supported.

63

Chapter 5

Reasoning Properties of Class Relations

This chapter investigates the logical properties of the set of 17 class relations. It is not an
exhaustive analysis; only the required properties with regard to the purpose of this work
are considered. These are the restrictions on the number of instances, the symmetry, the
composition and the conceptual neighbourhood of class relations. The set of 17 abstract
class relations is independent of concrete instance relations. Thus, it appears to be useful to
separately analyse the reasoning properties of the abstract class relations and those of the
instance relations, instead of researching a high number of class relations, that combines the
two. The findings on the reasoning properties of the abstract class relations can be flexibly
used in combination with any kind of instance relation.

5.1 Correlation Between the Number of Instances and the

Feasibility of Class Relations

Class relations do not specify a concrete number of instances for the related classes. Never-
theless, some of the relations constrain the number of instances.

For most entity classes the number of existing individuals is unknown or variable. For these
classes a dependency between class relations and the number of individuals of a class is
irrelevant. However, for classes with a small and well-defined number of individuals the
designer of a data model is in many cases aware of these numbers. Such classes are, for
example, earth surface or continents. Another example is the class capital, which can only
have one instance, if the area of interest is restricted to a single country and a fixed time.
Knowledge about these numbers should be considered when SICs are defined and for the
reasoning on class relations.

Some class relations are invalid if one or both involved classes have less than three instances.
If both classes have one instance, only class relations based on RLT.RT−all(A, B) (#17) are

65

Chapter 5 Reasoning Properties of Class Relations

Table 5.1: Restrictions of the number of instances of the abstract class relations

Abstract
Class
Relation

Minimal
Required
Instances

Comparison
Number of
A and B

Abstract
Class
Relation

Minimal
Required
Instances

Comparison
Number of
A and B

A B A B

1.RLD.RD 2 2 - 10.RRD.RT 3 1 A > B + 1

2.RLD 2 3 - 11.RLT 2 3 -

3.RRD 3 2 - 12.RRT 3 2 -

4.Rsome 3 3 - 13.RLD.RD.LT.RT 2 2 A = B

5.RLD.RD.LT 1 2 A < B 14.RLD.LT.RT 2 3 A < B

6.RLD.RD.RT 2 1 A > B 15.RRD.LT.RT 3 2 A > B

7.RLD.RT 2 2 - 16.RLT.RT 2 2 -

8.RRD.LT 2 2 - 17.RLT.RT−all 1 1 -

9.RLD.LT 1 3 A + 1 < B

possible. If the first class A has one instance, the only possible abstract class relations are
RLD.RD.LT (A, B) (#5), RLD.LT (A, B) (#9) and RLT.RT−all(A, B) (#17). If the second class
B has one instance, only RLD.RD.RT (A, B) (#6), RRD.RT (A, B) (#10) and RLT.RT−all(A, B)
(#17) are allowed. Table 5.1 shows for all 17 abstract class relations the minimal required
instances.

The definition of class relations can also be restricted if the number of instances is more than
three. If the number of instances of one of the classes is known, some abstract class relations
allow for conclusions about the number of instances of the other class. There are seven
abstract class relations that define such a proportion between the instances of the two classes
(Table 5.1). This is also of interest if a SIC is defined for a single class (i.e., A = B). Since
this implies that the number of instances is equal for both classes, only RLD.RD.LT.RT (A, A)
(#13) is consistent, while the other six proportion restricting abstract class relations are
impossible.

The number of instances can also restrict the possible combinations of class relations between
two classes. For example, if exactly two instances of A exist, not more than two class relations
based on RLD.RT (A, B) (#7) can be defined for one set of JEPD instance relations. A third
RLD.RT (A, B) relation would require at least one more instance of A.

66

5.2 Reasoning on the Symmetry of Class Relations

5.2 Reasoning on the Symmetry of Class Relations

Donnelly and Bittner (2005) have studied the transfer of logical properties of instance relations
to class relations, such as their symmetry, transitivity and reflexiveness. This section deepens
the analysis of the symmetry properties of the class relations.

Spatial relations between instances are usually either symmetric or have a well-defined con-
verse relation. The symmetry properties of the class relations can be derived from the sym-
metry of the applied instance relations and the cardinality definitions of the abstract class
relations. The converse of a class relation bases on the converse of the applied instance rela-
tion. If an abstract class relation is left-total / left-definite the converse relation is right-total
/ right-definite, and vice versa. The relations Rsome (#4) and RLT.RT−all (#17) are symmet-
ric. Table 5.2 summarises this correlation between symmetry properties of instance relations
and those of the corresponding class relations. Therefore, the following symbols are defined:

ri Converse instance relation of r.

Ri Converse class relation of R.

The following examples demonstrate the derivation of converse class relations. The class
relations base on the symmetric instance relation overlap and the converse relations contains

and inside:

(OV ERLAPRD.LT (Watermill, Stream))i := OV ERLAPLD.RT (Stream, Watermill).

(CONTAINSLD.LT.RT (Airport, A.Tower))i := INSIDERD.LT.RT (A.Tower, Airport).

The examples show that not all class relations are symmetric, even if they are based on
symmetric instance relations. However, based on the cardinality properties it can be proven
that if an instance relation is symmetric or has a converse relation, there exists a converse
relation for each of the corresponding class relations.

Table 5.2: Symmetry properties of the class relations

Individual
Relation r
is...

Class Relation R is...

left-
definite

right-
definite

left-
total

right-
total

Rsome RLT.RT−all

symmetric R right-
definite

R left-
definite

R right-
total

R left-
total

Rsome RLT.RT−all

not symmetric Ri right-
definite

Ri left-
definite

Ri right-
total

Ri left-
total

Ri
some Ri

LT.RT−all

67

Chapter 5 Reasoning Properties of Class Relations

5.3 Composition of Class Relations

The composition of binary relations enables the derivation of implicit knowledge about a triple
of entities. If two binary relations are known, the corresponding third one can potentially
be inferred, or at least some of the possible relations can be excluded. The composition
as a mathematical operation and the application with spatial instance relations has been
elucidated in Section 2.4. A transfer of this reasoning formalism to the class level is very useful
for the work with SICs and other applications of class relations. In general, the composition
of class relations depends on the composition of instance relations. It is essential that the
applied instance relations belong to the same set of JEPD relations and this set allows for
compositions at the instance level. Using, for example, the 17 abstract class relations together
with the 8 topological relations between regions (Figure 2.2) would result in 136 topological
class relations and almost 18500 compositions. Since such an amount of compositions is
rather inconvenient, a two-level reasoning formalism has been proposed (Mäs, 2007b), which
separates the compositions of the abstract class relations from those of the instance relations.
Thus the composition of the abstract class relations can be defined independently of a concrete
set of instance relations. Figure 5.1 illustrates how the overall composition of class relations
can be derived from the two levels.

Figure 5.1: Two-level composition of class relations

The composition of instance relations is not further researched in this work. The following
examples refer to the composition table of the topological relations between areal entities
(Table 2.1).

68

5.3 Composition of Class Relations

The 17 abstract class relations have 289 compositions. Only some of them can be derived
here, but the following three examples demonstrate the general inference approach and the
application of the two-level composition.

The first example derives the composition for the introductory application scenario 1 (Chapter
1.1), which defines SICs between the entity classes airport, forest and airport tower. It was
claimed that if the first two of the following constraints are defined, the third is inherently
included and, therefore, redundant:

• Airports and forests are either disjoint or meet.
(corresponds to [MEET ∪DISJOINT]LT.RT−all(Forest, Airport))

• Every airport contains at least one airport tower. Every airport tower is contained by
an airport.
(corresponds to CONTAINSLD.LT.RT (Airport, AirportTower))

• Forests and airport towers are disjoint.
(corresponds to DISJOINTLT.RT−all(Forest, A.Tower))

This situation is shown in the ERD in Figure 5.2. With the two class relations between forest
and airport and airport and airport tower given, the relation between the entity classes forest
and airport tower can be derived. A possible arrangement of instance relations, which is
consistent to the given SICs, is schematically represented in the left part of Figure 5.3. The
arrows represent instance relations, while the cycles show instances of the different classes.

Figure 5.2: ERD of the SICs between the entity classes forest, airport and airport tower

69

Chapter 5 Reasoning Properties of Class Relations

Figure 5.3: Possible arrangement of instance relations defined by the class relations between the
classes forest / airport and airport / airport tower (left) and their composition (right)

In Figure 5.3 all forest instances have the same instance relation r1 (meet ∪ disjoint) to
all airport instances. All instance relations between the two classes are constraint and it is
impossible to add a further arrow between these classes in the schema. Further, all airport
instances have an r2 instance relation (contains) to at least one airport tower.

To infer the composition of the abstract class relations, every possible triple of forest, airport
and airport tower instances has to be separately analysed. Whenever the relation r1 between
the forest and the airport and the relation r2 between the airport and the airport tower is
given, the relation r3 (or a disjunction of possible instance relations) between the forest and
the airport tower instances can be inferred. For example, since forest f1 is related to airport
a1 and airport a1 is related to airport tower t1, the relation between f1 and t1 can be deduced
through composition (Table 2.1):

meet ∪ disjoint(f1, a1) ; contains(a1, t1)⇒ disjoint(f1, t1).

The combination of the inferences of all possible triples of instances leads to the abstract class
relation between the classes forest and airport tower. For the example in Figure 5.3, each
forest instance is related to every airport tower instance via at least one airport instance.
Therefore, all forests must have the same instance relation r3 to all airport towers. Thus the
composition of the abstract class relations must be (right box of Figure 5.3):

R1LT.RT−all(Forest, Airport) ; R2LD.LT.RT (Airport, A.Tower)⇒
R3LT.RT−all(Forest, A.Tower).

70

5.3 Composition of Class Relations

The combination of the compositions of the two levels results in:

[MEET ∪DISJOINT]LT.RT−all(Forest, Airport) ;

CONTAINSLD.LT.RT (Airport, A.Tower)⇒
DISJOINTLT.RT−all(Forest, A.Tower).

This result corresponds to the originally given SIC between forests and airport towers and
the redundancy in the triple of SICs is proven for the arrangement shown in Figure 5.3. For
these abstract class relations it is obvious, that the derived composition is independent of the
number of instances and the relative arrangement of the instance relations. This means that
the composition of the given abstract class relations will always lead to the same result.

The demonstrated two-level composition leads only to meaningful results if the composition
of the instance relations does not result in a universal disjunction U . Otherwise no inference
is possible.

The 17 abstract class relations have 289 possible compositions. Many of them have differing
results, depending on the number of instances of the three classes and the relative arrangement
of the instance relations (Figure 5.4).

Figure 5.4: Influence of the relative arrangement of instance relations on the composition of the
abstract class relations

The two boxes at the top of Figure 5.4 show possible constellations of the compositions of the
R1LT.RT (A, B) and R2LT.RT (B, C) relations (#16). They only differ in an instance relation

71

Chapter 5 Reasoning Properties of Class Relations

between the classes B and C: in the left upper box the instances b1 and c2 are related, whereas
in the right upper box b2 and c1 are related. The number of instances of both classes, the
abstract class relations and the total amount of instance relations, are equal. Nevertheless
this difference leads to different compositions. For the left constellation the relation between
the instances a2 and c1 cannot be inferred and the composition is R3LT.RT (A, C) (#16). The
right constellation allows for a deduction of all four instance relations between A and C and
thus the composition is R3LT.RT−all(A, C) (#17). Since the abstract class relations do not
provide any information about the relative arrangement of the instance relations, none of the
two results can be excluded. Thus the composition of the given abstract class relations is the
disjunction of all possible results (logical XOR):

R1LT.RT (A, B) ; R2LT.RT (B, C) ⇒ R3LT.RT (A, C) ∪R3LT.RT−all(A, C).

RLT.RT (#16) defines total participation constraints and excludes the unambiguousness car-
dinality constraints left-definite and right-definite for the involved classes (Equation 4.20).
Thus, the composition of two such class relations will always lead to class relations that are
again left-total and right-total and some of the instances of both classes will have more than
one of the corresponding instance relations. Since only RLT.RT (#16) and RLT.RT−all (#17)
fulfil this requirement, their disjunction is the exhaustive result of this composition.

Some compositions of abstract class relations have constellations in which no triple of instances
with r1 and r2 relations exists and thus no inference for any r3 is possible. The third example
(Figure 5.5) shows that the composition of R1some(A, B) (#4) and R2LD(B, C) (#2) is such
a case.

Figure 5.5: Composition of abstract class relations, which leads to a universal disjunction

The abstract class relations of the example define that some, but not all, instances of A and B

are related by an instance relation r1 and some, but not all, instances of B and C are related
by r2, while there is no C with more than one r2 relation. This does not imply that a triple

72

5.3 Composition of Class Relations

of A, B and C instances exists that includes both instance relations r1 and r2 (Figure 5.5).
While the situation in the left box allows for a deduction of the instance relations between
a1, a2 and c1, c2, there is no inference possible for the arrangement of instance relations
shown in the right box. Therefore, the composition of the class relations leads to a universal
disjunction UU (A, C) of all possible abstract class relations and instance relations:

R1some(A, B) ; R2LD(B, C) ⇒ UU (A, C).

This means that, based on the composition for the two given class relations, no implicit
information can be deduced.

These examples show that the composition of the defined abstract class relations and the
separation into two composition levels is possible. Nevertheless, a continuation of the manual
analysis of all 289 possible compositions in such a way is hardly accomplishable. Even the
automatic calculation of the overall composition table is complex and costly. Class relations
neither specify the exact number of instances of the classes nor the exact arrangement of
the instance relations. The defined abstract class relations require an analysis of all possible
arrangements of instance relations for up to six instances for each of the three classes. If
both classes of one relation have six instances than approximately 68,7 billion arrangements
are possible. Each of these has to be separately analysed with all possible arrangements of
the second relation. An analysis of classes with seven or more instances does not lead to
additional results in the composition. With some heuristics, the calculation can be further
optimised. The overall composition table is shown in Table 5.3 (Mäs, 2008).

Some of the compositions can be summarised by general rules, which deduce the composition
results directly from the cardinality properties. This allows for a more convenient use of the
composition. Some relatively obvious rules are:

• If the first abstract class relation is not right-total and the second relation is not left-total
the composition is always a universal disjunction UU (A, C).

• If the first relation is R1LD.RD.RT (A, B) (#6) and the second is not left-total the com-
position is equal to the second abstract class relation.

• If the first relation is R1LD.RD.RT (A, B) (#6) and the second is left-total the composition
has the same cardinality properties as the second relation, but it is not left-total. For
R2LT.RT−all(B, C) (#17) this can be relation #6, #7, #10 or #12.

• If the first relation is not right-total and the second is R2LD.RD.LT (B, C) (#5) the
composition is equal to the first abstract class relation.

• If the first relation is right-total and the second is R2LD.RD.LT (B, C) (#5) the compos-
ition has the same cardinality properties as the first relation, but it is not right-total.
For R1LT.RT−all(A, B) (#17) this can be relation #5, #8, #9 or #11.

73

Chapter 5 Reasoning Properties of Class Relations

Table 5.3: Composition table of the 17 abstract class relations (Mäs, 2008)

74

5.3 Composition of Class Relations

• If one of the relations is RLD.RD.LT.RT (#13) the composition is always equal to the
corresponding other abstract class relation. Because of this property RLD.RD.LT.RT

can represent the identity relation of classes if it is combined with an identity instance
relation, for example EQUALLD.RD.LT.RT (A, A).

• If the first relation is R1LT.RT−all(A, B) (#17) and the second is right-total the compos-
ition is always R3LT.RT−all(A, C).

• If the first relation is left-total and the second is R2LT.RT−all(B, C) (#17) the compos-
ition is always R3LT.RT−all(A, C).

The compositions that are defined by these rules, are highlighted in grey in Table 5.3. A set
of rules that completely represents the composition table is the subject of further research
and not investigated here.

For the abstract class relations and their compositions the properties of a relation algebra
(Tarski, 1941) have been computationally checked. Some properties of the presented compo-
sition of abstract class relations are:

• The converse of a converse relation is equal to the original relation: (Ri)i = R.

• All compositions with the identity relation (#13) are idempotent:

R ; RLD.RD.LT.RT ⇒ R.

RLD.RD.LT.RT ; R ⇒ R.

• The converse of a composition is equal to the composition of the converses of the two
relations in reverse order:

(R1 ; R2)i = R2i ; R1i.

• The associative property and the semiassociative property (Maddux, 1982) are not valid.
The associative property holds if the compositions do not have different conclusions
from two different reasoning paths. The semiassociative property proves if one of these
reasoning paths produces a subset of the relations derived from the other one (Rodŕıguez
and Egenhofer, 2000). Since the composition is neither associative nor semiassociative,
the composition of the abstract class relations is nonassociative.

(R1 ; R2) ; R3 = R1 ; (R2 ; R3).

R ; (U ; U) = (R ; U) ; U .

Although the composition of class relations allows for some inferences about triples of class
relations, a final conclusion requires a consideration of the conceptual neighbourhood of the
class relations. The reasons for this are demonstrated in the following section.

75

Chapter 5 Reasoning Properties of Class Relations

5.4 Conceptual Neighbourhood of Class Relations

The conceptual neighbourhood represents continuous transformations between relations by
linking relations that are connected by an atomic change. The conceptual neighbourhood
of instance relations has been studied in Section 2.4. The conceptual neighbourhood of
class relations has been introduced by Mäs (2008). In this approach, two class relations are
considered as conceptually neighboured if they are linked to the same instance relation (or
disjunction of instance relations) and they differ only in a single instance relation between
two entities. The number of instances of the classes is considered fixed. In Figure 5.6 the
conceptual neighbourhood of the class relations RLD.RD (#1) and RRD (#3) is exemplarily
illustrated. All arrows symbolise one instance relation of the same kind r. In the example,
the addition of a further instance relation between the instances a2 and b1 in the right box
leads to a transition of the class relation from RLD.RD to RRD. An addition of an instance
relation between other instances could also lead to other transitions.

Figure 5.6: Conceptual neighbourhood between RLD.RD and RRD

Figure 5.7 shows some of the possible transitions of the class relation if further instance
relations are added to the class relation of the previous example. If an instance relation r is
added to RRD (#3), possible transitions are to RRD.LT.RT (#15) or to RRT (#12) (Figure
5.7 - 2a and 2b). This shows that some class relations have several conceptual neighbours.
Continuing the example, an r addition to RRD.LT.RT or to RRT can lead in both cases to
an RLT.RT (#16) class relation (Figure 5.7 - 3). The addition of another instance relation
r to RLT.RT does not lead to a class relation transition. Thus the RLT.RT class relation is
a conceptual neighbour of itself. If two r are added to the shown RLT.RT relation it finally
becomes RLT.RT−all (#17) (Figure 5.7 - 4).

The 17 class relations have 45 conceptual neighbourhoods. Additionally nine class relations
are conceptual neighbours of themselves (Table 5.4). The computation of all conceptual neigh-
bourhoods between the defined class relations requires an analysis of all possible arrangements

76

5.4 Conceptual Neighbourhood of Class Relations

Figure 5.7: Conceptual neighbourhood between RRD, RRD.LT.RT , RRT , RLT.RT and RLT.RT−all

of instance relations for up to four instances for both classes. A higher number of instances
does not lead to additional results.

Since the conceptual neighbourhood is defined through the addition or removal of a single
instance relation, all neighbourhoods are directed. Table 5.4 represents the neighbourhoods
which result from an addition (‘+’) and those which result from a removal (‘−’). The symbol
‘±’ marks class relations that are conceptual neighbours of themselves. If an addition or
removal of an instance relation has changed a class relation it is impossible to get the same
class relation again by further adding / removing of instance relations. The addition of
instance relations ultimately leads to a RLT.RT−all (#17) class relation. A removal leads to
RLD.RD (#1).10

The numbering of the abstract class relations has been chosen such that for all class relations
the relations, that result from an addition, have a higher number and all converse relations are
successive. Because of this order, all “removal neighbourhoods” appear in the lower triangle,
while all “addition neighbourhoods” are in the upper triangle in Table 5.4.

The following example illustrates the practical use of the conceptual neighbourhood of class
relations. Three class relations are defined for the classes A, B and C: MEETsome(A, B)
(#4), CONTAINSLD.RD.LT.RT (B, C) (#13) and DISJOINTLT.RT (A, C) (#16). These re-
lations are analysed for conflicts through the comparison of the class relation composition

10Therefore both involved classes must have at least two entities (Table 5.1).

77

Chapter 5 Reasoning Properties of Class Relations

Table 5.4: Conceptual neighbourhood between the class relations: +/− corresponds to neigh-
bourhood through addition / removal of an instance relation

R(A, B) ; R(B, C) with the given third relation R(A, C). The compositions of the corres-
ponding instance and abstract class relations are:

meet(a, b) ; contains(b, c) ⇒ disjoint(a, c).

R1some(A, B) ; R2LD.RD.LT.RT (B, C) ⇒ R3some(A, C).

Thus, the combination of the compositions of the two levels results in:

MEETsome(A, B) ; CONTAINSLD.RD.LT.RT (B, C) ⇒ DISJOINTsome(A, C).

This result seems to be in conflict with the given third relation DISJOINTLT.RT (A, C).
Figure 5.8 exemplarily illustrates this situation. The left box shows the given class rela-
tions and the middle box the inferred relation between A and C. In comparison with this,
the right box shows that the given relation DISJOINTLT.RT (A, C) possibly differs from
DISJOINTsome(A, C) by only one disjoint instance relation (in this case a3 to c3). Thus
DISJOINTsome(A, C) and DISJOINTLT.RT (A, C) are conceptual neighbours. In Figure
5.8b the three disjoint instance relations of DISJOINTsome(A, C) are implied by the class

78

5.4 Conceptual Neighbourhood of Class Relations

relations A to B and B to C. The composition does not allow for any conclusion about
further relations between the instances of A and C. Also, it cannot be excluded that further
pairs of A and C instances are disjoint. Hence the composition of MEETsome(A, B) and
CONTAINSLD.RD.LT.RT (B, C) does not contradict DISJOINTLT.RT (A, C) and the given
triple of class relation is consistent. Beside DISJOINTLT.RT (A, C) (#16), also the dir-
ect conceptual neighbours of DISJOINTsome(A, C) (#4) DISJOINTLT (A, C) (#11) and
DISJOINTRT (A, C) (#12), and DISJOINTLT.RT−all(A, C) (#17) as a conceptual neigh-
bour of DISJOINTLT.RT (A, C) have no conflict.

Figure 5.8: Use of the conceptual neighbourhood for the composition of class relations

In general, a class relation R3 is not in conflict with a composition R1 ; R2⇒ R3∗ if R3∗ and
R3 base on the same instance relation r3 and the addition of further r3 instance relations to
R3∗ can lead to a transition to class relation R3. For this, the result of the composition R3∗

and R3 do not need to be direct conceptual neighbours. There can also be further class relation
transitions between the two class relations. Nevertheless the conceptual neighbourhood points
out which R3 class relations are valid, since it shows which transitions are possible for a certain
class relation R3∗.

Thus the check of conflicts in a triple of class relations consists of two steps: at first the
comparison of the composition of two relations with the given third. If they are equal,
the triple of relations is conform to the introduced composition of class relations and there
is no obvious conflict. If these two relations base on the same instance relation but have
different abstract class relations, the second step checks their conceptual neighbourhood as
described above. If the given third relation is not a corresponding conceptual neighbour of the
composition the triple of class relations is in conflict. If the composition and the third relation
base on different instance and abstract class relations they are not necessarily in conflict. In
this case some more complex rules have to be checked for the detection of conflicts. These
rules are discussed in the next chapter.

79

Chapter 5 Reasoning Properties of Class Relations

5.5 Summary

In this chapter the logical properties - the restrictions on the number of instances, the sym-
metry, the composition and the conceptual neighbourhood of the defined set of 17 class
relations have been investigated. The definitions and reasoning rules of the class relations
are described independently of a specific set of instance relations. The introduced two-level
composition of class relations allows for a separate analysis of instance relations and abstract
class relations. The overall reasoning formalism can be used with any spatial or non-spatial set
of instance relations. The only requirements imposed on the instance relations are that they
are part of a JEPD set of relations and have defined converse relations and compositions.

The calculation of the conceptual neighbourhood, and in particular the composition of the
class relations, is costly in terms of calculation time. For a standard PC in 2008 (3GHz CPU
and 2GB RAM), it takes approximately two months to calculate the compositions of the 17
class relations. If the set of class relations is extended, for example, by further cardinality
ratio constraints (e.g., 0..2), this will increase these calculation costs exponentially. Because
of this, further work should deal with the direct derivation of the reasoning properties of the
class relations from their cardinality properties. This will deepen the understanding of the
logics and support possible extensions by additional cardinality properties.

The described concepts separately analyse the reasoning properties of the abstract class re-
lations and those of the instance relations. However, some combinations of instance and
abstract class relations lead to conflicts that cannot be found in this way. For example, the
combination of EQUALLD.RT (A, B) (#7) and RLD.RD.LT.RT (B, C) (#13) is impossible (Fig-
ure 5.9). This is due to the specific identity properties of the equal instance relation and the
cardinality properties of the two abstract class relations.

Figure 5.9: Inconsistent combination of class relations

EQUALLD.RT (A, B) requires at least one instance of A that is equal to at least two instances
of B, because it is defined as not right-definite (Equation 4.17). Since equal is symmetric
and transitive this implies that the corresponding B instances are also equal (b1 and b2 in

80

5.5 Summary

Figure 5.9). Thus if one of these B instances has an instance relation to a C instance, the
other B must have the same relation to this C. This means that both Bs should have the
same instance relation to both Cs. This is in conflict with the RLD.RD.LT.RT (B, C) relation,
because this class relation is defined as left-definite and right-definite (Equation 4.26). A
general description of such conflicts is the subject of further research.

The following chapter shows how the described logics can be used to solve a class relation
CSP and to find conflicts in sets of class relations.

81

Chapter 6

Basics for Checking the Consistency of

Semantic Integrity Constraints

The previous two chapters discussed the formal definition of SICs through class relations
and their reasoning properties. The application of these reasoning techniques for checking
consistency in networks of binary relations is a constraint satisfaction problem (CSP). For
networks of instance relations, such a proof of consistency has been elucidated in Section 2.4.
The proof of consistency of class relation networks (i.e., sets of SICs) is similar, but mainly
because of the following two reasons more complex:

1. It is possible to define more than one class relation between two classes, even if the
applied instance relations are part of the same JEPD set of relations. Between instances
only one relation of a JEPD set can be defined.

2. The class relations themselves are more complex than instance relations. While it is
relatively simple to recognise if two instance relations are in conflict, such a comparison
of class relations is extensive.

In analogy to a CSP at the instance level, a CSP solution of class relation networks is combin-
ing the proof of node, arc and path consistency, which is investigated in the following section.
The subsequent sections provide rules and conditions for the detection of redundancies, con-
flicts and possible restrictions of class relations. These rules have to be checked during the
CSP solution. Altogether, this enables to cope with the higher complexity of class relations.

6.1 Constraint Satisfaction Problems in Class Relation Networks

In a consistent network of JEPD relations, the following three conditions are fulfilled: node
consistency, arc consistency and path consistency. This section investigates how the reasoning
properties of class relations, researched in the previous chapter, provide the basis for checking
these three consistency requirements in networks of class relations.

83

Chapter 6 Basics for Checking the Consistency of Semantic Integrity Constraints

6.1.1 Node Consistency in Class Relation Networks

For instance relation networks, node consistency is ensured, if every node has an identity
relation. For class relation networks this means that every class must have a relation to
itself. This identity class relation bases on the corresponding identity instance relation, for
example equal when using the topological relations of Figure 2.2. The selection of the abstract
class relation depends on whether or not the instance identity relation fulfils the identity

criterion (Guarino, 1999) for this class:

rid
A := ∀x, y(Inst(x, A) ∩ Inst(y,A) ∩ r(x, y)) ⇒ x = y. (6.1)

This means that rid
A holds for a class A if and only if there is no identity relation r between

two different instances of A. Parcels are a typical example of a class for which the topological
identity relation equal holds the identity criterion. If two parcel instances are equal then
they also have the same geometry and the same identity. If the identity criterion holds for a
class A and an instance identity relation r, the identity class relation is RLD.RD.LT.RT (A, A)
(#13), for example for parcels EQUALLD.RD.LT.RT (Parcel, Parcel) (Figure 6.1a).

Figure 6.1: Identity class relations for the classes parcel and shipping container

Shipping containers are a counterexample of a class for which equal does not hold the identity
criterion. Since two such containers can be on top of each other, they can be topologically
equal in a two dimensional representation so that the identity criterion is not fulfilled for this
relation. The identity class relation is, therefore, either based on the abstract class relation:

• RLD.RD.LT.RT (A, A) (#13) if no container instances are on top of each other (corres-
ponds to Figure 6.1a),

84

6.1 Constraint Satisfaction Problems in Class Relation Networks

• RLT.RT (A, A) (#16) if some but not all container instances are on top of each other
(Figure 6.1b), or

• RLT.RT−all(A, A) (#17) if all container instances are on top of each other (Figure 6.1c).

At the level of the entity classes it is impossible to make an assumption on how many instances
are on top of each other. Thus, the topological identity class relation for shipping containers
is the disjunction of the three class relations:

EQUALLD.RD.LT.RT (C, C) ∪ EQUALLT.RT (C, C) ∪ EQUALLT.RT−all(C, C).

Whether an instance identity relation fulfils the identity criterion for a class, cannot be de-
termined automatically. It should be part of the class definition in the conceptual data
schema.

6.1.2 Arc Consistency in Class Relation Networks

A network of relations is arc consistent if every edge of the network has an edge in the reverse
direction, that is, every relation has a converse relation. It has been shown in Section 5.2
that, if an instance relation is symmetric or has a converse relation, there is also a converse
relation for each of the corresponding class relations.

6.1.3 Path Consistency in Class Relation Networks

For the proof of path consistency, the compositions of all possible node triples must be checked.
Therefore, the two-level composition of the class relations (Section 5.3) can be used. The
algorithm that checks the path consistency in class relation networks is similar to the one
described in Section 2.4.3 for instance relation networks. It also consists of three procedures.
The differences to the procedures at the instance level mainly result from the higher complexi-
ty at the class level. In particular, the detection of conflicts is more complex. While at the
instance level an empty intersection of two relations detects an inconsistency, such a simple
operation is not feasible at the class level. Because of this, the detection of conflicts and
redundancies is now only executed in the first of the three procedures. This ADD procedure
inserts a new relation rij of the entities i and j to the set of relations N , which contains all
known relations. The procedure is also called, when class relations, derived through symmetry
or composition, are added to the network.

85

Chapter 6 Basics for Checking the Consistency of Semantic Integrity Constraints

1 To ADD rij

2 begin

3 OK ← true;

4 For each relation [rij]a of N do

5 . begin

6 . If (rij = [rij]a)
7 . then begin

8 . check Redundancy;

9 . OK ← false;

10 . end;

11 . If (rij 6= [rij]a)
12 . then begin

13 . If (rij is in conflict with [rij]a)
14 . . then begin

15 . . If (restricted rij is not in conflict with [rij]a)
16 . . then begin

17 . . ADD(restricted rij);

18 . . OK ← false;

19 . . end;

20 . . If (rij is not in conflict with restricted [rij]a)
21 . . then begin

22 . . remove [rij]a from N;

23 . . ADD(restricted [rij]a);
24 . . end;

25 . . If (restricted rij is not in conflict with restricted

. . [rij]a)
26 . . then begin

27 . . remove [rij]a from N;

28 . . ADD(restricted [rij]a);
29 . . ADD(restricted rij);

30 . . OK ← false;

31 . . end;

32 . . If (no consistent restriction is possible)

33 . . then begin

34 . . Inconsistency found;

35 . . OK ← false;

36 . . end;

37 . . end;

86

6.1 Constraint Satisfaction Problems in Class Relation Networks

38 . If (rij is not in conflict with [rij]a)
39 . . then begin

40 . . If ([rij]a is disjunction which contains rij)

41 . . then remove [rij]a from N;

42 . . If (rij is disjunction which contains [rij]a)
43 . . then OK ← false;

44 . . end;

45 . end;

46 . end;

47 If (OK)

48 then begin

49 add rij to N;

50 put pair <i,j> on Queue;

51 end

52 end;

Before the first class relation is inserted, all classes are related by ULT.RT−all(A, B). This
relation corresponds to the universal disjunction of the instance relations, which is defined
when the path consistency is checked at the instance level.

When the ADD procedure is called, the rij relation is separately compared with all known
relations between the entities i and j of the set of relations N . The variable a represents a
counter for these relations. Relations that are part of a class relation disjunction, are also
separately compared. The OK variable is initially set to true. If the comparison of relations
detects a conflict or a redundancy this variable is set to false to signalise that rij shall not
be added to N .

The procedure first checks whether the two relations rij and [rij]a are equal (lines 6−10),
which potentially indicates a redundancy. The detection of redundancies is discussed in
Section 6.2.

If the two compared relations are not equal, the procedure continues with checking whether
the relations contradict. The conditions that are analysed during this check (line 13) and a
comparison to the instance level, are elucidated in Section 6.3.

If a conflict is detected it is sometimes possible to further restrict one or both of the compared
relations to maintain a consistent set of class relations. This is tested in lines 15-31 of the
pseudo code. Some possible restrictions are listed in Section 6.4. If [rij]a is restricted it is
removed from the constraint set N . If a restricted relation shall be added to the constraint set,

87

Chapter 6 Basics for Checking the Consistency of Semantic Integrity Constraints

the ADD procedure is called recursively, because in order to assure consistency, the restricted
relation has to be compared again with all known relations. If none of the possible restrictions
leads to a consistent set of relations, an inconsistency is detected (lines 32-36).

Finally, if the two relations rij and [rij]a are not equal and do not conflict, but at least one
of them is a disjunction, it has to be assured that this relation does not contain the other.
If the new class relation rij is fully contained by a defined disjunction of class relations, the
disjunction is deleted and replaced by the new class relation (lines 40-41). Correspondingly,
if a new class relation disjunction is added, which fully contains a defined class relation [rij]a,
the disjunction is not added (lines 42-43). For example, MEETsome(A, B) is fully contained
in the disjunction MEETsome(A, B) ∪ INSIDELT.RT (A, B). Thus only MEETsome(A, B)
will remain in the set of class relations N .

If the OK variable still holds the value true after the comparison, the relation rij is added to
the set of class relations N (line 49). In this case the constrained pair of entities i, j is placed
in the queue for propagation (line 50).

1 To CHECKCONSISTENCY

2 While Queue is not empty do

3 begin

4 Get next <i,j> from Queue;

5 PROPAGATE(i,j);

6 end;

In analogy to the instance level CSP algorithm, the consistency check of the class relation set
is started by the CHECKCONSISTENCY procedure, which calls the PROPAGATE procedure as long
as there are entries in the queue.

The PROPAGATE procedure calculates the compositions of all [rij]a relations of the classes i

and j with all known relations. Firstly, it calculates the compositions of [rij]a and [rjk]b (lines
7-11) and then the compositions of [rki]c and [rij]a (lines 12-16) for all classes k. In contrast
to the corresponding procedure used at the instance level, the composition results are not
directly compared and added to the set of known relations N . For each composition result,
the ADD procedure is called, which then checks for conflicts, redundancies and restriction
possibilities, adds the consistent new relations to N and correspondingly puts the pair of
nodes i, k or k, j in the queue for further propagation.

88

6.2 Detection of Redundancies

1 To PROPAGATE i,j

2 begin

3 For each node k do

4 begin

5 . For each relation [rij]a of N do

6 . begin

7 . For each relation [rjk]b of N do

8 . begin

9 . newik ← [rij]a;[rjk]b ;

10 . ADD(newik);

11 . end;

12 . For each relation [rki]c of N do

13 . begin

14 . newkj ← [rki]c;[rij]a ;

15 . ADD(newkj);

16 . end;

17 . end;

18 end;

19 end;

6.2 Detection of Redundancies

A set of class relations contains a redundancy if an explicitly defined constraint can be de-
duced from the other explicit relations of the set. With the described algorithms, it is possible
to detect redundancies if an explicitly defined class relation can be directly derived through
symmetry or composition of other explicit class relations or the composition with their con-
verse relations. To accomplish this it is necessary to record whether a relation is explicitly
defined or the result of an identity, symmetry or composition inference. Compositions that
base on composition results, cannot directly point out redundancies, because the possibly
redundant relation might have been one of the originally composed relations. A solution of
this problem is to store which explicit relations have been involved in the deduction of an
implicit relation. Otherwise, it is impossible to detect all redundancies with the described
algorithms.

The aim of a redundancy-free set of relations can be extended towards the minimal subsets of
a class relation set, that is, a set with a minimal number of relations that completely contains
the knowledge of the overall set. Different approaches to calculate such minimal subsets for

89

Chapter 6 Basics for Checking the Consistency of Semantic Integrity Constraints

temporal interval relations have been researched (Rodŕıguez et al., 2004). For SICs as an
application of class relations such subsets are of particular interest, since they would enable
the minimisation of the number of SICs that have to be checked during quality assurance.
The calculation of such minimal subsets for instance relation sets is complex and a transfer to
the class level ambitious. Because of this, it is beyond the scope of this thesis and a subject
of future research.

6.3 Detection of Conflicts

A set of class relations is in conflict if the set is not realisable by a data set. This means
that there is no data set that fulfils all constraints, defined by the class relations. Such class
relation sets are logically inconsistent.

A conflict is found if a class relation is added to a defined set of relations and the relation is
in contradiction to an implicitly or explicitly defined class relation between the same classes.
Such a comparison of two class relations is more complex than the corresponding comparison
of (spatial) relations at the instance level. In an implementation of an instance relation
network, each relation can be represented by a vector of binary elements (Hernández, 1994).
The length of the vector corresponds to the number of possible relations. This number is
usually relatively small, as the relations are qualitative representations. Each element of the
vector is associated to one of the relations. If a vector element is set to true, this relation
is feasible for the two entities, otherwise the relation is excluded. The comparison of the
relations bases on the comparison operations of the vectors. Two relations are in conflict if
they relate the same entities without at least one vector element in common that is set to
true.

Such an approach is infeasible for class relations due to two reasons. First is the huge number
of different class relations. For example, the combination of the eight topological relations
of areal entities with the 17 abstract class relations yields 136 class relations. If all possible
12.869 disjunctions of the eight instance relations are considered more than 200.000 different
class relations can be defined. When the binary element vectors have such a size, their
handling and comparison is inefficient. The second reason is: the fact that more than one
valid class relation can be defined between two classes cannot be considered this way. Thus,
some explicit rules are required to allow for the comparison of class relations between the
same classes.

In the following some relatively obvious conditions on class relations that constrain the same
classes are listed. The prove of such rules has a great impact on the usefulness of the overall
algorithm. If the applied rule set is too weak, conflicts might not be recognised. On the other

90

6.3 Detection of Conflicts

hand, since the rules have to be checked whenever a class relation is added or changed in the
overall set, they are also affecting the calculation costs of the consistency check. The list of
conditions provided below is not necessarily exhaustive and can be extended if further rules
are derived. Tests with a prototypical implementation (Chapter 7) have shown that this set
of rules achieves considerable results.

The first group of conditions must be checked if class relations are defined for a single class
(R(A, A)). Every class can have, apart from the identity class relation, further class relations
to itself. These relations must fulfil the following conditions:

• A class relation based on the abstract class relations #5, #6, #9, #10, #14 or #15 is
infeasible as R(A, A). This results from the fact that, if a class relation is defined for
a single class, the number of instances is equal on both sides of the relation. This is
not conform to the restrictions on the proportion of the number of instances of the six
referred abstract class relations (Section 5.1).

• A class relation based on the abstract class relation RLD.RD.LT.RT (A, A) (#13) and an
instance identity relation cannot include further instance relations as a disjunction. All
instances of the class have an identity relation to themselves. At the class level this
is expressed, for instance, by EQUALLD.RD.LT.RT (A, A). A disjunction with another
instance relation also changes the abstract class relation. Thus a class relation, such as
[EQUAL ∪MEET]LD.RD.LT.RT (A, A) is impossible.

• Class relations that include an identity instance relation must be based on the abstract
class relations RLD.RD.LT.RT (A, A) (#13), RLT.RT (A, A) (#16) or on RLT.RT−all(A, A)
(#17). As defined by the previous condition, the combination of class relation #13
with an identity instance relation corresponds to the identity relations of all instances.
According to the conceptual neighbourhood of this abstract class relation (Section 5.4)
the inclusion of further instance relations leads to a transition to the abstract class
relations #16 or #17.

• Class relations based on the abstract class relation RLT.RT−all(A, A) (#17) must include
the identity instance relations, since it restricts all relations of the instances of the class
and, therefore, also the identity relations of the instances.

• If the instance relation (or disjunction of relations) of a R(A, A) class relation is symmet-
ric, the applied abstract class relation must also be symmetric. If such a class relation
is based on a non-symmetric abstract class relation the corresponding converse defines
different cardinality restrictions on the same instance relation. This is in conflict to the
original relation.

The second group of conditions must be fulfilled by all class relations that are added. The
conditions specify rules for the comparison of class relations that relate the same classes.

91

Chapter 6 Basics for Checking the Consistency of Semantic Integrity Constraints

• It is impossible to define two class relations for the same classes based on the same
instance relation (or the same disjunction of instance relations).

• If the instance relation (or disjunction of instance relations) of one class relation is fully
contained in the disjunction of instance relations of a second class relation between the
same classes, the transition of the former to the latter abstract class relation through the
addition of instance relations must be possible. This can be proven with the conceptual
neighbourhood of the abstract class relations.
For example, [MEET ∪COV ERS]LD.RD(A, B) (#1) is not in conflict with [MEET ∪
COV ERS ∪ OV ERLAP]LD.LT.RT (A, B) (#14), since an addition of overlap instance
relation(s) to RLD.RD(A, B) can lead to RLD.LT.RT (A, B). RLD.RT (A, B) (#7) would
not fulfil this requirement, for instance.

• There can only be one class relation between two classes based on RLT.RT−all (#17).

• An RLT.RT−all(A, B) (#17) class relation defines the possible instance relations for
the other class relations between these classes. For example, all class relations be-
tween A and B must be based on the instance relations meet or disjoint, if [MEET ∪
DISJOINT]LT.RT−all(A, B) is defined.

• If the number of instances of both constrained classes are known some proportion re-
stricting abstract class relations and some combinations of abstract class relations are
impossible (Chapter 5.1).

6.4 Restriction of Class Relations

A detected conflict needs not necessarily point out an inconsistency in the constraint set. If
two class relations have a conflict, it is sometimes possible to restrict one or both of them
further, to arrive at a consistent set of class relations. Two restriction possibilities must be
considered:

• If a class relation that is part of a new class relation disjunction is in conflict with a
defined class relation, the conflicting class relation is deleted from the disjunction. The
same happens, if the single class relation is added and the disjunction has been previ-
ously defined. For example, the first relation of the disjunction INSIDELT.RT−all(A, B)
∪ CONTAINSLT.RT (A, B) is in conflict with [MEET ∪CONTAINS]LT.RT−all(A, B).
Thus the relation is deleted from the disjunction and only CONTAINSLT.RT (A, B) and
[MEET ∪ CONTAINS]LT.RT−all(A, B) remain in the set of class relations.

• Some inconsistencies can be corrected by restricting the applied instance relations of one
of the conflicting class relations. For example [MEET ∪COV ERS]LT.RT−all(A, B) and
[MEET ∪ INSIDE]LT.RT (A, B) are in conflict with respect to the fourth condition of

92

6.5 Summary

the second group: the inside instance relation creates a conflict, because it is not con-
tained in the disjunction of instance relations of the RLT.RT−all(A, B) class relation. If
the second class relation is restricted to [MEET]LT.RT (A, B) it is still in accordance with
the original relation, and it is also consistent with the first relation. Similarly, the class
relation [MEET ∪ COV ERS]LT.RT (A, B) is also in conflict with the first relation, be-
cause it has the same instance relations (first condition of the second group). For a con-
sistent result it can be restricted to the [MEET]LT.RT (A, B)∪ [COV ERS]LT.RT (A, B)
class relation disjunction.

During the consistency check, a set of class relations is assumed to be consistent until a
conflict is found that cannot be corrected by one of these methods.

6.5 Summary

The introduced CSP algorithm enables the detection of conflicts and redundancies in networks
of class relations. In general, the algorithm is similar to the one discussed for the instance
relations. However, due to the higher complexity, the detection whether two relations between
the same classes are in conflict is more extensive.

The chapter provides a set of conditions for the detection of conflicts and redundancies. These
rules have a great impact on the usefulness of the overall algorithm. Due to unconsidered
conditions, conflicting class relations might pass without recognition. On the other hand, they
also influence the calculation time of a consistency check, since all rules have to be checked
for each entry in the set of known class relations.

The algorithm does not allow for a resolution of the detected conflicts. The constraint relax-
ation algorithms (Hernández, 1994) required for this are outside the scope of this work. In
general, it is useful to keep the origin of a class relation as metainformation, that is, if it is
explicitly defined, an identity relation or deduced through symmetry or composition. This
information can also help users to find the class relations which cause conflicts.

93

Chapter 7

Application

The proposed reasoning methodology has many applications. The following two sections
present the results and experiences of a prototypical implementation of the algorithm for
checking the consistency of SIC sets. In the third section, the resolution of the second appli-
cation scenario demonstrates the practical use of this implementation. Finally, some further
application areas are discussed.

7.1 Prototypical Implementation

The proposed algorithm for checking the consistency of sets of SICs has been implemented
as a plug-in extension of the ontology modelling and knowledge acquisition platform Protégé.
Protégé is a free, open source ontology editor and knowledge base framework. It implements a
rich set of knowledge modelling structures and actions that support the creation, visualisation,
and manipulation of ontologies in various representation formats. Protégé can be extended by
way of a plug-in architecture and a Java-based Application Programming Interface (API) for
building knowledge-based tools and applications.11 The SIC Checker Plug-in is implemented
as a so-called tab widget plug-in. This plug-in type allows for functionality and application
extensions, which appear on a new tab in the Protégé user interface. The user interface of
the SIC Checker Plug-in is discussed in the next section.

Figure 7.1 schematically illustrates the information exchange between the Protégé ontology
editor and the SIC Checker Plug-in. Protégé provides a Knowledge Base (KB), which contains
the specified concepts of the ontology. This KB is accessible for plug-ins via a Java API. The
SIC Checker Plug-in utilises the tree of the class concepts from the Protégé KB. A further
information exchange is currently not implemented. One of the reasons for choosing the
Protégé ontology editor as a basis platform for the implementation was the possibility to
combine the developed reasoning methodology with existing inference capabilities of Protégé
and to transfer the defined SICs back to the KB of the ontology editor for integration and

11http://protege.stanford.edu/ (last visited at 3th August 2009)

95

Chapter 7 Application

Figure 7.1: Information exchange between Protégé ontology editor and SIC Checker Plug-in

possibly storing in standard ontology languages like for example the Semantic Web Rule
Language (SWRL). This remains open for future work.

The SIC Checker Plug-in allows to specify SICs for the classes defined in the Protégé KB.
The SICs are stored in the Constraint KB, which is managed by the plug-in and separated
from the Protégé KB. The Constraint KB also contains the lists of relations for each set of
instance relations and the abstract class relations, references to the corresponding identity
relations and the symmetry and composition rules. Such an architecture with separated KBs
and reasoners can be used to overcome deficiencies in expressiveness and reasoning capabilities
in one of the system components (Grütter and Bauer-Messmer, 2007).

The SICs, which are entered into the Constraint KB originate either from user input or from
inference. Before a SIC of one of these sources is added to the Constraint KB the constraint
has to pass checking routines, which detect redundancies and conflicts with the SICs already
stored in the Constraint KB. These checking routines are described in Sections 6.2 and 6.3.
Possible restrictions of class relations, which are elucidated in Section 6.4, are only applied
on the inferred SICs. SICs, which are asserted by the user, are considered as fully consistent
and therefore not restricted.

The inference of SICs is based on the CSP solution of class relation networks, which has
been researched in Section 6.1. This allows inferring identity12 and converse relations, as well
as compositions of SICs. Reasoning on knowledge about the maximal number of existent
instances of the classes (Section 5.1) is not implemented in the prototype.
12For the prototype it is assumed that the instance identity relation fulfils the identity criterion (Equation

6.1) for all classes.

96

7.2 User Interface

7.2 User Interface

Figure 7.2 shows a user interface for the definition and consistency check of SICs between
two classes. Therewith the definition of a SIC, based on the defined class relations, consists
of four main steps (left part of Figure 7.2):

Figure 7.2: Screenshot of the user interface of the Protégé SIC Checker Plug-in

Firstly, the user selects the entity classes, which shall be restricted by the SIC. After the
selection, explicitly and implicitly defined SICs between these two classes are displayed in
the tables on the right side of the window. For the definition of spatial SICs the geometry
types of the entity classes must be known, because some spatial relations are only valid for
certain geometry types. Hence, the geometry types should be either known by the system
or can be read from available data model or schema information like UML models encoded
in XML Metadata Interchange (XMI) or Geography Markup Language (GML) application
schema documents. If there is no information about the geometry types of the entity classes
available or if some entity classes have more than one geometry, a corresponding listbox for
each entity class should be added to the interface. For the prototypical implementation,
only areal geometry types are considered. For non-spatial SICs, like for example temporal

97

Chapter 7 Application

constraints, the restricted attributes and the attribute type (e.g., temporal interval) must be
known or entered by the user. If the user knows of the maximal number of existent instances
of a class, he or she can enter them after the entity class selection. These input boxes are not
enabled in the user interface, since the reasoning algorithms, which check their consistency
(Section 5.1), have not been included in the prototypical implementation.

Secondly, the user selects the type of SIC he or she wants to define, for instance a topological
or directional spatial SIC or a non-spatial constraint such as a temporal SIC. These types are
classified according to the semantic domains of the instance relations (Chapter 3).

In the third step, the user selects one or more instance relations, which the class relation of the
desired SIC is based on. The assortment of instance relations, made available by the interface,
is adjusted to the geometry types (or attribute types of non-spatial SICs) of the entity classes
and the type of SIC, selected in the previous steps. As stated before, the geometry types of the
entity classes must be known, because, for example, the valid topological relations between
line entities differ from those between areal entities. Here a categorisation of topological
relations like the one given in (Egenhofer and Herring, 1990) for the region, line and point
geometries is necessary.

The fourth step is the selection of the cardinality properties of the class relation, which have
been introduced in Section 4.2. The class relation properties can be separately activated,
which is more convenient for the user than selecting one of the 17 defined class relations. To
ensure that the user inputs conform with the 17 class relations only check boxes which lead
to valid class relations are enabled. For example, the “some” check box is not enabled, if one
of the others is checked.

The final class relation results from the combination of the selected instance relation(s) and
the cardinality properties. The new SIC is added to the Constraint KB when the “Add
Constraint” button is pressed. The interface shown in Figure 7.2 contains the settings of
the example SIC, which defines an MEETLT relation between the classes alluvialforest and
stream. The same SIC is shown in the table of asserted constraints on the right top of the
figure.

The inference of implicit SICs is started when the user presses the “Check Constraint Set”
button. This enables to control the reasoning process, which is the main objective of the
prototype. For a realistic application it would be more reasonable to call the reasoning
algorithms directly when the SICs are defined by the user. This would enable to discover
inconsistencies as early as possible. The SICs, which have been derived for the selected
classes, are visualised in the table of inferred constraints on the right bottom of the figure.

Further buttons allow to clear the SIC input mask, and to modify and delete SICs from the
table of asserted constraints.

98

7.3 Harmonisation and Integration of Semantic Integrity Constraints

7.3 Harmonisation and Integration of Semantic Integrity

Constraints

The objective of this section is to illustrate the application of the developed reasoning al-
gorithms and the prototypical implementation in practice and to show, how results of the
inference can be interpreted. Therefore the issues of harmonisation and integration of SICs,
which have been addressed in the second application scenario (Section 1.2), are lead to a
solution. To recall the application scenario Figure 7.3 repeats its illustration.

Figure 7.3: Scenario for the harmonisation of spatial SICs (repetition of Figure 1.2)

In the scenario, a user wants to analyse the flooding risk of a particular area. To enable this
analysis the data has to conform to the following SIC:

• All floodplains must overlap with at least one stream.
(corresponds to OV ERLAPLT (Floodplain, Stream))

Two data providers offer the corresponding information about floodplains and streams for
the required region. The user downloads metadata of the two data sources. These include

99

Chapter 7 Application

the data schemas and the SICs, which have been checked during the quality assurance of the
data sets. The first data source offers data for the three entity classes floodplain, stream and
alluvial forest with the following SICs:

• All alluvial forests must be inside or covered by a floodplain.
(corresponds to [INSIDE ∪ COV EREDBY]RD.LT (AlluvialForest, F loodplain))

• All alluvial forests must meet with at least one stream.
(corresponds to MEETLT (AlluvialForest, Stream))

Similar the second data source offers three entity classes with the constraints:

• All nuclear power stations must be disjoint from all floodplains.
(corresponds to DISJOINTLT.RT−all(NuclearPowerStation, F loodplain))

• All nuclear power stations must meet with exactly one stream.
(corresponds to MEETRD.LT (NuclearPowerStation, Stream))

Based on this situation three questions have been raised in the introduction of this thesis,
which have to be answered to decide whether the data fit for the purposes of the user:

1. Are there implicit SICs defined within the two constraint sets?

The providers of both available data sets have not proven a SIC between the classes floodplain
and stream. Therefore it has to be checked, if the constraint sets of the data sources have
implicitly defined constraints between these classes. To deduce the constraints for the first
data source the two given SICs have to be entered into the Protégé SIC Checker Plug-in.
The process and results of the consistency check of these constraints are summarised in the
checking protocol shown in Figure 7.4. The proof of node consistency led to an insertion of
the three identity relations of the involved classes into the Constraint KB. During the proof
of arc consistency, the converse relations of the two given SICs have been inserted. The
composition inference during the proof of path consistency derived three implicitly defined
relations. One of them is between the required classes floodplain and stream. The checking
algorithm calculates all possible compositions of the asserted and inferred SICs. Only those,
which derived new knowledge, are listed in the checking protocol. The overall result of the
consistency check confirms, that the constraint set of data source one is (not surprisingly)
consistent.

The derived relation between the classes floodplain and stream is visualised in the table of
inferred SICs in Figure 7.5. This SIC is a disjunction of nine relations, which base on the
same disjunction of instance relations and differing abstract class relations. The disjunction
of instance relations is derived as follows (the first relation in the equation results from the
converse relation of the given SIC between alluvial forest and floodplain; Table 2.1):

contains ∪ covers(f1, a1) ; meet(a1, s1)⇒ meet ∪ contains ∪ covers ∪ overlap(f1, s1).

100

7.3 Harmonisation and Integration of Semantic Integrity Constraints

Figure 7.4: Protocol of the SIC consistency check of the first data source

Figure 7.5: Derived SIC for the classes floodplain and stream of data source one

101

Chapter 7 Application

The composition of the corresponding abstract class relations is (Table 5.3):

R1LD.RT (Floodplain, AlluvialForest) ; R2LT (AlluvialForest, Stream)⇒

R3LD(Floodplain, Stream) ∪R3some(Floodplain, Stream).

Figure 7.5 represents this result in the upper two rows of the disjunction. The other seven
relations of the disjunction result from the conceptual neighbourhood of the two directly
derived class relations. The reason, why these relations have to be included, is explained in
Section 5.4.

The disjunction of nine relations (Figure 7.5) shows that the two given SICs define a very
weak restriction of the relations between floodplain and stream instances. Because of that,
it is hardly possible for a human user to derive this constraint manually. Nevertheless, it is
possible that other SICs are in conflict with the derived disjunction. This issue is analysed
to answer the second question.

2. Is it possible to integrate the two data sets or are there explicit or implicit

SICs that contradict each other?

The inference of implicitly defined SICs of the second data source leads to comparable results,
such that there is no need of further discussion here and it is directly continued with the
integration of the constraint sets. An integration by means of the SIC Checker Plug-in will
discover contradictions and inequalities between the constraint sets. Differing SICs between
the common classes indicate different quality requirements of the two data sets. The differing
quality of the data sets might have to be aligned before the integration of the data. For the
integration, all four given constraints of the two data sources have to be entered into the
Protégé SIC Checker Plug-in. Figure 7.6 shows the protocol of the consistency check.

The protocol confirms that the SICs of the two data sources are not contradicting. Eleven
implicit relations, which have been derived during the path consistency check, have been
logged. Two times a constraint has been derived between the classes floodplain and stream
(and two times in reverse direction), one of them by a composition via the nuclear power
station class and the second via alluvial forest.

The derived SICs are shown in the table of inferred constraints in Figure 7.7. The table of
inferred SICs for the classes floodplain and stream contains two disjunctions. The upper one
is a disjunction of seven relations, all based on the same disjunction of five instance relations
and differing abstract class relations. This SIC is the composition result of the two given
constraints of the second data source:

DISJOINTLT.RT−all(Floodplain, NPS) ; MEETRD.LT (NPS, Stream)

102

7.3 Harmonisation and Integration of Semantic Integrity Constraints

Figure 7.6: Protocol of the consistency check of the SICs of both data sources

Figure 7.7: Derived SICs for the classes floodplain and stream of both data sources integrated

103

Chapter 7 Application

The second disjunction (which is not fully visible in Figure 7.7) equals to the one, which has
been directly derived from the SICs of the first data source (Figure 7.5). Each one of the
disjunctions can be derived from the constraints of one data source, independently of those of
the other. They are also not restricting each other (Section 6.4). This leads to a conclusion
regarding the quality requirements: the constraint sets of both data sources define weak
constraints between the classes floodplain and stream. Concerning the SICs an integration of
the two data sets is possible without any restrictions or required alignments of quality.

3. How does the integrated data fit to the user’s SIC and the planned analysis?

Finally, it has to be proven, if the integrated data meets the quality requirements of the user.
Therefore the given constraints of the two data sources and the SIC, required by the user,
have to be entered into the Protégé SIC Checker Plug-in and a consistency check has to be
conducted.

Figure 7.8: SICs of the integrated data sources and the user for the classes floodplain and stream

104

7.3 Harmonisation and Integration of Semantic Integrity Constraints

Again, this check does not discover any contradictions between the five SICs. However, the
overall inference has an influence on the inferred relations between the classes floodplain and
stream (Figure 7.8). The table of asserted constraints at the top of the figure contains the SIC
of the user. Two constraint disjunctions are inferred from the given five constraints, shown
in the lower table. The two disjunctions originate from the disjunctions inferred from the
integrated SICs (Figure 7.7), but are restricted to the relations, which are not contradicting
the user’s SIC. The reason of this restriction is: all relations of the original disjunctions
contain the overlap instance relation of the user’s SIC in their instance relation disjunctions.
Therefore, only relations based on abstract class relations, which are conceptual neighbours
of RLT through addition of instance relations are consistent (Sections 5.4 and 6.3 for a deriv-
ation). The remaining constraint disjunctions could also be fully restricted to the user’s SIC,
since both contain a relation, which bases on the instance relation overlap and the RLT

abstract class relation. However, since this conclusion is not unique, the constraints are not
automatically restricted by the plug-in. The user can remove such restrictable constraints
from the table view by selecting the “Reduced” choice box at the bottom of the window. All
together, this proves that the user’s SIC is more restricting than the inferred constraints.

The restriction of inferred constraints can be continued by defining an additional SIC, which
restricts all instance relations between floodplains and streams:

• All floodplains must overlap with or be disjoint from all streams.
(corresponds to [OV ERLAP ∪DISJOINT]LT.RT−all(Floodplain, Stream))

The result of the corresponding consistency check is shown in Figure 7.9: the inferred con-
straint disjunctions are completely restricted such that only the two explicitly defined SICs
remain between the classes floodplain and stream. This means that there is no additional
implicit knowledge available. The constraint set as a whole is nevertheless consistent.

To summarise the results of the second application scenario: it has been confirmed that it is
possible to integrate the constraint sets of both data sources without conflicts. Furthermore,
the integrated SICs of the two data sets and the SIC of the user can be combined to a single,
logically consistent set of constraints. The SIC of the user, which has to be hold by the
data to enable the flooding analysis, is more restricting than the inferred constraints of the
integrated sets. Thus it is advisable for the user to prove the SIC on the data to create a
(with respect to the SICs) harmonised data set.

This application scenario demonstrates the relevance of the developed reasoning methodology
for data integration and harmonisation in general. It enables to discover conflicts and quality
discrepancies through an analysis of the SICs independently of the actual data. Therewith
this part of the harmonisation can be conducted at the metadata level, without checking
single instances against the SICs. The only requirement is that the semantics of the common
entity classes of the data sets can be considered as similar. A survey of approaches, which
enable such similarity measure, can be found in (Schwering, 2008).

105

Chapter 7 Application

Figure 7.9: SIC tables of the classes floodplain and stream after checking the consistency of all six
given constraints

7.4 Further Application Areas

The two application scenarios (Sections 1.1 and 1.2) demonstrate the usefulness of the class
relation based reasoning methodology for quality assurance and integration and harmonisation
of spatial data. Some further application areas are:

Management of Spatial Semantic Integrity Constraints

In GIS applications, like for example in mapping agencies or utility companies, it is not
unusual to have sets of more than one hundred SICs to assure logical consistency. Accordingly,
the calculation effort of such a quality assurance is very high. Personal discussions with such
users affirmed, that there is a great demand for the management of SICs and therewith also
for the overall process of assuring logical consistency. The developed reasoning methodology
can support the management of SICs with consistency and redundancy checks if new SICs

106

7.4 Further Application Areas

are defined. Furthermore, it might be necessary to enable a versioning of constraint sets,
in particular if multiple parties are involved in the acquisition and management of the data
or parts of the data. The comparison of different SIC set versions facilitates the control of
its evolution and minimises the efforts of the quality assurance calculation, when parts of the
data are checked against an outdated version of the SIC set.

Geospatial Ontologies and Conceptual Data Modelling

The similarities and differences between ontologies and conceptual data models are well re-
searched (Spyns et al., 2002; Fonseca et al., 2003; Jarrar et al., 2003). SICs are part of both,
since they describe the semantics of the modelled concepts and specify integrity rules for
the data. An integration of SICs into geospatial ontologies supports information retrieval in
the so-called Geospatial Semantic Web (Egenhofer, 2002; Fonseca, 2008a) and ontology

based geospatial data integration (Fonseca, 2008b). The developed reasoning method-
ology can facilitate these processes as well as the proof of the internal consistency of the
ontological axioms.

Advanced database modelling tools like the one introduced in (Stoyanov and Harper, 2009)
support the development at all data modelling levels (Section 2.1) with a single software. This
allows for a tight synchronisation between the models of the different levels and an improved
communication between modellers, users and database architects. If such tools facilitate the
specification of SICs at the level of conceptual models they should also incorporate the check-
ing of internal consistency of the constraints and the proof of the mapping of the constraints
to the models at the implementing levels.

Semantic Similarity Measures

If the proposed algorithm is applied for ontology or data integration, it is a key requirement
that the concepts of common classes are known to be similar. If class names and attribute
definitions differ in the data models, this similarity might become difficult to determine. In
these cases, a semantic similarity analysis should be conducted. Such similarity measures
are usually based on a semantic distance or difference calculation, which takes the parts,
functions (i.e., affordances) and attributes of the class definitions as well as semantic interre-
lations between classes (is−a and part/whole relations) into account as distinguishing features
(Rodŕıguez et al., 1999; Rodŕıguez and Egenhofer, 2004). Schwering (2008) has given a review
of existing approaches to semantic similarity measurement.

The analysis of conflicts in sets of class relations could also serve as an extension to such
similarity measures. If, for example, an analysis of the SICs of two data sets shows contra-
dictions, the similarity measure of the concerning classes could be decreased. An approach
which considers such reasoning on class relations in a similarity analysis is unknown, but their
inclusion in future similarity measures has for example been claimed in (Schwering, 2006).

107

Chapter 7 Application

Usability Evaluation

The ISO defines usability (also called fitness for use) as the “extent, to which a product can be
used by specified users to achieve specified goals with effectiveness, efficiency and satisfaction
in a specified context of use” (ISO, 1998). The requirement to evaluate the usability of Web
accessible geodata with regard to a particular application led to a lively discussion in the
GI community about the existing quality and metadata describing standards. It has been
argued that the established quality elements (Section 2.2) would be producer centric and not
meaningful to assess the fitness of the data for a given purpose (Goodchild, 2007; Devillers
et al., 2007).

The resolution of the second application scenario in the previous section demonstrates a
usability evaluation based on a SIC, which specifies user requirements, and the SICs of the
available data sets. In general, if a specific application has quality requirements on the logical
consistency which can be specified as SIC, the proposed algorithm can be used to check the
usability of the data sets and to discover corresponding quality discrepancies. This serves to
evaluate the model quality with regard to a particular application.

108

Chapter 8

Discussion of Results

This dissertation presents a new approach to reasoning on relations among classes. It bases
on a qualitative description of cardinality restrictions, which has, to the best knowledge of
the author, nobody researched before. The work was motivated by the inability to compare
pairs of Semantic Integrity Constraints (SICs) and to find conflicts and redundancies in SIC
sets. Because of that, current GISs are not capable of recognising and handling inconsis-
tencies between different data sources and inconsistencies of the data with regard to user
requirements.

8.1 Summary of Contributions

Three major contributions are elaborated: (i) the categorisation of SICs, (ii) the framework
for the formal definition of SICs and (iii) the reasoning methodology for the detection of
conflicting and redundant SICs.

The proposed categorisation (Chapter 3) provides a basis for further work on the defin-
ition, formalisation, management and validation of internal consistency of SIC sets. The
classification distinguishes the constraints according to the involved types of conditions and
profoundly differentiates the properties and aspects restricted by SICs. The new concepts
extend the well-established classification of database ICs of Elmasri and Navathe (1994). A
particular focus has been laid on ICs, which restrict spatial properties and spatial relations.
ICs on temporal, geometric and topological primitives are considered as domain constraints.
Further on the categorisation distinguishes SICs according to the semantic domains of the
involved properties and relations. The categorisation should be considered as a starting point
for further discussion and refinement.

The framework for formal definition of SICs (Chapter 4) is based on a set of 17 abstract class
relations. This qualitative description of cardinality restrictions is novel. The definitions and

109

Chapter 8 Discussion of Results

reasoning rules of the class relations are described independently of a concrete set of instance
relations, which makes them applicable for many spatial and non-spatial relations. Main
advantages over the formalisation approaches listed in Section 2.3 are the consideration of
the cardinality definitions of the restricted (spatial) relations, the clear representation of the
cardinality restriction (e.g., in comparison to Object Constraint Language (OCL) definitions)
and their logical soundness. The interoperable exchange of data of different domains and
application areas requires semantic descriptions of the data. The proposed class relations are
useful for the formalisation of these descriptions. The logical properties of the class relations
support an automatic processing, querying and comparing of such descriptions. Nevertheless,
the scientific investigation of class relations and their applications is currently still in the early
stages.

With the introduced reasoning algorithm, it is possible to detect conflicts and redundancies in
sets of SICs, which has hardly been a research topic before. The overall reasoning algorithm is
based on the symmetry, composition and conceptual neighbourhood of class relations (Chap-
ter 5). The definitions and reasoning rules of the class relations are described independently
of a specific set of instance relations. The introduced two-level composition of class relations
allows for a separate analysis of instance relations and abstract class relations. Therewith the
overall reasoning formalism can be used with spatial or non-spatial sets of instance relations.
The conditions of this use have been elucidated: it is essential that the applied instance
relations belong to the same set of JEPD relations and that this set allows for reasoning
on symmetry and compositions. The application of these reasoning techniques for checking
consistency in networks of binary relations is a CSP. The procedures for the solution of the
CSP for class relations are similar but more complex than the corresponding procedures at
the instance level (Chapter 6). Main reasons for the higher complexity are the required rules
and conditions for the detection of redundancies, conflicts and possible restrictions of class
relations, and the fact, that multiple SICs can be defined between each pair of classes.

The prototypical implementation of the approach (Chapter 7) verifies the feasibility and
shows, how it can be integrated into the SIC definition workflow. As possible application areas
have been discussed: the quality assurance of geodata, geodata integration and harmonisation,
data modelling and ontology engineering, semantic similarity measurements and usability
evaluation. The illustrated use in the application scenario showed that working with the
tool is still complex and merely for experts, who have the required domain knowledge and
understanding of the SIC formalisation. Anyway, using the tool will not be an everyday task
and the provided support for the work with SICs is unprecedented.

110

8.2 Restrictions and Future Research Topics

8.2 Restrictions and Future Research Topics

A major progress for the quality assurance with SICs would be if a minimal set of SICs could
be determined. Such a set specifies all restrictions with a minimal number of SICs. This could
minimise the calculation costs of the quality assurance. With the proposed algorithm only
directly derived redundancies can be detected, which will not necessarily lead to a minimal
set. Rodŕıguez et al. (2004) researched different approaches to calculate such minimal sets
for temporal interval relations. A transfer of these methods to the class level would be of
high interest. A further contribution in this direction could be the consideration of the actual
calculation costs of checking a data set against a single SIC. These costs depend on the
checking operation, which corresponds to the spatial relation of the SIC, but also on the
number of instances in the data set. This would enable to detect cases, for which it is more
reasonable to check two instead of one SIC to minimise calculation costs.

Extensions of the reasoning methodology and an improvement of its practical applicability re-
quire research of the supported instance relations, abstract class relations and the inheritance
of class relations:

So far, the developed algorithm supports only binary instance relations. This could be ex-
tended towards ternary relations (e.g., a is between b and c) and relations between even more
instances. For a broader use, also combinations with unary relations are required. The use
of the introduced concepts is currently restricted by the unavailability of composition tables
for many of the spatial or non-spatial relations. Furthermore, at least composition tables
for topological relations between entities with simple and possibly different geometries, like
points or linestrings, must be established. The application of other spatial relations is mostly
hampered by the lack of a common understanding of their concepts. Moreover, the different
aspects of space are not independent of each other. To consider this when reasoning on class
relations, corresponding composition tables which contain the compositions of relations of
multiple spatial aspects and resolution, are required (for example, a is within b and b is south
of c).

This approach is restricted to binary relations between entire entity classes. Relations between
three or more classes or between subsets of classes are not considered. Further more, only
total participation and a cardinality ratio of 0..1 are included as cardinality properties of the
class relations. Nevertheless, this framework provides a basis, which can be extended for other
possibly more complex types of class relations. For an extension by further cardinality ratio
constraints (e.g., 0..2) it has to be considered, that this will increase the calculation costs of
the compositions exponentially. For an optimal usability and user guidance in implementing
software, research regarding the ability of users to work with cardinality restrictions while

111

Chapter 8 Discussion of Results

defining SICs should be conducted. This includes research on the cognitive plausibility of the
developed logics.

The class concepts described in data models or ontologies are hierarchically structured, usu-
ally. The subclasses inherit properties of their superclasses in the hierarchy. The inheritance
of SICs in class hierarchies has not been researched so far. Depending on the distinguishing
properties of a categorisation, not all SICs are directly inherited. Nevertheless, there are
obvious dependencies between super- and subclasses, which have to be formally described
and integrated into the developed algorithm. Similarly, complex SICs, which define spatial
relations between classes with restricted thematic attributes, can be considered. Since such
SICs are defining subsets of a class, the logics for checking consistency are comparable to a
subclass / superclass dependency.

Certainly, it cannot be expected that these extensions will lead to real practical applications
in the near future, but it will definitely be interesting and challenging to work in this relatively
untouched field of GI science.

112

Abbreviations and Acronyms

API Application Programming Interface
CSP Constraint Satisfaction Problem
DBMS Database Management System
DDL Data Definition Language
DI-9IM Dimensionally Extended 9 Intersection Model
DQWG Data Quality Working Group
ERD Entity Relationship Diagram
GI Geographic Information
GIS Geographic Information System
GML Geography Markup Language
IC Integrity Constraint
INSPIRE Infrastructure for Spatial Information in Europe
ISO International Organization for Standardization
ISO-TC211 ISO - Technical Committee 211
JEPD jointly exhaustive and pairwise disjoint
KB Knowledge Base
OCL Object Constraint Language
OGC Open Geospatial Consortium
RDF Resource Description Framework
RuleML Rule Markup Language
SDI Spatial Data Infrastructure
SIC Semantic Integrity Constraint
SQUIRL Spatial QUality and Integration Rules Language
SWRL Semantic Web Rule Language
UML Unified Modeling Language
XMI XML Metadata Interchange
XML Extensible Markup Language

I

List of Symbols

x, y, z Denote variables for individuals / instances. Every instance must belong
to a class.

A, B,C Denote variables for classes. Every class must have at least one instance.

Inst(x, A) Means individual x is an instance of class A.

r(x, y) Means instance x has the relation r to instance y; x and y are said to
participate on the relationship instance r. The meta-variable r can stand
for any binary relation between instances (e.g., a topological relation) or
for a disjunction of such relations. The validity of the binary relation
depends on the properties of the instances, for example for spatial rela-
tions the geometry of the instances. Every relationship instance r can
be associated with a class relation R (same letter as upper case).

R<cp>(A, B) Denotes that R relates the classes A and B. The meta-variable R can
stand for any class relationship. Every R is related to an instance relation
r (same letter as lower case) or a disjunction of instance relations. If a
class relation R<cp>(A, B) is defined at least one r must be existent
between the instances of A and B. The placeholder < cp > stands for
the cardinality properties of the class relation.

ri Converse instance relation of r

Ri Converse class relation of R

rid
A Denotes that the instance relation r fulfils the identity criterion (Equation

6.1) for the class A.

III

List of Symbols

r1 ∪ r2 Union / disjunction of the two instance relations

r1 ∩ r2 Intersection of the two instance relations

r1 ; r2 Composition / relative product of the two instance relations

R1 ∪ R2 Union / disjunction of the two class relations

R1 ∩ R2 Intersection of the two class relations

R1 ; R2 Composition / relative product of the two class relations

U Universal disjunction / universal relation of the corresponding set of
relations

:= Definition, for example R1 := ... can be read as “R1 is defined as ...”

⇒ Implication; for example R1 ⇒ R2 can be read as “if R1 then R2”

∀ Universal quantifier

∃ Existential quantifier

¬ Negation

IV

Bibliography

Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of the
ACM, 26(11):832–843. 24, 27, 30, 32, 42

Bartelme, N. (2005). Geoinformatik: Modelle, Strukturen, Funktionen (4th edition). Springer.
19

Becker, L., Ditt, H., Hinrichs, K., and Voigtmann, A. (1999). Constraints and triggers: a
method for ensuring data quality in an object-oriented geo database kernel. In GIS ’99:
Proceedings of the 7th ACM international symposium on Advances in geographic informa-
tion systems, pages 160–161. ACM Press. 12

Belussi, A., Negri, M., and Pelagatti, G. (2006). An iso tc 211 conformant approach to model
spatial integrity constraints in the conceptual design of geographical databases. In Roddick,
J. F., Benjamins, V. R., Cherfi, S. S.-S., Chiang, R. H. L., Claramunt, C., Elmasri, R.,
Grandi, F., Han, H., Hepp, M., Lytras, M. D., Misic, V. B., Poels, G., Song, I.-Y., Trujillo,
J., and Vangenot, C., editors, Advances in Conceptual Modeling - Theory and Practice,
ER 2006 Workshop CoMoGIS, Proceedings, volume 4231 of Lecture Notes in Computer
Science, pages 100–109. Springer. 23

Borges, K. A. V., Laender, A. H. F., and Clodoveu A. Davis, J. (1999). Spatial data integrity
constraints in object oriented geographic data modeling. In GIS ’99: Proceedings of the
7th ACM international symposium on Advances in geographic information systems, pages
1–6. ACM Press. 20, 23, 37

Bravo, L. and Rodŕıguez, M. A. (2009). Semantic integrity constraints for spatial databases. In
Arenas, M. and Bertossi, L., editors, Proceedings of the 3rd Alberto Mendelzon International
Workshop on Foundations of Data Management (AMW09), volume 450 of CEUR workshop
proceedings. RWTH Aachen. 12, 23

Brodeur, J. and Badard, T. (2008). Modeling with iso 191xx standards. In Shekhar, S. and
Xiong, H., editors, Encyclopedia of GIS, pages 705–716. Springer. 20

Casanova, M., Wallet, T., and D’Hondt, M. (2000). Ensuring quality of geographic data
with uml and ocl. In Evans, A., Kent, S., and Selic, B., editors, UML 2000 - The Unified
Modeling Language, Advancing the Standard, Third International Conference, Proceedings,
volume 1939 of Lecture Notes in Computer Science, pages 225–239. Springer. 23

Casanova, M., Wallet, T., and D’Hondt, M. (2001). Explicit domain knowledge model in
geographic information systems. In Proceedings of the Thirteenth International Conference
on Software Engineering & Knowledge Engineering (SEKE’2001), pages 331–340. 23

Cicerone, S. and Felice, P. D. (2004). Cardinal directions between spatial objects: the
pairwise-consistency problem. Information Sciences, 164(1-4):165–188. 45

Claramunt, C. and Jiang, B. (2001). An integrated representation of spatial and temporal
relationships between evolving regions. Journal of Geographical Systems, 3(4):411–428. 47

Clementini, E. and Felice, P. D. (1997). A global framework for qualitative shape description.
Geoinformatica, 1(1):11–27. 25, 46

Clementini, E. and Felice, P. D. (2000). Spatial operators. SIGMOD Record, 29(3):31–38. 50

V

Bibliography

Cockcroft, S. (1997). A taxonomy of spatial data integrity constraints. Geoinformatica,
1(4):327–343. 37

Cockcroft, S. (2004). The design and implementation of a repository for the management of
spatial data integrity constraints. Geoinformatica, 8(1):49–69. 37, 39, 41, 47

Codd, E. F. (1990). The relational model for database management: version 2. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA. 11

Cohn, A. G. (1995). A hierarchical representation of qualitative shape based on connection
and convexity. In Frank, A. U. and Kuhn, W., editors, Spatial Information Theory: A
Theoretical Basis for GIS, International Conference COSIT 1995, Proceedings, volume 988
of Lecture Notes in Computer Science, pages 311–326. Springer. 25, 46

Cohn, A. G. (2008). Conceptual neighborhood. In Shekhar, S. and Xiong, H., editors,
Encyclopedia of GIS, page 123. Springer. 32

Cohn, A. G., Gotts, N. M., Cui, Z., Randell, D. A., Bennett, B., and Gooday, J. M. (1998).
Exploiting temporal continuity in qualitative spatial calculi. In Golledge, R. G. and Egen-
hofer, M. J., editors, Spatial and Temporal Reasoning in Geographical Information Systems,
pages 5–24. Oxford University Press. 32

Cohn, A. G. and Hazarika, S. M. (2001). Qualitative spatial representation and reasoning:
An overview. Fundamenta Informaticae, 46(1-2):1–29. 17, 25, 43, 46

Devillers, R., Bédard, Y., Jeansoulin, R., and Moulin, B. (2007). Towards spatial data
quality information analysis tools for experts assessing the fitness for use of spatial data.
International Journal of Geographical Information Science, 21(3):261–282. 108

Ditt, H., Becker, L., Voigtmann, A., and Hinrichs, K. (1997). Constraints and triggers in an
object-oriented geo databasekernel. In DEXA Workshop, pages 508–513. 20, 37

Donnelly, M. and Bittner, T. (2005). Spatial relations between classes of individuals. In Cohn,
A. G. and Mark, D. M., editors, Spatial Information Theory, International Conference,
COSIT 2005, Proceedings, volume 3693 of Lecture Notes in Computer Science, pages 182–
199. Springer. 23, 52, 53, 55, 56, 59, 60, 63, 67, XIII

Doorn, J. H. and Rivero, L. C. (2002). Database Integrity: Challenges and Solutions. IGI
Publishing, Hershey, PA, USA. 12

Duboisset, M., Pinet, F., Kang, M.-A., and Schneider, M. (2005). Precise modeling and
verification of topological integrity constraints in spatial databases: From an expressive
power study to code generation principles. In Delcambre, L. M. L., Kop, C., Mayr, H. C.,
Mylopoulos, J., and Pastor, O., editors, Conceptual Modeling - ER 2005, 24th Interna-
tional Conference on Conceptual Modeling, Proceedings, volume 3716 of Lecture Notes in
Computer Science, pages 465–482. Springer. 23

Ebbinghaus, H. D. (1977). Einführung in die Mengenlehre. Wissenschaftliche Buchgesellschaft
Darmstadt. 26

Egenhofer, M. J. (1994). Deriving the composition of binary topological relations. Journal of
Visual Languages and Computing, 5(2):133–149. 27, 28, XV

Egenhofer, M. J. (1997). Consistency revisited. Editorial in GeoInformatica, 1(4):323–325.
12, 21, 22

Egenhofer, M. J. (2002). Toward the semantic geospatial web. In Voisard, A. and Chen,
S.-C., editors, ACM-GIS 2002, Proceedings of the Tenth ACM International Symposium on
Advances in Geographic Information Systems, pages 1–4. ACM. 107

VI

Bibliography

Egenhofer, M. J. and Al-Taha, K. K. (1992). Reasoning about gradual changes of topological
relationships. In Theories and Methods of Spatio-Temporal Reasoning in Geographic Space,
International Conference GIS - From Space to Territory: Theories and Methods of Spatio-
Temporal Reasoning, September 21-23, 1992, Proceedings, volume 639 of Lecture Notes in
Computer Science, pages 196–219. Springer. 32, 33, XIII

Egenhofer, M. J., Clementini, E., and Felice, P. D. (1994). Evaluating inconsistencies among
multiple representations. In Sixth International Symposium on Spatial Data Handling,
pages 901–920. 49

Egenhofer, M. J. and Frank, A. U. (1992). Object-oriented modeling for gis. Journal of the
Urban and Regional Information Systems Association, 4(2):3–19. 48

Egenhofer, M. J. and Franzosa, R. D. (1991). Point set topological relations. International
Journal of Geographical Information Systems, 5:161–174. 44

Egenhofer, M. J. and Herring, J. R. (1990). Categorizing binary topological relations be-
tween regions, lines, and points in geographic databases. Technical report, Department of
Surveying Engineering, University of Maine. 24, 25, 44, 50, 98, XIII

Egenhofer, M. J. and Mark, D. M. (1995). Modelling conceptual neighbourhoods of toplogical
line-region relations. International Journal of Geographical Information Systems, 9(5):555–
565. 32

Egenhofer, M. J. and Sharma, J. (1993). Assessing the consistency of complete and incomplete
topological information. Geographical Systems, 1:47–68. 32

Elmasri, R. and Navathe, S. B. (1994). Fundamentals of database systems (2nd edition).
Benjamin - Cummings Publishing Company, Inc. 12, 16, 19, 35, 36, 38, 39, 40, 41, 48, 54,
55, 109

Fonseca, F. T. (2008a). Geospatial semantic web. In Shekhar, S. and Xiong, H., editors,
Encyclopedia of GIS, pages 388–391. Springer. 107

Fonseca, F. T. (2008b). Ontology-based geospatial data integration. In Shekhar, S. and
Xiong, H., editors, Encyclopedia of GIS, pages 812–815. Springer. 107

Fonseca, F. T., Davis, C. A., and Câmara, G. (2003). Bridging ontologies and conceptual
schemas in geographic information integration. GeoInformatica, 7(4):355–378. 107

Frank, A. U. (1992). Qualitative spatial reasoning about distances and directions in geographic
space. Journal of Visual Languages and Computing, 3:343–371. 24, 27, 45, 47

Frank, A. U. (2001). Tiers of ontology and consistency constraints in geographical information
systems. International Journal of Geographical Information Science, 15(7):667–678. 37, 39

Freksa, C. (1992a). Temporal reasoning based on semi-intervals. Artificial Intelligence,
54(1):199–227. 24, 27, 32

Freksa, C. (1992b). Using orientation information for qualitative spatial reasoning. In Frank,
A. U., Campari, I., and Formentini, U., editors, Theories and Methods of Spatio-Temporal
Reasoning in Geographic Space, International Conference GIS - From Space to Territory:
Theories and Methods of Spatio-Temporal Reasoning, Proceedings, volume 639 of Lecture
Notes in Computer Science, pages 162–178. Springer. 24, 27, 45, 46

Friis-Christensen, A., Tryfona, N., and Jensen, C. S. (2001). Requirements and research issues
in geographic data modeling. In Aref, W. G., editor, ACM-GIS 2001, Proceedings of the
Ninth ACM International Symposium on Advances in Geographic Information Systems,,
pages 2–8. ACM. 20, 37

VII

Bibliography

Goodchild, M. F. (2007). Beyond metadata: Towards user-centric description of data quality.
In Proceedings of the 5th International Symposium on Spatial Data Quality, ISSDQ 2007.
108

Gottfried, B. (2007). Characterising straightness qualitatively. In Fabrikant, S. I. and
Wachowicz, M., editors, The European Information Society Leading the Way with Geo-
information, Proceedings of the AGILE 2007, Lecture Notes in Geoinformation and Car-
tography, pages 419–433. Springer. 46

Goyal, R. K. and Egenhofer, M. J. (2001). Similarity of cardinal directions. In Jensen, C. S.,
Schneider, M., Seeger, B., and Tsotras, V. J., editors, Advances in Spatial and Temporal
Databases, 7th International Symposium, SSTD 2001, Proceedings, volume 2121 of Lecture
Notes in Computer Science, pages 36–58. Springer. 24, 45

Grigni, M., Papadias, D., and Papadimitriou, C. H. (1995). Topological inference. In Pro-
ceedings of the International Joint Conference of Artificial Intelligence IJCAI (1), pages
901–907. 25, 27, 32, 44

Gröger, G. and Plümer, L. (1997). Provably correct and complete transaction rules for gis. In
GIS ’97: Proceedings of the 5th ACM International Workshop on Advances in Geographic
Information Systems, pages 40–43. ACM. 35

Grütter, R. and Bauer-Messmer, B. (2007). Towards spatial reasoning in the semantic web:
A hybrid knowledge representation system architecture. In Fabrikant, S. I. and Wachowicz,
M., editors, The European Information Society Leading the Way with Geo-information,
Proceedings of the AGILE 2007, Lecture Notes in Geoinformation and Cartography, pages
349–364. Springer. 96

Guarino, N. (1999). The role of identity conditions in ontology design. In Freksa, C. and Mark,
D. M., editors, Spatial Information Theory: Cognitive and Computational Foundations of
Geographic Information Science, International Conference COSIT ’99, Proceedings, volume
1661 of Lecture Notes in Computer Science, pages 221–234. Springer. 84

Hadzilacos, T. and Tryfona, N. (1992). A model for expressing topological integrity constraints
in geographic databases. In Proceedings of the International Conference GIS - From Space
to Territory: Theories and Methods of Spatio-Temporal Reasoning on Theories and Methods
of Spatio-Temporal Reasoning in Geographic Space, pages 252–268. Springer. 22, 63

Hernández, D. (1994). Qualitative Representation of Spatial Knowledge, volume 804 of Lecture
Notes in Artificial Intelligence. Springer. 24, 27, 30, 31, 32, 47, 90, 93

Hernández, D., Clementini, E., and Felice, P. D. (1995). Qualitative distances. In Frank, A. U.
and Kuhn, W., editors, Spatial Information Theory: A Theoretical Basis for GIS, Inter-
national Conference COSIT 1995, Proceedings, volume 988 of Lecture Notes in Computer
Science, pages 45–57. Springer. 27, 47

Hornsby, K. and Egenhofer, M. J. (1997). Qualitative representation of change. In Hirtle,
S. C. and Frank, A. U., editors, Spatial Information Theory: A Theoretical Basis for
GIS, International Conference COSIT ’97, Proceedings, volume 1329 of Lecture Notes in
Computer Science, pages 15–33. Springer. 48

Hornsby, K., Egenhofer, M. J., and Hayes, P. J. (1999). Modeling cyclic change. In Chen, P. P.,
Embley, D. W., Kouloumdjian, J., Liddle, S. W., and Roddick, J. F., editors, Advances in
Conceptual Modeling: ER ’99 Workshops on Evolution and Change in Data Management,
Reverse Engineering in Information Systems, and the World Wide Web and Conceptual
Modeling, Proceedings, volume 1727 of Lecture Notes in Computer Science, pages 98–109.
Springer. 24, 32, 42

ISO (1998). 9241 part 11: Guidance on usability. 108

VIII

Bibliography

ISO/TC211 (2000). 19109 - geographic information - rules for application schema. 19, 22

ISO/TC211 (2002a). 19107 - geographic information - spatial schema. 19, 38, 40, 47

ISO/TC211 (2002b). 19108 - geographic information - temporal schema. 19, 41, 42

ISO/TC211 (2002c). 19113 - geographic information - quality principles. 21

ISO/TC211 (2002d). 19115 - geographic information - metadata. 21

ISO/TC211 (2003). 19114 - geographic information - quality evaluation. 21

ISO/TC211 (2004). 19125 - geographic information - simple feature access. 41, 44

ISO/TC211 (2005). 19138 - geographic information - data quality measures. 21

Jarrar, M., Demey, J., and Meersman, R. (2003). On using conceptual data modeling for
ontology engineering. In Spaccapietra, S., March, S. T., and Aberer, K., editors, Journal
on Data Semantics 1, volume 2800 of Lecture Notes in Computer Science, pages 185–207.
Springer. 107

Joos, G. (1999a). Assessing the quality of geodata by testing consistency with respect to the
conceptual data schema. In Craglia, M. and Onsrud, H., editors, Geographic Information
Research: Trans-Atlantic Perspectives, pages 509 – 519. Taylor & Francis. 22, 23

Joos, G. (1999b). Zur Qualität von objektstrukturierten Geodaten. PhD thesis, University of
the Bundeswehr, Munich. 19, 23

Kainz, W. (1995). Logical consistency. In Guptill, S. C. and Morrison, J. L., editors, Elements
of Spatial Data Quality, pages 109–137. Elsevier Science, Oxford. 21

Knauff, M., Rauh, R., and Renz, J. (1997). A cognitive assessment of topological spatial
relations: Results from an empirical investigation. In Hirtle, S. C. and Frank, A. U.,
editors, Spatial Information Theory: A Theoretical Basis for GIS, International Conference
COSIT ’97, Proceedings, volume 1329 of Lecture Notes in Computer Science, pages 193–
206. Springer. 43, 44

Kurata, Y. (2008). The 9+-intersection: A universal framework for modeling topological
relations. In Cova, T. J., Miller, H. J., Beard, K., Frank, A. U., and Goodchild, M. F.,
editors, Geographic Information Science, 5th International Conference, GIScience 2008,
volume 5266 of Lecture Notes in Computer Science, pages 181–198. Springer. 24

Kurata, Y. and Egenhofer, M. J. (2006). The head-body-tail intersection for spatial relations
between directed line segments. In Raubal, M., Miller, H. J., Frank, A. U., and Goodchild,
M. F., editors, Geographic Information Science, 4th International Conference, GIScience
2006, Proceedings, volume 4197 of Lecture Notes in Computer Science, pages 269–286.
Springer. 27, 32

Leyton, M. (1988). A process-grammar for shape. Artificial Intelligence, 34(2):213–247. 46

Louwsma, J., Zlatanova, S., Lammeren, R., and Oosterom, P. (2006). Specifying and imple-
menting constraints in gis–with examples from a geo-virtual reality system. Geoinformatica,
10(4):531–550. 12, 22, 23, 37

Mackworth, A. K. and Freuder, E. C. (1985). The complexity of some polynomial network
consistency algorithms for constraint satisfaction problems. Artifical Intelligence, 25(1):65–
74. 30

Maddux, R. D. (1982). Some varieties containing relation algebras. Transactions of the
American Mathematical Society, 272(2):501–526. 75

IX

Bibliography

Maddux, R. D. (2006). Relation Algebras, volume 150 of Studies in logic and the foundations
of mathematics. Elsevier Science & Technology. 25, 26

Mäs, S. (2007a). Checking the integrity of spatial integrity constraints. In Bank, B., Egen-
hofer, M. J., and Kuijpers, B., editors, Constraint Databases, Geometric Elimination and
Geographic Information Systems, volume 07212 of Dagstuhl Seminar Proceedings. Inter-
nationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl,
Germany. 51, 56

Mäs, S. (2007b). Reasoning on spatial semantic integrity constraints. In Winter, S., Duckham,
M., Kulik, L., and Kuipers, B., editors, Spatial Information Theory, 8th International
Conference, COSIT 2007, Proceedings, volume 4736 of Lecture Notes in Computer Science,
pages 285–302. Springer. 17, 51, 56, 68

Mäs, S. (2008). Reasoning on spatial relations between entity classes. In Cova, T. J., Miller,
H. J., Beard, K., Frank, A. U., and Goodchild, M. F., editors, Geographic Information
Science, 5th International Conference, GIScience 2008, Proceedings, volume 5266 of Lecture
Notes in Computer Science, pages 234–248. Springer. 73, 74, 76, XV

Mäs, S. and Reinhardt, W. (2009). Categories of geospatial and temporal integrity con-
straints. In International Conference on Advanced Geographic Information Systems and
Web Services, GEOWS 2009, pages 146–151. IEEE Computer Society. 39, 40, 41, XIII

Mäs, S., Reinhardt, W., Kandawasvika, A., and Wang, F. (2005a). Concepts for quality
assurance during mobile online data acquisition. In Abdul-Rahman, A., Zlatanova, S., and
Coors, V., editors, 8th AGILE Conference on Geographic Information Science - Proceedings,
pages 3–12. 12

Mäs, S., Wang, F., and Reinhardt, W. (2005b). Using ontologies for integrity constraint
definition. In Wu, L., Shi, W., Fang, Y., and Tong, Q., editors, Proceedings of the 4th
International Symposium On Spatial Data Quality, ISSDQ 2005, pages 304–313. 23, 51

Mostafavi, M.-A., Edwards, G., and Jeansoulin, R. (2004). An ontology-based method for
quality assessment of spatial data bases. In Frank, A. U. and Grum, E., editors, Third Inter-
national Symposium on Spatial Data Quality, ISSDQ, Proceedings, volume 28a of GeoInfo
Series Vienna, pages 49–66. TU Vienna. 12, 23

OGC (2005). Filter encoding implementation specification, version 1.1.0. 42

Oosterom, P. v. (2006). Constraints in spatial data models, in a dynamic context. In Drum-
mond, J., Billen, R., João, E., and Forrest, D., editors, Dynamic and Mobile GIS: Investi-
gating Changes in Space and Time, pages 104–137. Taylor & Francis. 20, 22, 23

Papadias, D. and Egenhofer, M. J. (1997). Algorithms for hierarchical spatial reasoning.
GeoInformatica, 1(3):251–273. 27, 30, 32

Pizano, A., Klinger, A., and Cardenas, A. (1989). Specification of spatial integrity constraints
in pictorial databases. Computer, 22(12):59–71. 22

Plümer, L. and Gröger, G. (1997). Achieving integrity in geographic information systems
maps and nested maps. Geoinformatica, 1(4):345–367. 38, 48

Pundt, H. (2002). Field data collection with mobile gis: Dependencies between semantics and
data quality. Geoinformatica, 6(4):363–380. 12, 23

Renz, J. (2002). Qualitative Spatial Reasoning with Topological Information, volume 2293 of
Lecture Notes in Computer Science. Springer. 24, 25

X

Bibliography

Rodŕıguez, A., de Weghe, N. V., and Maeyer, P. D. (2004). Simplifying sets of events by
selecting temporal relations. In Egenhofer, M. J., Freksa, C., and Miller, H. J., editors,
Geographic Information Science, Third International Conference, GIScience 2004, Proceed-
ings, volume 3234 of Lecture Notes in Computer Science, pages 269–284. Springer. 29, 32,
43, 90, 111, XV

Rodŕıguez, M. A. and Egenhofer, M. J. (2000). A comparison of inferences about contain-
ers and surfaces in small-scale and large-scale spaces. Journal of Visual Languages and
Computing, 11(6):639–662. 75

Rodŕıguez, M. A. and Egenhofer, M. J. (2004). Comparing geospatial entity classes: an
asymmetric and context-dependent similarity measure. International Journal of Geograph-
ical Information Science, 18(3):229–256. 107

Rodŕıguez, M. A., Egenhofer, M. J., and Rugg, R. D. (1999). Assessing semantic similarities
among geospatial feature class definitions. In Vckovski, A., Brassel, K. E., and Schek, H.-J.,
editors, Interoperating Geographic Information Systems, Second International Conference,
INTEROP ’99, Proceedings, volume 1580 of Lecture Notes in Computer Science, pages
189–202. Springer. 107

Salehi, M., Bédard, Y., Mostafavi, M. A., and Brodeur, J. (2007). On languages for the
specification of integrity constraints in spatial conceptual models. In Hainaut, J.-L., Run-
densteiner, E. A., Kirchberg, M., Bertolotto, M., Brochhausen, M., Chen, Y.-P. P., Cherfi,
S. S.-S., Doerr, M., Han, H., Hartmann, S., Parsons, J., Poels, G., Rolland, C., Trujillo, J.,
Yu, E. S. K., and Zimányi, E., editors, Advances in Conceptual Modeling - Foundations and
Applications, ER 2007 Workshops: CMLSA, FP-UML, ONISW, QoIS, RIGiM, SeCoGIS,
volume 4802 of Lecture Notes in Computer Science, pages 388–397. Springer. 23

Sanderson, M., Ramage, S., and van Linden, L. (2009). Sdi communities: Data quality and
knowledge sharing. In GSDI 11 world conference: Spatial Data Infrastructure Convergence:
Building SDI Bridges to Address Global Challenges, Proceedings. 11, 23

Schleipen, S., Ragni, M., and Fangmeier, T. (2007). Negation in spatial reasoning. In
Hertzberg, J., Beetz, M., and Englert, R., editors, KI 2007: Advances in Artificial In-
telligence, 30th Annual German Conference on AI, KI 2007, Proceedings, volume 4667 of
Lecture Notes in Computer Science, pages 175–189. Springer. 63

Schlieder, C. (1996). Qualitative shape representation. In Burrough, P. A. and Frank, A. U.,
editors, Geographic Objects with Indeterminate Boundaries, pages 123–140. Taylor & Fran-
cis. 46

Schwering, A. (2006). Semantic Similarity Measurement including Spatial Relations for Se-
mantic Information Retrieval of Geo-Spatial Data. PhD thesis, Westfälische Wilhelms
Universität Münster. 107

Schwering, A. (2007). Evaluation of a semantic similarity measure for natural language spa-
tial relations. In Winter, S., Duckham, M., Kulik, L., and Kuipers, B., editors, Spatial
Information Theory, 8th International Conference, COSIT 2007, Proceedings, volume 4736
of Lecture Notes in Computer Science, pages 116–132. Springer. 32

Schwering, A. (2008). Approaches to semantic similarity measurement for geo-spatial data:
A survey. Transactions in GIS, 12(1):5–29. 105, 107

Servigne, S., Ubeda, T., Puricelli, A., and Laurini, R. (2000). A methodology for spatial
consistency improvement of geographic databases. Geoinformatica, 4(1):7–34. 12, 22, 37,
38, 40, 41

Sharma, J. and Flewelling, D. M. (1995). Inferences from combined knowledge about topo-
logy and directions. In Egenhofer, M. J. and Herring, J. R., editors, Advances in Spatial
Databases, 4th International Symposium, SSD’95, Proceedings, volume 951 of Lecture Notes
in Computer Science, pages 279–291. Springer. 47

XI

Bibliography

Skiadopoulos, S. and Koubarakis, M. (2001). Composing cardinal direction relations. In
Jensen, C. S., Schneider, M., Seeger, B., and Tsotras, V. J., editors, Advances in Spatial
and Temporal Databases, 7th International Symposium, SSTD 2001, Proceedings, volume
2121 of Lecture Notes in Computer Science, pages 299–320. Springer. 24, 45

Skiadopoulos, S. and Koubarakis, M. (2005). On the consistency of cardinal direction con-
straints. Artificial Intelligence, 163(1):91–135. 45

Spyns, P., Meersman, R., and Jarrar, M. (2002). Data modelling versus ontology engineering.
SIGMOD Rec., 31(4):12–17. 107

Stoyanov, P. and Harper, S. (2009). An Oracle White Paper - An
Introduction to Oracle SQL Developer Data Modeler. available at:
http://www.oracle.com/technology/products/database/datamodeler/pdf/sqldeveloperdat
amodeleroverview.pdf ; last visited on August 10th 2009. 107

Tarquini, F. and Clementini, E. (2008). Spatial relations between classes as integrity con-
straints. Transactions in GIS, 12(s1):45–57. 17, 23, 52, 63

Tarski, A. (1941). On the calculus of relations. The Journal of Symbolic Logic, 6(3):73–89.
26, 75

Tryfona, N. and Egenhofer, M. J. (1997). Consistency among parts and aggregates: A com-
putational model. Transactions in GIS, 1(3):189–206. 49

Ubeda, T. and Egenhofer, M. J. (1997). Topological error correcting in gis. In SSD ’97:
Proceedings of the 5th International Symposium on Advances in Spatial Databases, pages
283–297. Springer. 22, 38, 51, 62

Vallieres, S., Brodeur, J., and Pilon, D. (2006). Spatial integrity constraints: A tool for
improving the internal quality of spatial data. In DEVILLERS, R. and JEANSOULIN, R.,
editors, Fundamentals of Spatial Data Quality, Geographical Information System Series,
chapter 9, pages 161–178. ISTE Ltd., London. 12

Varzi, A. C. (1994). On the boundary between mereology and topology. In Casati, R., Smith,
B., and White, G., editors, Philosophy and the Cognitive Sciences: Proceedings of the 16th
International Wittgenstein Symposium 1993, volume 21 of Schriftreihe der Wittgenstein-
Gesellschaft, pages 423–442. Vienna: Hölder-Pichler-Tempsky. 48

Wang, F. (2008). Handling Data Consistency through Spatial Data Integrity Rules in Con-
straint Decision Tables. PhD thesis, University of the Bundeswehr, Munich. 20, 22, 23,
35

Wang, F. and Reinhardt, W. (2007). Extending geographic data modeling by adopting con-
straint decision table to specify spatial integrity constraints. In Fabrikant, S. I. and Wachow-
icz, M., editors, The European Information Society Leading the Way with Geo-information,
Proceedings of the AGILE 2007, Lecture Notes in Geoinformation and Cartography, pages
435–454. Springer. 23

Watson, P. (2007). Formal languages for expressing data consistency rules and implications
for reporting of quality metadata. In Proceedings of the 5th International Symposium on
Spatial Data Quality, ISSDQ 2007. 23

Werder, S. (2009). Formalization of spatial constraints. In Proceedings of the 12th AGILE
International Conference on Geographic Information Science. 23, 51

Yan, H., Chu, Y., Li, Z., and Guo, R. (2006). A quantitative description model for direction
relations based on direction groups. Geoinformatica, 10(2):177–196. 24, 45

XII

List of Figures

1.1 Example set of semantic integrity constraints in an ERD 13

1.2 Scenario for the harmonisation of spatial semantic integrity constraints 15

2.1 The three levels of data modelling . 20

2.2 Set of topological relations between areal entities (Egenhofer and Herring, 1990) . . 25

2.3 Example scene of three regions (left) and a corresponding composition of two topolog-

ical relations (right) . 27

2.4 Example scene of four regions (left) and the corresponding topological relation graph

(right) . 29

2.5 Conceptual neighbourhood graph of the eight topological relations between areal en-

tities (Egenhofer and Al-Taha, 1992) . 33

3.1 Categorisation of integrity constraints (Mäs and Reinhardt, 2009) 40

3.2 Examples of directional relations: a) cone-shaped and b) projection-based cardinal

directional relations; c) left/right and front/back dichotomy for oriented entities . . 45

4.1 Total participation and cardinality ratio constraints in an ERD 55

4.2 Dependencies between Donnelly and Bittner’s class relations 55

4.3 ERDs of the four cardinality properties . 57

4.4 Example scenes for the SICs between the classes a) floodplain and stream and b) parcel

and building . 58

4.5 Example scenes for the SICs between the classes a) airport and airport tower and b)

country and capital . 60

4.6 Examples of the 17 abstract class relations . 61

5.1 Two-level composition of class relations . 68

5.2 ERD of the SICs between the entity classes forest, airport and airport tower 69

5.3 Possible arrangement of instance relations defined by the class relations between the

classes forest / airport and airport / airport tower (left) and their composition (right) 70

5.4 Influence of the relative arrangement of instance relations on the composition of the

abstract class relations . 71

5.5 Composition of abstract class relations, which leads to a universal disjunction 72

XIII

List of Figures

5.6 Conceptual neighbourhood between RLD.RD and RRD 76
5.7 Conceptual neighbourhood between RRD, RRD.LT.RT , RRT , RLT.RT and RLT.RT−all 77
5.8 Use of the conceptual neighbourhood for the composition of class relations 79
5.9 Inconsistent combination of class relations . 80

6.1 Identity class relations for the classes parcel and shipping container 84

7.1 Information exchange between Protégé ontology editor and SIC Checker Plug-in . . 96
7.2 Screenshot of the user interface of the Protégé SIC Checker Plug-in 97
7.3 Scenario for the harmonisation of spatial SICs (repetition of Figure 1.2) 99
7.4 Protocol of the SIC consistency check of the first data source 101
7.5 Derived SIC for the classes floodplain and stream of data source one 101
7.6 Protocol of the consistency check of the SICs of both data sources 103
7.7 Derived SICs for the classes floodplain and stream of both data sources integrated . 103
7.8 SICs of the integrated data sources and the user for the classes floodplain and stream 104
7.9 SIC tables of the classes floodplain and stream after checking the consistency of all six

given constraints . 106

XIV

List of Tables

2.1 Composition table of the eight topological relation between areal entities (d =
disjoint, m = meet, e = equal, i = inside, cB = coveredBy, ct = contains, cv
= covers and o = overlap)(Egenhofer, 1994) 28

3.1 Allens 13 binary relations between time intervals without gaps (taken from
Rodŕıguez et al. (2004)) . 43

5.1 Restrictions of the number of instances of the abstract class relations 66
5.2 Symmetry properties of the class relations . 67
5.3 Composition table of the 17 abstract class relations (Mäs, 2008) 74
5.4 Conceptual neighbourhood between the class relations: +/− corresponds to

neighbourhood through addition / removal of an instance relation 78

XV

Danksagung

Die Idee zu diesem Promotionsthema entstand während des vom Bundesministerium für Bil-
dung und Forschung (BMBF) geförderten Projektes “Weiterentwicklung von Geodiensten”.
Ich möchte mich für die Unterstützung, welche ich beim recherchieren, forschen und schreiben
dieser Arbeit erhalten habe, bedanken.

Mein ganz besonderer Dank gilt Herrn Prof. Dr.-Ing. Wolfgang Reinhardt, Lehrstuhl für
Geoinformatik der Universität der Bundeswehr München, für die Unterstützung während der
gesamten Promotionszeit. Seine Anleitung, Kritik, Aufgeschlossenheit und Geduld gaben
mir den Rückhalt aber auch die notwenigen Freiheiten für die Durchführung dieser Arbeit.
Die von ihm geleitete Arbeitsgemeinschaft Geoinformationssysteme (AGIS) ist eine optimale
Umgebung für das wissenschaftliche Arbeiten und ich habe meine Zeit dort sehr genossen.

Meinem Zweitgutachter, Herrn Prof. Dr.-Ing. Max J. Egenhofer, Universität von Maine,
danke ich besonders für das Interesse, welches er bereits in einer sehr frühen Phase der Arbeit
gezeigt hat, und die Unterstützung in der Endphase. Seine Vorarbeiten weckten bei mir
das Interesse für das logische Schließen mit räumlichen Relationen und bilden eine wichtige
Grundlage dieser Arbeit.

Herrn Prof. Dr.-Ing. habil. Wilhelm Caspary (i.R.) möchte ich für die Übernahme des
Vorsitzes des Promotionsverfahrens und den Review meiner Arbeit danken. Die Diskussionen
mit ihm lieferten wertvolle kleinere und größere Denkanstöße.

Für das angenehme und motivierende Arbeitsumfeld und die vielen aufschlussreichen fach-
lichen Diskussionen möchte ich mich herzlichst bei den Mitarbeitern der AGIS insbesondere
bei Admire, Fei, Thorsten und Simone bedanken.

Heike und Ronja danke ich für die emotionale Unterstützung und den familiären Rückhalt,
das Verständnis, die Liebe und die Geduld, welche besonders während der arbeitsreicheren
Phasen der Promotionszeit beansprucht wurde. Meinen Eltern und Großeltern möchte ich
für die Unterstützung während meines Studiums an der TU Dresden danken.

XVII

Curriculum Vitae

Name Stephan Mäs

Date of Birth 12th of September 1977

Place of Birth Weimar, Germany

Contact StephanMaes@web.de

Education

1997-2003 Diplom Ingenieur in Geodesy (Dipl.-Ing. Univ.), Technical Uni-
versity of Dresden, Germany

12/2001 - 5/2002 International Affiliate, Department of Geomatics, University of
Cape Town, South Africa

09/2002 - 07/2003 Internship and diploma at the Fraunhofer IGD, Darmstadt,
Diploma Thesis: “Conception and Implementation of a Location
Based Service for Mobile Devices”

Professional Experience

8/2003 - 9/2003 Research Assistent (wissenschaftliche Hilfskraft) at Fraunhofer
IGD, Darmstadt

4/2004 - 4/2010 Research Associate (wissenschaftlicher Mitarbeiter) in AGIS Re-
search Group, University of Bundeswehr Munich, Germany

Projects:

2004 - 2005 Advancement of Geoservices, BMBF/DFG: mobile data acquisi-
tion via standardised Web services, quality assurance

2005 - 2010 INDOOR, BMBF/DLR: 3D building modelling, CityGML and
indoor navigation

2006 - 2010 EduGI, e-Learning Program of the European Union: annually
exchange of e-Learning courses between European universities

2009 - 2010 EUROSUR, European Commission DG JLS: conception of a pre-
frontier intelligence picture within the framework of a European
border surveillance system

XIX

	Introduction
	Application Scenario 1: Quality Assurance
	Application Scenario 2: Data Harmonisation and Integration
	Objectives of Research
	Outline of the Thesis

	Fundamentals of Spatial Integrity Constraints
	Levels of Data Modelling
	Quality of Geodata
	Formalisation of Integrity Constraints
	Spatio-temporal Relations and Reasoning
	Spatial and Temporal Relations
	Composition of Spatio-temporal Relations
	Constraint Satisfaction Problems
	Conceptual Neighbourhood

	Categories of Integrity Constraints
	Approaches to Categorisation of Integrity Constraints
	General Integrity Constraints for Database Systems
	Specification Technique of Integrity Constraints
	Specified Conditions of Integrity Constraints
	Number of Constrained Database States
	Data Model Elements Restricted by Integrity Constraints

	Spatial Data Integrity Constraints

	A Refined Categorisation of Spatio-temporal Integrity Constraints
	Domain Constraints
	Key and Relationship Constraints
	General Semantic Integrity Constraints
	Thematic SICs
	Temporal SICs
	Spatial SICs
	Complex SICs
	Change and Representation SICs

	Summary

	A Framework for the Formal Definition of Semantic Integrity Constraints
	Instance-Level vs. Class-Level Relations
	Cardinality Properties of Class Relations
	Definition of a Set of Class Relations
	Summary

	Reasoning Properties of Class Relations
	Correlation Between the Number of Instances and the Feasibility of Class Relations
	Reasoning on the Symmetry of Class Relations
	Composition of Class Relations
	Conceptual Neighbourhood of Class Relations
	Summary

	Basics for Checking the Consistency of Semantic Integrity Constraints
	Constraint Satisfaction Problems in Class Relation Networks
	Node Consistency in Class Relation Networks
	Arc Consistency in Class Relation Networks
	Path Consistency in Class Relation Networks

	Detection of Redundancies
	Detection of Conflicts
	Restriction of Class Relations
	Summary

	Application
	Prototypical Implementation
	User Interface
	Harmonisation and Integration of Semantic Integrity Constraints
	Further Application Areas

	Discussion of Results
	Summary of Contributions
	Restrictions and Future Research Topics

	Abbreviations and Acronyms
	List of Symbols
	Bibliography
	List of Figures
	List of Tables
	Danksagung
	Curriculum Vitae

