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PREFACE 
 

The following study is part of a report from a six months´ research stay as Visiting 
Professor for Engineering Photogrammetry at the Hochschule der Bundeswehr München. 
This study may be seen as a summary of the state of art in highly accurate close range 
photogrammetry with emphasis on detection, localization and elimination of blunders 
in observations. Several hitherto unsolved problems have been defined, and some new 
research plans have been outlined. It is my hope that the survey of available methods 
to achieve high accuracies in close range photogrammetry given in this report will be 
of value for engineers and surveyors using close range photogrammetry as a measuring 
tool, and that it will be a stimulance for scientists and researchers to set out new goals 
for the development of this mensuration technique. 
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0 A B S T R A C T  
 
 

The state of art in highly accurate analytical photogrammetry is briefly over- 
viewed. The concept of accuracy is described as precision, model fidelity, and relia- 
bility, where precision is related to random errors and their propagation, model fideli- 
ty to systematic discrepancies between reality and mathematical model, and reliability  
to detection, localization and elimination of blunders. The effect of blunders in least  
squares adjustments is outlined, and a procedure in order to localize blunders after ad- 
justment is suggested. The possibility to localize and eliminate blunders in all phases  
of the photogrammetric process is discussed in detail, particularly for close-range appli- 
cations. The principle of redundancy to achieve reliability is demonstrated, leading to 
the multi-concept in photogrammetry. It can be applied to all steps: coordinate read- 
ings, fiducial marks, targets, frames (new method of overlapping), stations, control  
points, object geometry, computer program options. Simultaneous adjustment of obser- 
vations, of image coordinates, observations of exterior orientation elements, geometric  
conditions in object space, and approximations for the unknowns are reviewed. Several  
hitherto unsolved problems and open questions have been stated.  
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1 I N T R O D U C T I O N  
 
 
 

Analogue methods for photogrammetric measurements have been practiced for a 
long time. Cameras, instruments and methods have reached a standardization that 
makes it possible top plan projects and predict costs and accuracies with narrow limits. 
This is certainly the case for aerial photogrammetry as applied to topographic mapping. 
Wide angle cameras with a 0.15 m camera constant are used for taking near vertical 
photographs with 60 % overlap within and 20 % between the strips. Line maps with 
contours and orthophotos are the typical products. As an intermediate step the aerial 
triangulation provides the necessary control points in a manner that even emphasizes 
the standardization. 

 
In non topographic photogrammetry, however, the situation has been somewhat 

different. The measuring tasks have been very varied, and the requirements and speci- 
fications so different from one application to another that it has been difficult to deve- 
lop standardized analogue methods for the restitution of photographs. A certain stand- 
ardization has been reached in architectural photogrammetry with the normal case ste- 
reo photography often using stereometric cameras, and restitution in normal case stere- 
oplotters yielding as result a line drawing on vertical or horizontal projection planes. 
This equipment and technique has been used also for other purposes, sometimes success- 
fully, but very often certain aspects in the requirements could not be fulfilled, e.g. 
type of output, accuracy or completeness. The customer or end-user has sometimes dif- 
ficulties in defining his requirements, and the photogrammetrist then recommends his 
well-established methods even though both parties have the feeling that something else 
would be more appropriate. 

 
During the last decade analytical methods have demonstrated its capability as 

a very flexible tool for solving the most varied measuring problems in almost any field 
where geometric quantities are needed. The limitations due to the necessary standard- 
ization in the analogue methods are not relevant any longer, especially concerning the 
choice of cameras, their location and direction in relation to the object, type of ob- 
ject space control, overlap and number of photos, accuracy, computerized evaluation 
and presentation of results. This flexibility has opened new vistas for the application 
of close range photogrammetry. At the same time, however, planning the projects 
and predictive accuracies have become more uncertain, since the well-known standard 
procedures have been abandoned. The automatic checking on the ray intersection con- 
dition in the analogue stereomodel by the operator´s stereo vision is now lost when mono 
or stereo cooperators are used for measurements. On-line computation or use of analy- 
tical plotters eliminate this drawback. Object space control based on straight lines, 
horizontal of vertical planes, angles, etc. that easily were taken to advantage in the 
analogue stereomodel have now to be included in the adjustment computations by a 
series of program routines and extension of the basic mathematical formulations. The 
analogue approach is typical on-line in the sense that the result is readily available 
for checking, correction, deletion and amendment. In the analytical approach, on- 
line computer programs have to be developed. To implement this, an analytical stereo 
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plotter is needed, and that is an expensive development and instrumentation. The pho- 
togrammetrist has now to develop his occupational skill and experience, and to learn 
how to use the new possibilities that are opened up by analytical methods. This com- 
prises, among other things, extensions of mathematical models, correction of systematic 
errors, detection, localization and elimination of blunders, prediction of precision and 
reliability, planning photogrammetric projects, statistical methods for testing hypothe- 
ses in the evaluation process. 

 
 
 
 
 
 

2 M A T H E M A T I C A L   M O D E L  
 

 
 
2.1 THE  BUNDLE  APPROACH 
 
 

Notations, coordinate systems and rotations follow the conventions recommend- 
ed by the International Society for Photogrammetry 1960 which are characterized by 

 
a) a right-handed  X Y Z   system in object space with  Z  positive upwards and 

X  positive mainly in base direction (if this is appropriate in the close range 
case) 

 
b) a free choice of the origin of the  X Y Z  coordinate system 
 
c) a right-handed coordinate system  x y z  in the image space, with positive 

directions as in the same sense as in the  X Y Z  system 
 
d) the choice of the  X-axis  as primary axis and the  Y-axis  as secondary 

axis; rotations around rotated axes 
 
e) treating as positive: clockwise rotations about the positive direction of the 

X-  Y-  and  Z-axes  in conformity with the conventions of a right-handed 
system 

 
Notations: 
 

𝑥𝑘  𝑦𝑘 comparator coordinates 
 
𝑥′   𝑦′    𝑥"  𝑦"⁄  plane image coordinates in left/right photo 
 
c camera constant (calibrated focal length) 
 
𝑥1 𝑦1  𝑧1    𝑥2 𝑦2 𝑧2⁄  three dimensional image coordinates in left/ 
 right photo with axes parallel to  X Y Z 
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𝑥  𝑦  𝑧 model coordinates 
 
𝑏𝑥  𝑏𝑦  𝑏𝑧  𝐵𝑋  𝐵𝑌  𝐵𝑍⁄  base components in model/object 
 
ωi  ϕi  κi rotations around the  𝑥𝑖  𝑦𝑖  𝑧𝑖  axes for photo  𝑖 
 
ξ   η   α rotations of the model system  x y z  around the 
 X Y Z  axes 
 
𝑋𝑂  𝑌𝑂  𝑍𝑂 origin of the model system´in the  X Y Z  system 
 
𝑋𝑔  𝑌𝑔  𝑍𝑔 known control point coordinates 
 
𝑂1  𝑂2  …  𝑂𝑖  … projection centres 
 

See also Fig. 2.1 . 
 
The basic relation is the collinearity condition for the imaging ray from the 

object point through the perspective centre to the image point, which is expressed by 
 

⎣
⎢
⎢
⎢
⎢
⎡𝑋 − 𝑋𝑂

𝑌 − 𝑌𝑂

𝑍 − 𝑍𝑂 ⎦
⎥
⎥
⎥
⎥
⎤

 =  λ 

⎣
⎢
⎢
⎢
⎢
⎡𝑥1
𝑦1
𝑧1 ⎦

⎥
⎥
⎥
⎥
⎤

 =  λ 𝑅 

⎣
⎢
⎢
⎢
⎢
⎡𝑥′ − 𝑥′𝑂

𝑦′ − 𝑦′𝑂

− 𝑐
⎦
⎥
⎥
⎥
⎥
⎤

  . 

 
Here, λ  is a scalar factor, and  R  is an orthonormal matrix with, e.g. the elements 
 

r11 =    cos ϕ  cos κ 

r 12 = – cos ϕ  sin κ 

r 13 =    sin ϕ 
 
r 21 =    cos ω  sin κ  +  sin ω  sin ϕ  cos κ 

r 22 =    cos ω  cos κ  –  sin ω  sin ϕ  sin κ 

r 23 = – sin ω  cos ϕ 
 
r 31 =    sin ω  sin κ  –  cos ω  sin ϕ  cos κ 

r 32 =    sin ω  cos κ  +  cos ω  sin ϕ  sin κ 

r 33 =    cos ω  cos ϕ 
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Fig. 2.1 

 
Axes, rotations and notations recommended by ISP 1960 
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As  𝑐 ≠ 0 , we divide the first two equations by the third, thus obtaining image 
coordinates as functions of the orientation elements and the object coordinates 

 

𝑥′ =  𝑥′𝑂 −  𝑐 
𝑇𝑥
𝑁

 

 

𝑦′ =  𝑦′𝑂 −  𝑐 
𝑇𝑦
𝑁

 

 
 

Where 
 
𝑇𝑥                                𝑋 −  𝑋𝑂 
 
𝑇𝑦             =    𝑅𝑇  ∙   𝑌 −  𝑌𝑂  
 
𝑁                                 𝑍 −  𝑍𝑂 

 
 
For the determination of orientation elements from image coordinates  𝑥′ 𝑦′ and 

known points  𝑋𝑔 𝑌𝑔 𝑍𝑔 , we linearize the expressions either by a Taylor series expan- 
sion or by numerical differentiation from approximate values for the unknowns. The 
system of linear equations will, as a rule, be overdetermined and can be written in the 
form 
 

𝐴 𝑋 = 𝐿 + 𝑉 
 
 
 
2.2 CONVERGENCE  CRITERIA  FOR  ITERATIONS 
 
 

The least squares solution of  X  represents corrections to the approximations, and 
the procedure has to be iterated until convergence in order to give the final values of 
the orientation elements. The iteration process can be terminated on different criteria, 
e.g. the following. 

 
Assume  A  to have the dimensions  (n, p, n>p)  and full rank, rank  (A) = p. 
 
The least squares estimate of  X  will be 
 

𝑋� =  (𝐴𝑇 𝐴)−1 𝐴𝑇  𝐿  . 
 
The simultaneous magnitude of the unknowns is described by the quadratic form 
 

𝐿𝑇 𝐴 (𝐴𝑇 𝐴)−1 𝐴𝑇𝐿  . 
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This is the reduction of  𝐿𝑇 𝐿  to  𝑉𝑇 𝑉  by the adjustment, and 
 

𝐿𝑇 𝐿 =  𝑉𝑇 𝑉 +  𝐿𝑇 𝐴 (𝐴𝑇 𝐴)−1 𝐴𝑇  𝐿  , 
 
 

where the three terms have the degrees of freedom  n, n – p  and  p , respectively. The 
two latter ones are independent. We form the test-variate 
 

      𝑡 =  
𝐿𝑇 𝐴  (𝐴𝑇 𝐴)−1 𝐴𝑇  𝐿

𝑝
 ∙  
𝑛 − 𝑝
𝑉𝑇 𝑉

   . 

 
 

If  𝑡 < 𝑡𝑂  the iterations may be stopped. Because of rounding errors,  t  will never 
be zero, and  𝑡𝑂  may be chosen, e.g., in the interval  [0.001, 0.1] . 

 
The effect of the omitted higher order terms is smaller than that of the unknowns, 

and thus they have very little influence on  𝑉𝑇  𝑉.  This test must not be regarded as an 
F-test used for testing the hypothesis that two variances are equal, because here we 
require one quadratic form to be zero as a measure for convergence, but we still can 
make the convergence criterion dependent on the measuring precision. We simply do 
not want to perform unnecessarily many iterations in relation to the precision of observa- 
tions. 

 
Experience has shown that for relative orientation and three dimensional confor- 

mal transformation a value of  𝑡𝑂 = 0.001  is suitable. This means that the linear effect 
of the unknowns is in the image scale of the magnitude  0.001 ∙ s  to  0.1 ∙ s ,  where 
s  is the standard error of unit weight in the adjustment 

 

      𝑠 =  �
 𝑉𝑇 𝑉
𝑛 − 𝑝

   . 

 
The convergence test is thus related to the estimated variance, which has the ad- 

vantage that it works for various types of observations, various cameras, various project 
designs and iteration procedures. This is important for close range applications with 
their varied conditions. At the same time, however, it has the drawback that the esti- 
mated variance itself is a random variable, and for a small number of redundant observa- 
tions, the iteration may be stopped too early or too late compared to what is needed for 
convergence. 
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2.3 LENS  DISTORTION  AND  ADDITIONAL  PARAMETERS 
 
 

For some applications the basic expressions are sufficient, but in other cases the 
mathematical model shows systematic errors when it is compared to physical reality. We 
then have to extend the model to include parameters for these systematic errors in the 
expressions. Radial distortion is effectively covered by the following expressions 

 
𝑑𝑥′ =  𝑥′ ∙  {𝑎3 (𝑟2 −  𝑟02) +  𝑎5 (𝑟4 −  𝑟04) +  𝑎7 (𝑟6 −  𝑟06)+ .  .  .  .  .  . } 

 
𝑑𝑦′ =  𝑦′ ∙  {𝑎3 (𝑟2 −  𝑟02) +  𝑎5 (𝑟4 −  𝑟04) +  𝑎7 (𝑟6 −  𝑟06)+ .  .  .  .  .  . }  . 

 
The number of parameters depend on the type of radial distortion and how well we 

want to model it. 
 
The decentering distortion based on the thin-prism model is described by 
 
𝑑𝑥′ =  { (𝑟2 +  2 𝑥′ 2) 𝑃 1 +  2 𝑥′𝑦′𝑃 2}  {1 +  𝑃 3 𝑟2 +  𝑃 4 𝑟4+ .  .  .  .  . } 

 
𝑑𝑦′ =  { 2 𝑥′𝑦′𝑃 1 +  (𝑟2 +  2 𝑦′ 2) 𝑃 2}  {1 +  𝑃 3 𝑟2 +  𝑃 4 𝑟4+ .  .  .  .  . }  , 

 
where  𝑟2 =  (𝑥′ −  𝑥′0)2 +  (𝑦′ −  𝑦′0)2  and  𝑟0 
 

is a constant for which the radial distortion is zero. The distortion may be known from 
calibrations and introduced as corrections to the image coordinates before adjustment, 
or it can be unknown and used as additional parameters to be determined in the adjust- 
ment. 
 

In aerial photogrammetry the atmospheric refraction, as a rule, is taken into con- 
sideration, but this is not very often necessary in the close range case. Here, however, 
other systematic effects have to be considered, e.g. refraction in filters and port win- 
dows, departures from emulsion flatness, regular deformations of the image during pho- 
tographic processing. Again we have two possibilities: calibration or additional para- 
meters in the adjustment. 

 
In the calibration case the systematic errors are determined in some representative 

points covering the image area. In the successive measurements the new image coordi- 
nates are corrected for systematic error by interpolation from the calibration points. 
Different interpolation methods can be used. Some popular ones in photogrammetry and  
surveying are 

 
1. Polynomial approximations 
2. Spline interpolations 
3. Linear prediction with covariance functions 
4. Multiquadratic interpolation. 
 

See e.g. Hein - Lenze (1979), Shut (1976) and Rauhala (1974). 
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In the case of additional parameters in the adjustment one has to avoid over-pa- 
rametrization and linear dependencies to already introduced variables. Ebner (1976) 
and Grün (1978a) show the efficiency of using orthogonal parameters, and statistical 
testing for the selection of the appropriate parameter set. Jacobsen (1980) has another 
set of additional parameters and he combines statistical tests with a test statistic that 
measures the remaining systematic effect after adjustment. The set of additional para- 
meters has in these cases been designed to fit the geometric conditions of aerial photo- 
grammetry, and if the close range case differs from this it is not longer certain whether 
the selected set is optimal. 

 
 

 
2.4 ACCURACY  OF  CONTROL  POINTS 
 
 

In analogue photogrammetry the double point resection in space is solved in two 
steps, relative and absolute orientations. The given object control is, in the second 
step, regarded as free from noticeable error, but experienced stereo-operators often use 
their knowledge about the control, its accuracy, the targeting, the type of surveying 
behind the given coordinates, etc., in such a way that the residuals in the model after 
adjustment are not distributed in as it would be the case from a numerical least squares 
solution. The operator has taken into consideration information on the accuracy of the 
control that the numerical absolute orientation did not know when the orientation pa- 
rameters were calculated from the discrepancies between the control point coordinates 
in the model and object system. This sort of observational skill, experience and feel- 
ing for weakness and strength in the control can be transferred to the mathematical mo- 
del by a formulation which allows for corrections also to the given control. The con- 
trol coordinates are treated as unknowns, and in order to compensate for the rank defi- 
ciency, ficticious direct observations on the control point coordinates are introduced 
with a weight that corresponds to the accuracy of the control in relation to the other 
equations of the system. 

 
 

 
2.5 INTERPRETATION  OF  RESULTS 
 
 

The mathematical model has to be developed to such a degree that it can be used 
for prediction without bias and with known precision. We thus want our model to have 
stochastic properties such that 

 
a) 𝐴  𝑋 = 𝐸  (𝐿) =  λ 
 
b) L  normally distributed according to  𝑁 ( λ, σ2 𝑄𝐿𝐿)  . 
 

This gives us the a priori weight matrix  𝑃 =  𝑄𝐿𝐿−1  . 
Very often, one assumes that  𝑄𝐿𝐿 = 𝐼 , i.e. the observations are independent and 
of equal weight  𝑃 =  𝑄𝐿𝐿−1 = 𝐼 .  In other cases  𝑄𝐿𝐿 = 𝐷  is a diagonal matrix, 
which means that the observations have different weights but they are still independent 
or uncorrelated: 
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It is a main task for scientists to develope models having the above quoted proper- 
ties. Another task is to give a physical explanation to the parameters  X  of the model, 
e.g. such as orientations elements, radial and tangential distortion parameters. If ad- 
ditional parameters such as purely mathematical parameters  𝑎𝑖𝑗   and  𝑏𝑖𝑗  in a general 
regression formulation yield the above properties to the model, the scientist should find 
the physical explanation to this in order to increase our knowledge. Such knowledge 
can stimulate to new instrument designs, and improve new possibilities to correct the mo- 
del, based on methods and measurements that was not earlier applied in photogrammetry. 

 
 
 
 

3 M E A S U R E S   O F   P R E C I S I O N  ,  

 F I D E L I T Y  ,   A N D   R E L I A B I L I T Y  
 

 
 
3.1 TERMINOLOGY 
 
 

According to Baarda, accuracy comprises two parts, viz. precision and reliabili- 
ty (Baarda, 1977a). Here, we amend the theory with the concept of model fidelity 
(German: Modelltreue;  French: fidelité de modèle;  Swedish: modellriktighet). Preci- 
sion is expressed as standard error computed by the law of error propagation through 
functions of the observations, and based on the assumptions, on their stochastic nature. 
The fidelity of the model is the goodness of fit of the mathematical model to the obser- 
vations, and the model should be general enough to the valid under varying experimen- 
tal conditions. Reliability is the possibility to detect, localize and correct or exclude 
blunders from the adjustment, and still having redundancy enough to check for blunders 
in the remaining system. 

 
Hallert (1967) used to discriminate between accuracy and precision. In his 

sense precision was the internal closeness of data from repeated observations. Accura- 
cy on the other hand was the closeness of observations and functions of these to given 
data with much higher accuracy than the observations, or closeness to mathematical 
conditions between the observations. E.G.: standard deviations from a series of re- 
peated settings on y -parallaxes in a point of a stereomodel are, according to Hallert, 
measures of precision, while the standard error of unit weight after a least squares ad- 
justment of the relative orientation from observations on y -parallaxes having unit 
weight is a measure of accuracy. 

 
Here we will try to use the definitions in such a way that precision is related to 

the stochastic behaviour of variables and functions of observations, model fidelity be- 
ing related to the absence of systematic errors of the mathematical model, and reliabi- 
lity being the possibility of detection, localization and elimination of blunders. 
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Accuracy is the term covering all the three quoted concepts. In recent publications 
by other authors (e.g. Baarda, Grün, Förstner) on reliability of photogrammetric and ge- 
odetic observations, the concept reliability covers blunders as well as systematic errors. 
Here we thus introduce the new concept of fidelity. It should be noted here that the 
term reliability has another meaning in mathematical statistics. There, "reliability has 
been formulated as the science of predicting, estimating, or optimizing the probability 
of survival, the mean life, or, more generally, the life distribution of components or sy- 
stems" (Mann et al., 1974, see Preface). It is also started by Mann that the concept 
of reliability should be understood to mean "the probability of a device (or item or or- 
ganism) performing its (or his or hers) defined purpose adequately for a specified pe- 
riod of time, under the operating conditions encounted" (Mann et al., 1974, chapt. 1.1). 
With statistical methods times to failure of devices or items are studied. In the theory 
of errors in geodesy and photogrammetry statistical methods are used for detection and 
localization of blunders in a set of observations. There are common features between 
the two sciences in the use of statistics, e.g. the importance of order statistics. 
 
 
 
3.2 DEFINITIONS 
 
 

We have the model 
 
𝐴 𝑋 =  λ  . 

 
We make a series of observations on  λ ,  denoted by  L 
 

𝐸 (𝐿) =  λ   , 𝐸 �(𝐿𝑖 −  λ𝑖) (𝐿𝑖 −  λ𝑖)� =  σ2 
 
                               𝐸 �(𝐿𝑖 −  λ𝑖) �𝐿𝑗 −  λ𝑗�� = 𝐶𝑜𝑣 λ𝑖λ𝑗  . 

 
Then we can introduce the true errors  e 
 

𝐴 𝑋 = 𝐿 + 𝑒   ,   𝐸 (𝑒) =  0   ,   𝐸 �𝑒𝑖𝑒𝑗� =  𝐶𝑜𝑣 𝑒𝑖𝑒𝑗  . 
 
The individual true errors  𝑒𝑖  are unknown, and with redundant observations we have to 
introduce residuals  V  to obtain a consistent system, 
 

𝐴 𝑋 = 𝐿 + 𝑉   ;    𝑃 =  
1
σ𝑂2

 ∙  �𝐶𝑜𝑣 𝑒𝑖𝑒𝑗�
−1   , 

 
which we solve by the methods of least squares, and we get the estimates 
 

𝑋� =  (𝐴𝑇  𝑃𝐴)−1 𝐴𝑇  𝑃𝐿   , 
 

𝑉� =  (𝐴 (𝐴𝑇 𝑃𝐴)−1 𝐴𝑇 𝑃 − 𝐼) 𝐿   , 
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𝑠�𝑂2 =  𝑉�𝑇 𝑃𝑉� 𝑟⁄  ,  where  r  is the number of redundant observations. 
 
The general law of error propagation then gives the following estimation of the standard 
error of a function  𝑈 = 𝐹𝐿  of the observations, viz. 
 

𝐶𝑜𝑣 (𝑈𝑈𝑇) =  𝑠�𝑂2  𝐹𝑃−1 𝐹𝑇    . 
 
Let, e.g. 
 

𝑈 =  𝑋�  then  𝐹 =  (𝐴𝑇  𝑃𝐴)−1 𝐴𝑇𝑃 

and 𝐶𝑜𝑣 �𝑋�𝑋�𝑇� =  𝑠�𝑂2  (𝐴𝑇 𝑃𝐴)−1 =  𝑠�𝑂2  𝑄   ; 

or 𝑈 =  𝑉� ,  then  𝐶𝑜𝑣 �𝑉�𝑉�𝑇� =  𝑠�𝑂2  (𝑃−1 − 𝐴𝑂)  ,   𝐴𝑂 = 𝐴 (𝐴𝑇  𝑃𝐴)−1 𝐴𝑇    . 
 
For  𝑃 = 𝐼  we get 
 

𝑄𝑉�𝑉� = 𝐼 − 𝐴𝑂    . 
 
 
Now, we mean with precision all measures of variation based on  𝑠�𝑂2 , e.g. 

standard errors of unknowns  𝑥�𝑖 : 
 
𝑠�𝑥�𝑖 =  𝑠�𝑂 �𝑞𝑖𝑖    , 

 
or the standard error of any other function of the observations. A general measure of 
precision of an adjustment (a project, a design of an experiment) is 
 
a) 𝑡𝑟(𝑄) 𝑝⁄  which is the average variance of the estimated unknowns measured in 
  units of  σ2 , and 
 
b) the   𝑠�𝑂 which is an estimate of  σ . 

 
By model fidelity we mean the absence of bias of the estimates, and a lack of fi- 

delity should measure the departure from the mathematical expectations in the model, 
which is the same as the systematic error  D  of the model 

 
𝐷 = 𝐴 𝑋 − 𝐸(𝐿)   . 

 
This means that our assumptions are not fulfilled. To check this, we have to design cer- 
tain experiments to test if  𝐷 = 0 . This can be done with so-called controlled experi- 
ments, with testfields, etc. 
 

By reliability we mean the possibility to detect, localize and eliminate blunders 
from the observations. If we suspect blunders in a group of observations, and if they 
form a submatrix 

 
�𝑃2−1 − 𝐴2𝑂�  in  (𝑃−1 − 𝐴𝑂) , then this submatrix must be non-singular. 
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As  (𝑃−1 − 𝐴𝑂)  is idempotent with rank =  𝑟 , not all blunders can be detected. 
The system can be said to be reliable if as many as  (𝑏𝑂 < 𝑟)  blunders in any combina- 
tion can be detected. 
 
General measures of the reliability can be 
 

 a) 𝑡𝑟(𝐼 − 𝐴𝑂)
𝑛

 =  
𝑟
𝑛

 

   

or b) ��(𝐼 − 𝐴𝑂)𝑖𝑖

𝑛

𝑖

�
1 𝑛⁄

 ≤  
𝑟
𝑛

 

   

or c) 0 ≤��(𝐼 − 𝐴𝑂)𝑖𝑖 −
𝑟
𝑛
�
2
𝑟

𝑛

𝑖

 ≤  
𝑟
𝑛

   . 

 
 

The trace  𝑡𝑟(𝐼 − 𝐴𝑂)  is often referred to as a measure of the global reliability. 
The individual diagonal elements  𝑞𝑉𝑖𝑉𝑖  are measures of the local reliability. 

 
The individual  𝑞𝑉𝑖𝑉𝑖   measures the contribution of the observation  𝑙𝑖  to the global 
reliability. 
 

Baarda (1976) has introduced the concepts of internal and external reliability. 
(See also Förstner (1979) and Grün (1979b)). If all observations are equally well 
controlled (all  𝑞𝑉𝑖𝑉𝑖   taking the same value), then the internal reliability is high. 
If nondetected blunders influence the estimated variables to a very small extent in the 
adjustment, the external reliability is high. 
 
 
 
3.3 EXPERIMENTAL  DESIGN 
 
 

Requirements and specifications for experiments and projects can be formulated in 
several ways and can have several parameters. Some of these parameters are contradic- 
tory, others are not. For the contradictory parameters an optimizing function has to be 
found. Very often the formulations are verbal, and as such they are of little help to the 
scientist or engineer for the design of the model. New formulations have then to be de- 
rived. As parameters in the new formulation we can have 

 
- -precision: 𝑠𝑂2  ∙ 𝑄 and derivations thereof can be used; 

 𝑠𝑂2 → min can be obtained from including additional parameters; 

 𝑡𝑟 𝑄 → min more observations per photo, more photos, more photo 
  stations in locations such that new pairs of rays do not lie in 
  already established epipolar planes; 
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 precision of unknowns and precision of functions of unknowns can be 
traced back to the above items, viz.  𝑠𝑂2  and  𝑄 . 

 
- - fidelity: no systematic errors in the model, i.e.  𝐴 𝑋 = 𝐸 (𝐿) , 

or in functions of the estimate  𝑋� ; 
this can be tested by controlled experiments. 
Departures between discrepancies in check points 
and the corresponding precision is a measure of the 
remaining systematic errors. Fidelity can also be 
checked by inspection of the residuals. The stand- 
ardized residuals shall be independent and follow 
a normal distribution. It is more difficult to design 
experiments to guarantee just precision. 

 
- - reliability: the design matrix  A  should be such that each obser- 

vation is at least double checked, so that if one ob- 
servation is deleted due to a blunder, there still is 
a possibility to detect (but perhaps not to localize) 
blunders in the remaining observations. The conse- 
quence will be that the redundancy should be rather 
high, e.g. 
𝑟 = 2𝑝  or which is the same  𝑛 = 3 𝑝  and the relative 
redundancy  𝑟 𝑛⁄   thus 2/3 in the planning stage. 
The design matrix  A  influence the matrix  (𝐼 − 𝐴𝑂) , 
and the aim should be to have the same magnitude on 
all diagonal elements of  (𝐼 − 𝐴𝑂) . 

 
- - economy: this can be expressed in terms of risks for the producer 

(photogrammetrist) or the consumer (client, end-user), 
or in cost-functions which consider the cost for the mea- 
suring operations and costs for damages caused by errors 
in the results due to lacking precision, fidelity and re- 
liability. Here decision theory is of interest. 

 
 
 
4 B L U N D E R S   I N   P H O T O G R A M M E T R I C   D A T A  
 
 
4.1 BLUNDERS  IN  ADJUSTMENT 
 
 

Up to now detection, localization and elimination of blunders from photogramme- 
tric data has primarily been based upon the operational skill of the photogrammetrist. 
Methods have been designed to avoid blunders rather than accepting their presence in 
observations, which logically lead to blunder detection procedures. Theoretical studies 
and practical examples for blunder detection, localization and elimination in photogram- 
metric data have been published by a few authors during the last decade, e.g. 
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Förstner (1976), (1978) and (1979), Grün (1978a), (1978b) and (1979b), 
Bouloucos (1979), Molenaar (1976) and (1978), Stefanovic (1978a) and (1978b), 
Jacobsen (1980). 

 
All these studies are based on a so-called "data-snooping" according to the 

theories developed by Baarda (1965), (1967), (1968) and (1976) for geodetic obser- 
vations, just to mention a few important papers from the rich production by this author. 
Pelzer (1979) has demonstrated the method on some clear and simple examples in sur- 
veying. Recently a new theoretical approach to blunder detection in surveying and ge- 
odesy has been presented by Heindl and Reinhart (1979) based on linear programming 
and tolerance for the residuals. This linear formulation obviously reveals the blunders 
easier than the residuals after a least squares adjustment. The computational effort, 
however, seems to be larger with linear programming. 

 
With matrix notations as in Bjerhammar (1973) the effect of blunders in least 

squares adjustment can be summarized as follows: 
 

Functional model 𝐴 𝑋 = 𝐿 + 𝑒 
 
 𝐸 (𝐿) =  λ 
 
 𝐸 (𝑒) =  0   ,   𝐶𝑜𝑣 (𝑒𝑒𝑇) =  σ2  ∙ 𝐼   . 
 
Matrix  A  has dimensions  (𝑛,𝑝)  and rank  (𝐴) = 𝑝 ,   𝑟 = 𝑛 − 𝑝   . 
 
We now have blunders (denoted  ∇  nabla) in the observations so that 
 

𝐴 𝑋 = 𝐿 + 𝑒 + ∇   . 
 
The number of blunders must be less than  𝑟 = 𝑛 − 𝑝 . 
 
The problem is that we do not know in which observations these blunders occur. Thus, 
we proceed in the standard way of least squares adjustment by writing 
 

𝐴 𝑋 = 𝐿 + 𝑉 
 
�𝑉 = 𝑒 + ∇ + 𝐴 �𝑋� − 𝑋��   , 

 
from which we estimate 
 

𝑋� = (𝐴𝑇  𝐴)−1 𝐴𝑇𝐿   . 
 
As we have blunders in the observations the expectation of  X  is 
 

𝐸 (𝑋) =  (𝐴𝑇 𝐴)−1 𝐴𝑇  𝐸 (𝐿 + ∇) = 𝑋 + (𝐴𝑇  𝐴)−1 𝐴𝑇 𝑉   . 
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We also have the influence from the blunders on the residuals 
 

𝑉� =  (𝐴 (𝐴𝑇 𝐴)−1 𝐴𝑇 − 𝐼) (𝐿 + ∇)  , 𝐴𝑂 = 𝐴 (𝐴𝑇  𝐴)−1 𝐴𝑇 
 
so that the blunders are distributed among the residuals by the operator  𝐴𝑂 − 𝐼 . 
The weight coefficient matrix of the residuals is given by 
 

𝑄𝑉�𝑉� = 𝐼 − 𝐴𝑂    . 
 
If  𝜎2  is unknown, it is estimated by the estimator 
 

𝑠𝑂2 =  𝑉�𝑇 𝑉� 𝑟⁄    , 
 
but since we have blunders, 
 

𝑉�𝑇 𝑉� =  𝐿𝑇 (𝐼 − 𝐴𝑂) 𝐿 +  ∇𝑇 (𝐼 − 𝐴𝑂) ∇ + 2 ∇𝑇 (𝐼 − 𝐴𝑂) 𝐿   . 
 
Thus, the bias is given by the two last terms, which is the sum of the squared blunders 
times the corresponding diagonal elements of  (𝐼 − 𝐴𝑂) , plus twice the sum of the pro- 
duct of the blunders and the correct observation, multiplied by the same elements. The 
sum is taken over the observations that contain blunders, the problem still being that we 
do not know where the blunders are. 
 

Suppose for a moment that we have blunders in 𝑏 of the 𝑛 observations, forming 
group 2; the observations in group 1 are assumed without blunders. 

 
𝐴1 𝑋 =  𝐿1 + 𝑉1 
 
𝐴2 𝑋 =  𝐿2 + 𝑉2 + ∇ 
 
𝑄1     =  (𝐴1𝑇 𝐴1)−1 
 
𝑄      =  (𝐴1𝑇  𝐴1 + 𝐴2𝑇  𝐴2)−1 
 

Rank  (𝐴1) = 𝑝 ,  rank  (𝐴2) = 𝑏 , 𝑛 − 𝑝 = 𝑟 , 𝑟 ≥ 𝑏  . 
 
The estimate of  𝑋  will be 
 

𝑋� = 𝑄 𝐴1𝑇  𝐿1 + 𝑄 𝐴2𝑇 𝐿2 + 𝑄 𝐴2𝑇  ∇ 
 

where 𝑄 =  (𝐴𝑇 𝐴)−1         𝐴 = �𝐴1𝐴2
� 

 
The residuals will be 
 

𝑉�1 =  (𝐴1 𝑄 𝐴1𝑇 − 𝐼) 𝐿1 + 𝐴1 𝑄 𝐴2𝑇  𝐿2 + 𝐴1 𝑄 𝐴2𝑇  ∇ 
 
𝑉�2 =  𝐴2 𝑄 𝐴1𝑇 𝐿1 + (𝐴21 𝑄 𝐴2𝑇 − 𝐼) 𝐿2 + (𝐴2 𝑄 𝐴2𝑇 − 𝐼) ∇   . 
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Now we are interested to see what the result would be if we used only group 1 
for the estimation. As we already have computed inverse  𝑄 = (𝐴𝑇  𝐴)−1  and esti- 
mate  𝑋� , we use the method of sequential adjustment (see Mikhail (1976), chapt. 13 
and app 9) to find the inverse  𝑄1 = (𝐴1𝑇  𝐴1)−1 , the estimate  𝑋�1 , and the residu- 
als  𝑉�1  from the adjustment of group 1. 

 
 

The new inverse after deletion of group 2 will be 
 

 
𝑄1 = 𝑄 { 𝐼 + 𝐴2𝑇 (𝐼 − 𝐴2 𝑄 𝐴2𝑇)−1 𝐴2 𝑄 }   . 

 
 
As we expect blunders to occur only in a limited number of observations, the inversion 
of the matrix  (𝐼 − 𝐴2 𝑄 𝐴2𝑇)  will be rather easy to be calculated, as the dimensions 
are small. However, the inverse must exist, a problem to that we will return to later. 
The new estimate of  X  will be 
 
 

𝑋�1 =  𝑋� + 𝑄 𝐴2𝑇 (𝐼 − 𝐴2 𝑄 𝐴2𝑇)−1 𝑉�2   . 
 
 
The new residuals of group 1 will be 
 
 

𝑉�1 = 𝐴1 𝑋�1 − 𝐿1   . 
 
 
The old residuals were 
 
 

𝑉�1 = 𝐴1 𝑋� − 𝐿1   , 
 
 
and thus the new ones can be calculated from the old ones by 
 
 

𝑉�1 = 𝑉�1 + 𝐴1�𝑋�1 − 𝑋�� =  𝑉�1 + 𝐴1 𝑄 𝐴2𝑇  (𝐼 − 𝐴2 𝑄 𝐴2𝑇)−1 𝑉�2   . 
 
 
It can be shown that the sum of the squared residuals will be reduced from  𝑉�𝑇 𝑉� 
to  𝑉�1𝑇 𝑉�1  after excluding group 2 from the adjustment, viz. 
 
 

𝑉�1𝑇 𝑉�1 =  𝑉�𝑇 𝑉� −  𝑉�2𝑇 { 𝐼 + 𝐴2 𝑄 𝐴2𝑇  ( 𝐼 + 𝐴2 𝑄1 𝐴2𝑇  ) } 𝑉�2   . 
 
 
The new matrix of weight coefficients,  𝑄𝑉�𝑉� ,  for the residuals  𝑉�1  can be obtained 
directly from the old matrix  𝑄𝑉�𝑉�  : 
 
 

𝑄𝑉�1𝑉�1 = 𝐼 − 𝐴1 𝑄 𝐴1𝑇 −  𝐴1 𝑄 𝐴2𝑇  (𝐼 − 𝐴2 𝑄 𝐴2𝑇)−1 𝐴2 𝑄 𝐴1𝑇 
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where 
  

𝐼 − 𝐴1 𝑄 𝐴1𝑇 =  𝑄𝑉�1𝑉�1 
 
 
𝐼 − 𝐴2 𝑄 𝐴2𝑇 = 𝑄𝑉�2𝑉�2 
 
 
       𝐴1 𝑄 𝐴2𝑇 =  𝑄𝑉�1𝑉�2 
 
 
       𝐴2 𝑄 𝐴1𝑇 = 𝑄𝑉2𝑉1 
 

 
 

     𝑄𝑉�1𝑉�1 
 
 
 
 
 

 
𝑄𝑉�1𝑉�2 

 
 
 
 
 

     𝑄𝑉�2𝑉�1 𝑄𝑉�2𝑉�2 

 
 
which are all submatrices of the old matrix  𝑄𝑉�𝑉�   . 
 
The new discrepancies for group 2 using the new estimate of  X  from group 1 is 
𝑉�2 =  𝐴2 𝑋�1 − 𝐿2  .  This can directly be obtained from the old  𝑉�2  and the matrix 
( 𝐼 − 𝐴2 𝑄 𝐴2𝑇)−1   as   𝑉 = ( 𝐼 − 𝐴2 𝑄 𝐴2𝑇)−1 𝑉�2   .   Or of group 2 has only one ob- 
servation  𝑣�2𝑖 =  𝑣�2𝑖 𝑞2𝑣𝑖𝑣𝑖⁄   . 
 
 
Data-snooping according to Baarda is based on a test, where the test statistic 
𝑤𝑖 =  𝑣𝑖 𝑠𝑂 �𝑞𝑣𝑖𝑣𝑖⁄   is compared to a critical value that is found after fixing the 
risk and power for a simultaneous test of the hypothesis  𝐻0  that there are no blunders 
in the observations, against the group of alternative hypotheses  𝐻𝑖  that there is a blun- 
der in observation number  𝑖 .  In this way, the blunders are localized to a limited 
number of observations. 
 

The error propagation from group 1 to group 2 is given by 
 
𝐶𝑜𝑣 𝑉�2 =  𝑠𝑂 ( 𝐼 + 𝐴2 𝑄1 𝐴2𝑇 )  . 

 
It can be shown that  𝐼 + 𝐴2 𝑄1 𝐴2𝑇 =  ( 𝐼 − 𝐴2 𝑄 𝐴2𝑇 )−1  . 

 
 
Like Baarda, most authors have based the test on the assumption that there is not 

more than one blunder in the data. Stefanovic (1978a) has suggested a strategy for di- 
viding the observations in two groups, one with observations that are free from blunders 
and the other with observations contaminated by mistakes, blunders and outliers. He 
presupposes known critical values for the sum of squared residuals belonging to each 
group, and these critical values are based on a priori known variances for the observa- 
tions that are dealt with. 
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4.2 A  SUGGESTED  TEST  STATISTIC 
 
 

In the following we will to try to find a method to group the observations without 
any a priori information on the variances. This is also often the most realistic starting 
point when dealing with close range photogrammetry, where the conditions determining 
the variances may vary considerably and thus are difficult to predict. 

 
The new discrepancies  𝑉�2  between the observations  𝐿2  of group 2 and their 

prediction  𝐴2 𝑋�1  based on the observations in group 1 also contain the blunders, and 
we now want to describe their magnitude. We form the test statistic 

 
 

𝐹𝑚𝑎𝑥 =  
( 𝑉�2 + ∇ )𝑇 ( 𝐼 + 𝐴2 𝑄1 𝐴2𝑇  )−1 ( 𝑉�2 + ∇ )

𝑉�1𝑇 ( 𝐼 − 𝐴1 𝑄1 𝐴1𝑇  )−1 𝑉�1
   . 

 
 
If the blunder  ∇ ≠ 0 ,  the nominator increases with increasing  ∇ .  Thus, if 

𝐹𝑚𝑎𝑥 >  𝐹𝑐𝑟𝑖𝑡𝑚𝑎𝑥 ,  where  𝐹𝑐𝑟𝑖𝑡𝑚𝑎𝑥  is a critical value for the test, we regard the observa- 
tions in group 2 as being contaminated by blunders. The  𝐹𝑚𝑎𝑥 is a ration of two qua- 
dratic forms, yet in this case they are not independent because of two reasons: firstly, 
they originate from the same adjustment, in which case it is necessary that 
𝐴1 𝑄 𝐴2𝑇 = 0  for the two quadratic forms to be independent (see Graybill (1961), 
Theorem 4.21); secondly, we select the observations in such a way that we have the 
largest standardized residuals in the nominator, and the smallest in the denominator. 
If these two restrictions would not be at hand, we easily could find the critical values 
from the F-distribution (Snedecor´s variance ratio). As this is not possible, we try 
to derive the distribution of  𝐹𝑚𝑎𝑥  under the conditions mentioned. An algebraic de- 
rivation is extremely difficult, and the possible alternative method seems to be computer 
simulation. However, also here the linear dependence through  𝐴1 𝑄 𝐴2𝑇  may be dif- 
ficult to formulate in a general way. The grouping of the residuals, on the other hand, 
is rather straight forward. 

 
 
 

4.3 THE  𝑄𝑉𝑉 - MATRIX 
 
 

The idempotent properties of  𝑄𝑉𝑉  mean that 
 
𝑄𝑉𝑉  ∙  𝑄𝑉𝑉 =  𝑄𝑉𝑉 
 

𝑞𝑖𝑖 =  �𝑞𝑖𝑗2 =  �𝑞𝑘𝑖2
𝑛

𝑘

𝑛

𝑗

 

 
0 ≤  𝑞𝑖𝑗  ≤ 1   . 
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Thus,  𝑞𝑖𝑖  is always the absolute largest element in its row or column. If  𝑞𝑖𝑖 = 1   
all other elements are zero.  If   𝑞𝑖𝑖 = 0   all other elements of row   𝑖   are   0 
which happens when no other equations in  A  check the observation  𝑙𝑖  belonging 
to   𝑞𝑖𝑖  .   A blunder in observation   𝑙𝑖   influences the unknowns   X   directly.  This, 
e.g., is the case for the image coordinates in the epipolar planes of a single stereopair. 
This becomes directly evident when the epipolar plane is parallel to one image coordi- 
nate axis. The partial correlation coefficients of the residuals  𝑉2  can be calculated 
from the submatrix  ( 𝐼 − 𝐴2 𝑄 𝐴2𝑇  )  by dividing rows and columns by the square roots of 
the diagonal elements 
 

𝑟𝑖𝑗 =  𝑞𝑣𝑖𝑣𝑗 �𝑞𝑣𝑖𝑣𝑖  ∙  𝑞𝑣𝑗𝑣𝑗    .�  

 
If  𝑟𝑖𝑗 = 1 ,  the observations  𝑖  and  𝑗  fully compensate each other. An error in 
one of the observations will contribute to the residuals in  𝑖  and  𝑗  with the same 
amount when we chose 
 

�𝑞𝑣𝑖𝑣𝑖  and  �𝑞𝑣𝑗𝑣𝑗 ,  respectively, as units. 

 
The localization of a blunder and its designation to one of the observations  𝑖   

or  𝑗  is not possible. It can be either of the observations. The inverse of the subma- 
trix  ( 𝐼 − 𝐴2 𝑄 𝐴2𝑇  )  containing observations  𝑖  and  𝑗  does not exist as its determi- 
nant is zero.  Thus, the sequential adjustment routine is not applicable for both observa- 
tions  𝑖  and  𝑗 .  A least one of them necessarily lies in  𝐴1 ,  in order to main- 
tain the rank  (𝐴1) = 𝑝 .  The observations  𝑖  and  𝑗  are the only ones that check 
each other. Such design matrices  A  yielding these effects should be avoided in order 
to maintain the reliability of the system. To be able to localize blunders we must have 
"double" redundancy of all observations. If we want to be able to localize  𝑏  blun- 
ders in an adjustment of  𝑛  observations with  𝑟  degrees of freedom  (𝑟 > 𝑏) ,  this 
requirement can be transferred to the condition that all �𝑛𝑏�  combinations of observa- 

tions leading to group 2 must give a non-singular submatrix  ( 𝐼 − 𝐴2 𝑄 𝐴2𝑇  )  of the to- 
tal matrix  𝑄𝑣𝑣 ,  so thatr the inverse of the submatrix exists. For direct measurements 
of the same unknown (mean of repeated settings) this means that the diagonal elements 
of  𝑄𝑣𝑣  should be larger than  2/3 .  Single redundancy yields  𝑞𝑣𝑣 = 1/2 .  Fur- 
ther, the correlation coefficients between observations must not be equal to ± 1, their 
magnitude should preferably be smaller than 0.5 . 
 
 
 
4.4 DISTRIBUTION  FUNCTION  OF  𝐹𝑚𝑎𝑥 
 
 

Methods for the exact derivation of distribution functions can be found in the 
more advanced textbooks on mathematical statistics, e.g. Kendall - Stuart (1969), 
chapt. 11. In the same book we also find the distribution of the  𝑟 − 𝑡ℎ  order sta- 
tistic, (formula 11.34). Further derivations for order statistics are found in Mann et al 
(1974), chapt. 3.5 and 3.8, and Rohatgi (1976) chapt´s 4.5 and 13.6. 



21 

(1) The parent distribution of  𝑥𝑖  is  𝑓(𝑥) = 1
√2 𝜋

 𝑒−𝑥2 2⁄  

 
 
(2) The distribution function of  𝑦𝑖 = 𝑥𝑖2 is 
 

𝑓(𝑦) =
1

�2 𝜋 𝑦
 𝑒
−𝑦

2�   , 𝑦 ≥ 0 

 
                     0                   , 𝑦 < 0 

 
 and the sum  𝑧  of two  𝑦𝑖 ,  𝑧 = 𝑦1 + 𝑦2  (point error) is distributed 
 

𝑓(𝑧) =
1
2

 𝑒−𝑧 2�  , 𝑧 ≥ 0 
 
                   0        , 𝑧 < 0  . 

 
 
(3) The distribution function of the  𝑟 − 𝑡ℎ order statistic  𝑍(𝑟)  is 
 

𝐹�𝑍(𝑟)� =
𝑛!

(𝑟 − 1)!  (𝑛 − 𝑟)!
  � �  𝑓(𝑍) 𝑑𝑧 

𝑍𝑟

0

�

𝑟−1

  � 1 −�  𝑓(𝑍) 𝑑𝑧 

𝑍𝑟

0

�

𝑛−𝑟

 ∙ 𝑓 

 
 
(4) The joint distribution of the  𝑟  smallest  𝑍𝑖  is 
 

𝑓𝑚𝑖𝑛 = 𝑓�𝑍(1) … 𝑍(𝑟)� =
𝑛!

(𝑛 − 𝑟)!
  � 1 −�𝑓(𝑍) 𝑑𝑧 

𝑍

0

�

𝑛−𝑟

  �𝑓(𝑍𝑖)  .
𝑟

𝑗=1

 

 
 
(5) The joint distribution of the  𝑏  largest  𝑍𝑖  is 
 

𝑓𝑚𝑎𝑥 = 𝑓�𝑅(𝑛−𝑏) … 𝑍(𝑛)� =
𝑟(𝑛)

𝑟(𝑛 + 1)
  � � 𝑓(𝑍) 𝑑𝑧 

𝑍(𝑛−𝑏)

0

�

𝑛−𝑏

 

 
 

               � 𝑓(𝑍) 𝑑𝑧  ∙   � 𝑓(𝑍) 𝑑𝑧 …  � 𝑓(𝑍) 𝑑𝑧 ∙ 𝑏 ∙ 𝑓(𝑍)  .

𝑍(𝑛)

𝑍(𝑛−1)

𝑦(𝑛−𝑏+2)

𝑦(𝑛−𝑏+1)

𝑦(𝑛−𝑏+1)

𝑦(𝑛−𝑏)
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(6) The distribution of  𝐹(𝑏,𝑟)
𝑚𝑎𝑥 = 𝑢  can then be found from 

 
𝐻(𝑢) = 𝐹1(𝑢𝑣)  𝑓2(𝑣) 𝑑𝑣 
 

 where 

𝐹1 = � 𝑓𝑚𝑎𝑥  𝑑𝑦  ,    𝑓2 = 𝑓𝑚𝑖𝑛

∑ 𝑦(𝑖)
𝑛
𝑛−𝑏

0

 

 

𝑢 = �𝑦(𝑖)

𝑛

𝑛−𝑏

�𝑦𝑖

𝑟

1

         𝑣 =  �𝑦(𝑖)   .
𝑟

1

�  

 
 

In (3) we have squares of integrals, and this leads to very complicated calcu- 
lations. The calculations are, however, relatively simple if the parent frequency func- 
tion is of the exponential type, viz. 

 

𝑓(𝑥) =
1
𝑎

 𝑒−
𝑥
𝑎   . 

 
Thus, if we define the squared standardized point residual for the observed image point 
as 
 

𝑧 =
𝑣𝑥2

𝜎𝑂2 𝑞𝑣𝑥𝑣𝑥
+  

𝑣𝑦2

𝜎𝑂2 𝑞𝑣𝑦𝑣𝑦
   , 

 
this is a sum of two random variables being  𝑁(0,1)  distributed, and this sum is distri- 
buted according to  𝜒2  with two degrees of freedom, 
 

𝑓(𝑧) =
1
2

 𝑒−𝑧 2�                     𝑧 ≥ 0 
 

𝐹(𝑧) = 1 − 𝑒−𝑧 2�                 𝑧 ≥ 0   , 
 
which is an exponential distribution. 
 
 

Thus, working with the squared standardized residual would open the possibility to 
derive the exact distribution functions for those test statistics that we need for testing 
hypotheses on blunders and outliers. 

 
 
Then, there is the problem of "Studentization", which arises when we do not know 

𝜎2 ,  but have to estimate the variance from observations. This has been discussed by 
Pope (1975). (See also Anscombe (1960)). In this case we use the same observations 
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to determine both  V  and  𝜎2  (internal Studentization), then nominator and denomi- 
nator were mutually dependent, and we arrive at a so-called  𝜏  (tau)-distribution for 

𝑉
𝑠𝑂 �𝑞𝑉𝑉

  . From this we have to derive the distribution of our variate  z . 

 
 

In (6) we also have to consider the linear dependence of the two quadratic forms 
originating from the same adjustment. We know that, if nominator and denominator are 
based on two independent samples from the same distribution, the F - ration will be dis- 
tributed as Snedocor´s  F  with  b  and   𝑛 − 𝑝 − 𝑏  degrees of freedom. But, first, the 
nominator contains the  b  largest values of the sample, and secondly, the independence 
of nominator and denominator requires that 

 
( 𝐼 − 𝐴2 𝑄 𝐴2𝑇 ) ( 𝐼 − 𝐴 𝑄 𝐴𝑇  ) ( 𝐼 − 𝐴1 𝑄 𝐴1𝑇 ) = 0   . 

 
(Graybill (1961), Theorem 4.21). 
 
The matrices  ( 𝐼 − 𝐴2 𝑄 𝐴2𝑇  )  and  ( 𝐼 − 𝐴1 𝑄 𝐴1𝑇 )  are two hyperdiagonal submatrices 
of  ( 𝐼 − 𝐴 𝑄 𝐴𝑇 ) , 
 

�   
𝐼 − 𝐴1 𝑄 𝐴1

𝑇 −𝐴1 𝑄 𝐴2
𝑇

−𝐴2 𝑄 𝐴1
𝑇    𝐼 − 𝐴2 𝑄 𝐴2

𝑇
  �   . 

 
The quadratic forms are calculated over all observations, and thus we have to multiply 
the three matrices 
 

�   
𝐼 − 𝐴1 𝑄 𝐴1𝑇    0

     
0    0

   �       �   
𝐼 − 𝐴1 𝑄 𝐴1𝑇 −𝐴1 𝑄 𝐴2𝑇

−𝐴2 𝑄 𝐴1𝑇    𝐼 − 𝐴2 𝑄 𝐴2𝑇
  �       �

0 0

0    𝐼 − 𝐴2 𝑄 𝐴2𝑇
�   , 

 
which obviously is equal to zero only if 
 

( 𝐼 − 𝐴1 𝑄 𝐴1𝑇 ) (−𝐴1 𝑄 𝐴2𝑇  ) ( 𝐼 − 𝐴2 𝑄 𝐴2𝑇  ) = 0   . 
 
This is the case if and only if  𝐴1 𝑄 𝐴2𝑇 = 0  which happens when the design matrix A 
is such that the observations of group 1 and 2 determine two different groups  A  and  B 
of unknowns, i.e. we could have adjusted the two groups separately instead. 
 
 

Since the exact distribution function seems to be very difficult to derive by alge- 
braic means, there remains the possibility to calculate the distribution by means of com- 
puter simulation. Some hints can be found in Mann et al (1974), chapt. 7.2. The 
distribution function has to be simulated for different sizes of group 1 and group 2, and 
for each combination of sizes some 10 000 samples have to be simulated. The interest- 
ing percentage values (e.g. 5%, 1%, 0.1%) should be printed in tables. There is a 
particular problem to be solved, namely the simulation of the linear dependence between 
nominator and denominator through off-diagonal elements of the  𝑄𝑣𝑣  matrix. 
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Further, simulations of the non-central distribution are then needed for the calculation 
of the power of the test. Thus, computer simulation is not a trivial task either. 

 
 

4.5 BLUNDER  LOCALIZATION 
 

Let us now return to the unsolved problem of dividing the observations into two 
groups. Let us try the following procedure. 

 
(0) Consider all observations in group 1. Set  𝑏𝑂 < 𝑟  as the maximum number of 

blunders to be tested. Make an initial adjustment.  Go to (2). 
 

(1) Make a sequential adjustment of all observations in group 1. 
 

(2) Compute the standardized residuals of group 1 
 

𝑤𝑖 = 𝑣𝑖 𝑠𝑂  �𝑞𝑣𝑖𝑣𝑖⁄    . 
 

(3) Select the observation in group 1 with max  |𝑤𝑖|  and refer it to group 2. Check 
if there is another residual 

 
 𝑣𝑗  having  𝑞𝑣𝑖𝑣𝑗 �𝑞𝑣𝑖𝑣𝑖  ∙  𝑞𝑣𝑗𝑣𝑗� = ± 1 , if so, they are 100 % correlated 

 and blunder location is not possible. The blunder can be either of the observa- 
tions. The inverse of the submatrix corresponding to these residuals in  𝑄𝑣𝑣  does 
not exist. If this happens or if the number of blunders have reached  𝑏𝑂  the pro- 
cedure is stopped. Otherwise proceed to (4). 

 
(4) Test the variance ratio between group 2 and 1. If the hypothesis  𝐻𝑂 ∶ 𝑉𝑎𝑟 1 = 

𝑉𝑎𝑟 2  is accepted it might be so that there are more blunders that influence 
𝑉𝑎𝑟 1  so that the test is biased and therefore go to (3) and select the next abso- 
lutely largest  |𝑤𝑖| . 

 
(5) If  𝐻𝑂  is rejected the observations in group 2 are regarded to contain blunders. 

Estimate them : 
 

𝑉 = (𝐼 − 𝐴2 𝑄 𝐴2𝑇)−1 𝑉�2 = (𝐼 + 𝐴2 𝑄1 𝐴2𝑇) 𝑉�2   . 
 
 Try to explain the blunder and correct the observation accordingly. Go to (6). 

If it is not possible to explain and correct the blunder, refer the observation to 
group 3 which is outside the procedure. Go to (2). 

 
(6) Test the new discrepancies after correction of the blunders to see if the observation 

can now be recalled to group 1. If so go to (1). 
 

(7) If the correction was not successful, refer the observation to group 3. Go to (1). 
 
Another method for grouping the observations in blunder-free and mistakes is the 

following. 
 

(1) Make an initial adjustment, all observations regarded as belonging to group 1, 
set  𝐹𝑂 = 0 ,   𝑗 = 0  . 
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Graph of the procedure 
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(2) Compute the standardized residuals  𝑤𝑖  of group 1, set  𝑗 = 𝑗 + 1 . 
 
(3) Refer the absolutely largest  |𝑤𝑖|  to group 2. 
 
(4) Compute  𝑋�1,  𝑄1,  𝑉�1,  𝑉�2,  �̅�𝑂2  by sequential adjustment. 
 

(5) Calculate 𝐹𝑗 =
𝑉�2𝑇 (𝐼 − 𝐴2 𝑄 𝐴2𝑇)−1 𝑉�2
𝑉�1𝑇 (𝐼 − 𝐴1 𝑄1 𝐴1𝑇)−1 𝑉�1

 

 
(6) If  𝐹𝑖 ≥ 𝐹(𝑗,𝑟)𝑝%

𝑚𝑎𝑥   then go to (2). 
 
(7) If  𝐹𝑗 < 𝐹(𝑗,𝑟)𝑝%

𝑚𝑎𝑥   then recall the last  (the  𝑗 ∶ 𝑡ℎ )  observation to group 1, 
 and the observations in group 2 are now regarded as blunders. 
 
(8) Stop blunder localization. 
 
 

These methods are suggested by intuition and they have to be tested in theoretical 
and empirical studies. The effectiveness of the localization can preferably be studied 
by computer simulation. 
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5 S T O C H A S T I C   P R O P E R T I E S   O F   I M A G E  
 C O O R D I N A T E S  
 
 
5.1 TRUE  ERRORS  AND  RESIDUALS 
 
 

In most adjustment it is assumed that the observations are normally distributed 
with mean zero and a common variance  𝜎2 , and that the observations are independent: 

 
𝐴 𝑋 = 𝐿 + 𝑒  , 𝐸(𝑒) =  0  , 

 
 𝐸�𝑒𝑖𝑒𝑗𝑇� =  𝜎2 𝐼 

 
The equations are given the same weight  𝑃 = 𝐼−1 = 𝐼 . 
Not very seldom, the equations are given different weights  P , based on the assumption 
that the observations are independent and have different variances  𝜎𝑖2 : 

 
𝐸�𝑒𝑖𝑒𝑗𝑇� =  𝜎2 𝐷 , 𝑃 = 𝐷−1   (𝐷: 

 
It is very uncommon that the observations in the collinearity model (chap. 2) are 

given the stochastic properties saying that the observations are correlated (or even de- 
pendent) and have different variances 

 
𝐸�𝑒𝑖𝑒𝑗𝑇� =  𝜎2 𝐷1 2⁄  𝐶 𝐷1 2⁄ = 𝐶𝑜𝑣 , 

 

𝑃 =
1
𝜎2

 𝐶𝑜𝑣−1 =  𝐷1 2⁄  𝐶−1 𝐷−1 2⁄  . 
 

C  is a correlation matrix with  𝑐𝑖𝑖 = 1  in the main diagonal, and the off-diagonal 
elements are  −1 ≤ 𝑐𝑖𝑗 ≤ 1 . 
 
𝐷1 2⁄   is a diagonal matrix with elements equal to the square root of the elements in  D . 
 
𝐷−1 2⁄   is the inverse of  𝐷1 2⁄  . 
 

The information in the weight matrix  P  is known a priori, i.e. before the ad- 
justment; a priori weights of the observations are derived from the a priori variances 
and covariances. The individual true errors  e  of the observations  L , however, are 
not known generally, and the adjustment is based on the equations 

 
𝐴 𝑋 = 𝐿 + 𝑉 . 

 
The properties of  V  sometimes have been studied in order to check the assumption on 
the stochastic properties of  e . 
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Very often, there have been produced histograms showing the distribution of  𝑣𝑖 . 
(see e.g. Hallert et al (1964), (1967)). The  𝜒2 -test has been applied to show the 
normal distribution. Vector diagrams have been plotted to show dependence or independ- 
ence of the residuals. Sometimes a dependence has been described as function of the 
distance between pairs of points in the image, the model or the block; Torlegård (1967), 
Kupfer (1973), Ackermann (1978). Correlations between observations in different pho- 
tos having the same location in the image have been studied by Ackermann (1978). 
Bachmann, Hawawini (1978) have studied the correlation between observations as a 
function of time. Hallert (1967), Morén (1967) and Brown (1969) have studied the 
variation of the magnitude of the residuals as a function of the radial distance from the 
principal point. 
 

In almost all of these investigations the residuals are used directly as they appear. 
The residuals  V  have been used as observations on the true errors  e . This is an appro- 
ximation that can be justified sometimes, but far from always. We know that the residu- 
als are functions of the observations and the design matrix  A 

 
𝑉 = (𝐴𝑂 − 𝐼) 𝐿  . 

 
If we happened to know the true error  e , they will be mixed in the residuals through 
the relation 
 

𝑉𝑒 = (𝐴𝑂 − 𝐼) 𝑒  , 
 
but then the adjustment is an unnecessary operation, because the unknowns can directly 
be determined from the consistent system of equations  𝐴 𝑋 = 𝐿 + 𝑒     with  𝑛 = 𝑝  
equations, the only condition being rank  (𝐴) = 𝑝 . 
However, the dimensions of  (𝐴𝑂 − 𝐼)  are  (𝑛,𝑛) , and the rank  (𝐴𝑂 − 𝐼) = 𝑟 = 
𝑛 − 𝑝 , so it is, in principle, impossible to find the true errors from the residuals. 
But what we can do is to derive the covariance matrix for the residuals, and use the 
standardized residuals  𝑤𝑖  for our further studies. 
 

𝐶𝑜𝑣 𝑉 = 𝜎2 (𝐼 − 𝐴𝑂) = 𝜎2 𝑄𝑣𝑣 
 

       𝑤𝑖 = 𝑣𝑖 𝜎 �𝑞𝑣𝑖𝑣𝑖⁄   . 
 

This, anyhow, is better than using the residuals directly, especially if the  𝑞𝑣𝑖𝑣𝑖 
vary considerably. If all residuals have the same precision (i.e. the same  𝑞𝑣𝑖𝑣𝑖 ), 
the standardization is not very important for tests on distribution and correlations. 
 

The variation of the  𝑞𝑣𝑖𝑣𝑖  terms depends very much on the homogeneity and 
symmetry of the geometry behind the observations. As an example, we can use the af- 
fine coordinate transformation on fiducial marks. 
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Ex 5.1 
 

The four mid-side marks common in Zeiss cameras yield 
 
 

𝐼 − 𝐴𝑂 =
1
4

  

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

 
 
 
where the  𝑞𝑣𝑖𝑣𝑖  all are equal. The relative is 
 

1/4 = (4 - 3) / 4 = 0.25 . 
 
 
 
Ex 5.2 
 

The four corner marks (Jena UMK, Wild RC-series) yield 
 
 

𝐼 − 𝐴𝑂 =
1
4

  

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

 
 
 
where all the  𝑞𝑣𝑖𝑣𝑖  are equal, too. The relative redundancy is again 
 

1/4 = (4 - 3) / 4 = 0.25 . 
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Ex 5.3 
 

By contrast we have the unsymmetric geometry of the fiducials in the Wild P31 
and P32 cameras, where we get 

 
 

𝐼 − 𝐴𝑂 =
1

1306  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

+1032 −274 −274 −154 −330   
+379 +379 −154 −330   

+379 −154 −330   
+147 +315   

+675   
  symmetric ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
 
 
The relative redundancy is  2612 / 1306 / 5 = (5 - 3) / 5 = 0.4 . 
 
The minimum local relative redundancy is  147 / 1306 = 0.11 , 
 
the maximum is  1032 / 1306 = 0.79 . 

 
In this case it is very important to standardize the residuals before comparison or 

blunder localization, as the ratio between the largest and the smallest  𝑞𝑣𝑖𝑣𝑖  is as 
large as  1032 / 147 = 7.0 . 
 
The main diagonal is  [ 0.79   0.29   0.29   0.11   0.50 ] . 

 
The correlations between the residuals are given by the matrix 

 
 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 −.44 −.44 −.40 −.40   
1 1 −.65 −.65   

1 −.65 −.65   
1 1   

1   
  symmetric

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
 

and from this we can see that points  2  and  3  compensate each other totally, as do 
points  4  and  5 .  Thus, we only have reliable control for blunders in point  1, 
which has no total correlation with any other point. 
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Ex 5.4 
 

For the Hasselblad camera with the  25 - point-reseau we get 
 
 

(𝐼 − 𝐴𝑂) ∙ 50 = 

 

=  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

 

40 −8 −6 −4 −2
43 −6 −5 −4

44 −6 −6
43 −8

40

          

−8 −6 −4 −2     0
−6 −5 −4 −3 −2
−4 −4 −4 −4 −4
−2 −3 −4 −5 −6
    0 −2 −4 −6 −8

43 −5 −3 −1 −1
46 −3 −2 −1

47 −3 −3
46 −5

43

          

−6 −4 −2     0    2
−4 −3 −2 −1    0
−2 −2 −2 −2 −2
    0 −1 −2 −3 −4
    2     0 −2 −4 −6

−6 −4 −2     0    2
−4 −3 −2 −1    0
−2 −2 −2 −2 −2
    0 −1 −2 −3 −4
    2     0 −2 −4 −6

44 −4 −2 −0 2
47 −2 −1

48

         

−4 −2     0     2     4
−2 −1     0     1     2
    0     0     0     0     0
    2     1     0 −1 −2
    4     2     0 −2 −4

−5 −3 −1     1     3
−3 −2     1     0
−1 −1 −1
    1     0
    3

         

−2 0 2 4 6
    0 1 2 3
    2 2 2
    4 3
    6

 

      𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐                                                                                 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐                                                                               𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

y 
↑ 
 

 

1 2 3 4 5  

6 7 8 9 10  

11 12 13 14 15 → x 

16 17 18 19 20  

21 22 23 24 25  
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Here, the variation between the largest and the smallest  𝑞𝑣𝑖𝑣𝑖  is  48 / 40 = 1.2 . 
The redundancy is  44/50 = (25 - 3) / 25 = 0.88 . 
Minimum local redundancy is  0.80  (corner point) and maximum local redundancy 
is  0.96  (center point). 

 
As the residuals in this case have approximately the same standard error it does 

not seem to be very important to standardize the residuals before comparison, analysis, 
or error detection. In the case of block adjustment of aerial triangulation the standard 
errors of the residuals are rather similar in magnitude, too. This has been discussed by 
Grün (1979b), who suggests a simplified method for data-snooping. By taking into 
consideration the variation of the standard errors of the residuals he can avoid the labo- 
rious calculation of the matrix  𝐼 − 𝐴𝑂 . 

 
For close range applications of photogrammetry, the geometry, as a rule, is such 

that the standard errors of the residuals vary considerably, and thus the standardization 
of the residuals is necessary. Furthermore, various applications have very different ge- 
ometries, and both these circumstances indicate the importance of deriving matrix 
𝐼 − 𝐴𝑂  in order to have an effective method when analyzing residuals. 

 
Now, if we study the correlations between residuals after an adjustment, we still 

cannot be sure that we know what we are doing. The correlations between the residuals 
theoretically can have three different causes: 

 
(1) A priori correlation between the true errors through the matrix  C . 
 
(2) Blunders  (∇)  that have not been detected, localized and deleted from the 

observations in the adjustment cause spurious correlation. Such blunders are 
spread around in the residuals by the operator 

 
𝑉𝑏 = (𝐴𝑂 − 𝐼) ∇  , 

 
 and if the off-diagonal elements are  ≠ 0 , which is the case when we 

have redundant observations in the adjustment to determine unknowns  X 
through indirect observations  L , then we get spurious correlation. 

 
(3) Systematic errors of the mathematical model (lacking fidelity) such that 

𝐸 (𝑒) ≠ 0  (or expressed as  𝐴 𝑋 ≠ 𝐸 (𝐿) , which is the same). The ef- 
fect of the systematic errors in the observations are also spread around in the 
same way as are blunders. 

 
 
 

5.2 EMPIRICAL  STUDIES 
 

 
Now, what type of experiment could possibly answer the question on the stocha- 

stic nature of the true errors  𝑒𝑖  in the observations  𝑙𝑖 .  Well, the causes for cor- 
relation quoted under (2) and (3) above have to be eliminated. Let us assume 
that we have been successful in the elimination of blunders using the methods described 
in chap. 4.5, and by a careful procedure, occupational skill, and other means avail- 
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able to avoid blunders. Then, we have to eliminate the effect of the systematic errors 
of the model, which traditionally can be done by repetition of the experiment under the 
same exterior conditions, so that the variation in the observations are not influenced by 
changes of the systematic errors. This, of course is impossible for aerial photography 
and block triangulations, but for close range photogrammetry in laboratory environment 
we can repeat our experiment after a short time interval, and under very similar exte- 
rior environmental conditions. Let us assume one experiment including photography, 
photographic processing, measurement and adjustment with  n  observations  𝑙𝑖  from 
which we obtain the  n  residuals  𝑣𝑖 ,  where  𝑖 = 1 …𝑛 .  The outcome of the 
experiment can be regarded as one observation point in  n -dimensional observation 
space. This experiment is now repeated  m  times, where  m  is large number, say 
100 or 200.  This gives us  m  sets of observations  𝑙𝑖  and  m  sets of residuals  𝑣𝑖𝑘 
where  𝑘 = 1 …𝑚 ;  or  m  points in  n - dimensional observation space. Thus, we 
have one sample of size  m  on the variables  𝜆𝑖 ,  the coordinate axes in the  n - 
dimensional observation space, and from this sample we are able to estimate the means 

𝜇�𝑖 = �𝑙𝑖𝑘
𝑚

𝑘=1

 and the variances 𝜎𝑖2 = ��𝑙𝑖𝑘 − 𝜇�𝑖�
2 (𝑚− 1)  .�

𝑚

𝑘=1

 

In this way we obtain  n  means  𝜇�𝑖  and variances  𝜎�𝑖2 .  Then, we can test the 
hypothesis that they all have the same mean  𝜇0 = 0  and the same variance  𝜎02 . 
Furthermore, we can also estimate the correlation between the observations by using the 
estimator  𝑟𝑖𝑗 ,  giving the estimate  𝑟�𝑖𝑗 :  

𝑟�𝑖𝑗 = ��𝑙𝑖𝑘 − 𝜇�𝑖� �𝑙𝑗𝑘 − 𝜇�𝑗�  � 𝜎�𝑖2  ∙  𝜎�𝑗2 �
𝑚

𝑘=1

  . 

 
Then the significance of  𝑟�𝑖𝑗  for all pairs  i , j  of points can be tested. It 

may even be possible to suggest a function for  𝑟�𝑖𝑗  and  𝜎�𝑖2  depending on the posi- 
tion in the photo, for  𝑟�𝑖𝑗  depending on distance between points  i , j  in the photo, 
time interval between the measurements of  𝑙𝑖  and  𝑙𝑗 ,  or something else. To find 
such a function it is necessary to use a rather large number  𝑛𝑘  of observations  𝑙𝑖  
in each experiment  k .  Similar experiments have been suggested by Pope (1975) in 
order to study the stochastic properties of observations. 
 

What has been done up to now, are studies with just one experiment  k  with a 
large  number  of  observations   𝑙𝑖 ,   thus   𝑚 = 1   and   𝑛 = 100 … 10,000 .   If 
conclusions from these studies can be made concerning the properties of true errors, this 
is very much dependent on whether or not systematic errors of the mathematical model 
have been corrected, and whether or not all blunders have been eliminated. 

 
Brown (1969) has shown in such a study that there are, for a certain aerial camera, 

functions for  𝜎2  with the position in the photo as argument. He derived two functions, 
one for the radial and another for the tangential error of image coordinates with the ra- 
dius from the principal point as independent variable. Studies by Hallert (1967) and 
Morén (1967) suggest just one function for the standard error of the image coordinates 
as a function of radius. Brown´s approach seems to be very reasonable as the physical 
reality and other knowledge also suggest different functions in radial and tangential di- 
rections. The resolution and MTF of lenses are separated in this way, and the random 
variation of the flatness of the image surface carried by the emulsion has an influence 
only in the radial direction. But, on the other hand, there are also physical matters 
that suggest the variation to be described in cartesian coordinate variables rather than 
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polar, and such a matter is the random variation of image position depending on the 
photographic processing. Brown (1969) has shown the fact that independent polar va- 
riances causes the cartesian image coordinates to be correlated. 

 
The error propagation is obtained from 
 

⎣
⎢
⎢
⎢
⎡
 
𝜎𝑥
2 𝜎𝑥𝑦

𝜎𝑦𝑥 𝜎𝑦2
 

⎦
⎥
⎥
⎥
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=
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⎤
 

 
which gives the correlation coefficient 
 

𝜌𝑥𝑦 =  ( 𝜎𝑟2 − 𝜎𝑡2 )  (⁄ 𝜎𝑟2 + 𝜎𝑡2 )  . 
 

This correlation increases if there are other physical causes that make the  x  and 
y  coordinates on the same point to be correlated. The covariances of the contributing 
components will be added. It should be noted that these studies emphasize the varianc- 
es of image coordinates of single points. Brown has not given any information on the 
covariances between different points. It is of course possible that the radial and tangen- 
tial error show correlation between different points and that such correlation can be de- 
pendent on the distance between the points and their radii from the principal point. 

 
Ackermann (1978) has shown that the correlation between different points can be 

considerably reduced after introduction of additional parameters in the mathematical mo- 
del. This is an evidence for the presence of systematic error in the model. Thus, his 
study is rather a motivation for the use of additional parameters in the adjustment, or a 
more sophisticated coordinate refinement procedure prior to the adjustment, than it is 
a determination of the stochastic behavior of the true image errors. 

 
 

5.3 CARTESIAN  OR  SPHERICAL  AND  CYLINDRICAL  COORDINATES 
 
 

Analytical photogrammetry is almost entirely based on cartesian coordinate sys- 
tems. Such a system is also the most convenient one as comparators and plotters pro- 
vide rectangular coordinates. The photos are flat, and as such easily measured with an 
x - y - digitizer. But there are also instruments to measure polar coordinates available 
for photogrammetry, e.g. the DBA "bug" comparator, and the now obsolete picture 
theodolites. The latter instrument really measures the angles in the bundle of rays that 
is reconstructed from the photo, and thus these instruments are based on a design that is 
closer to the nature of photogrammetric recordings, namely the bundles of rays and the 
angles between the rays in the bundle. 

 
It is of course no principal difficulty to convert all the cartesian-based formulae 

for analytical photogrammetry into spherical or cylindrical form. The question is what 
we would gain by doing so. Following the evaluation procedure in photogrammetry we 
find: 
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– – The mensuration if images is made in comparators that gives  x , y .  Conver- 
sion to angles is necessary. No gain. 

 
– – In both cases, relative orientation is based on series expansions, and the same 

amount of computation is needed. No gain. 
 
– – Absolute orientation seems to be more easily performed on cartesian model coor- 

dinates since the absolute coordinates most often are given in such a system. 
Here it seems to be a drawback to work with other than cartesian model coordi- 
nates. 

 
– – Block triangulation based on bundle angles can have the advantage that avai- 

lable adjustment techniques for geodetic space net works can offer some advan- 
tages, especially for simultaneous adjustment of geodetic and photogrammetric 
observations. This might be an advantage, but modern aerial triangulation me- 
thods and adjustments are now very efficient and it must be doubted if the angu- 
lar approach can offer a better method in general. 

 
– – Theory of errors might be the best field for a gain to be expected, e.g. for the 

understanding and correction of systematic and random errors that preferably are 
divided into radial and tangential components (see, e.g., Brown (1969)). For 
studies of error propagation in a stereomodel it seems to be easier to describe 
the orientation of error ellipsoids in cylindrical rather than rectangular coordi- 
nates because of the fact that point intersections lie in epipolar planes. This 
makes the error components more independent of each other. 

 
 
 
 
 
6 T H E   M U L T I - C O N C E P T   I N   C L O S E   R A N G E  
 P H O T O G R A M M E T R Y  
 
 
 
6.1 HIGH  ACCURACY  PROCEDURES 
 
 

The analytical methods provide new possibilities in order to increase the accuracy 
in photogrammetry. Accuracy here comprises precision, fidelity and reliability. The 
price for an increased accuracy has to be paid with better instruments, careful project 
planning, more observations (i.e. larger measuring times), and rigorous adjustment. 
The multi-photogrammetry concept is more related to planning, observation and adjust- 
ment than to instruments. The multi-concept is the idea of check and control in all 
phases, repetition and replication, and redundancy in the determination of every un- 
known variable. The means to reach the utmost accuracy in close range photogramme- 
try (and it may be applied to photogrammetry in general in most cases) can be summa- 
rized as follows 
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– High quality pictures for the measurements. The better one can identify object 
features to be determined, the better will be the accuracy. The importance of 
photographic quality is not always recognized by photogrammetrists who mostly 
emphasize geometric problems. Not only high geometric quality of image coor- 
dinates obtained through sophisticated camera calibration, but also photographic 
experience is important (emulsions, filters, illumination, exposure, processing 
etc.). 

 
– High precision comparators for image coordinate readings. Calibration of the mea- 

suring instrument reveals systematic errors, that have to be corrected for. 
 
– Multi-readings of all points on each plate in order to detect blunders in numbering, 

identification and recording of coordinates. Averaging reduces the variance due 
to reading the images. 

 
– Multi-fiducials in order to give redundancy in the transformation of coordinates 

from the comparator system to the camera system, and to control the departures of 
film deformation from the commonly applied conformal or affine fiducial transfor- 
mation assumptions. 

 
– Multi-targets to signalize object points in the photograph. The regularity in the 

pattern of such targets reduces the risk of measuring other images than the signa- 
lized points. Local irregularities of the imaging system (atmosphere, lens, emul- 
sion, comparator, operator, etc.) will be averaged out. 

 
– Multi-frames on each station can be arranged in several ways, e.g. 
 

1. repeated photography with the same orientation 
 
2. repeated photography with rotation around the camera axis 
 
3. repeated photography with camera axis directions changed, yielding 

partly overlapping bundles from the same station. Imperfections of the 
imaging system will be averaged out and the precision of the resulting 
bundle will be increased. 

 
– Multi-stations for point intersections in object space are necessary to provide a 

tool for blunder detection in the final adjustment. The stations should be position- 
ed as to give optimal intersection angles at the object points, and each point 
should be determined from at least four stations in order to give redundancy also 
after deletion of one ray due to a blunder in the observations. 

 
– Multi-control means that the transformation into the object space coordinate sys- 

tem has to be based on redundant information not only in the form of given coordi- 
nates of control points, but also in the form of geometric object space conditions 
(lines, planes, angles, distances, parallelism, etc.) and direct observations on 
the orientation elements. 
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– Multi-purpose program with rigorous adjustment is based best on the bundle app- 
roach. For close range applications the number of bundles and the number of ob- 
ject points are often limited such that least squares adjustment can contain all un- 
knowns in a direct solution, also providing the error propagation to unknowns and 
functions of observations and unknowns. The adjustment process must take into con- 
sideration all sorts of observations, and therefore, a priori information on the 
weights of the observations have to be known and considered. Additional para- 
meters are necessary to design a mathematical model that has high fidelity to the 
real geometry of the images. Rigorous adjustment based on a general approach 
does not impose any restrictions on the choice of cameras, location of photo sta- 
tions, camera orientations, type of object space control, etc.  The term "multi- 
purpose program" also covers the possibility to use the program both for the cali- 
bration of cameras and for the determination of object geometry. 

 
 
6.2 MULTI - READINGS 
 

Hottier (1976) has made a very comprehensive study of the gain in accuracy that 
can be obtained by 

 
a) repeating the settings, 
 
b) using multi-targets, and 
 
c) talking the average of more picture frames on each station. 
 

He found that the gain in accuracy by repetition of the settings is at most 30% (de- 
crease of RMS in check points) for up to 7 settings on single targets in single frames. 
He also states that the effect of repeated settings is smaller than the effect of multi-tar- 
gets and multi-frames, and for an optimal gain of accuracy in relation to the measuring 
work, he recommends one setting, two targets, two frames, or one setting, one target, 
three frames. 
 

With computer-assisted data capture there is the possibility to control the setting 
precision interactively. The requirements on the precision can be formulated in differ- 
ent ways such as maximum range, maximum standard deviation of the mean, rejection of 
out-liers after adjustment, etc., see e.g. Dorrer (1977). 

 
Hottier worked under "controlled" conditions with a test field, and it can be as- 

sumed that blunders were immediately detected, localized and eliminated. For practi- 
cal close range photogrammetric projects, however, the procedure must be such that 
blunders are detected, localized and eliminated without a priori knowledge on the ob- 
ject. 

 
Repeated readings of image points is a well established method to detect and lo- 

calize blunders. Mistakes in points identification and numbering is often detected im- 
mediately. The order of reading the points when repeating is commonly reverse to the 
order of the first set. If the maximum range criterion is applied, the points with large 
differences will be measured a third time to see which of the readings on the points is be- 
ing likely to be an out-lier. If this third reading also seems to be an out-lier the read- 
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ings are repeated until any two of them fall within the predetermined tolerances. These 
two are then regarded as representative for the point. Intuitively we can say that, if 
the tolerance is too wide in relation to the setting precision, out-liers will contaminate 
the result; and if it is too narrow, the measuring work will be enlarged without yield- 
ing any better results, because we are deleting good observations until it happens that 
any two of them are close enough to each other. 

 
If the tolerance is extremely small, it has the effect that a lot of good observa- 

tions are thrown away before two observations fall within the tolerance interval. Thus, 
it is rather important to have tolerance limits that are reasonable. The following exam- 
ple will demonstrate the effect of different tolerance ranges. Suppose the true error 
of our observations is normally distributed according to  𝑁 �0,𝜎 √2⁄ � .  The differences 
between repeated observations are then distributed according to  𝑁 (0,𝜎) .  Using the 
acceptance interval  ± 3 𝜎  for the differences leads to rejecting 0.3% of the good ob- 
servations. The acceptance interval of  ± 1 𝜎  leads to a rejection rate of 31.7%. The 
power of these is shown in Fig. 6.1 where we find that a power of 80% leads to accept- 
ance of erroneous observations if the blunder is smaller than  2.9 𝜎  and  2.3 𝜎 ,  re- 
spectively. The standard deviation of the mean will be smaller than  𝜎 2⁄  ,  because 
we have truncated the distribution of the differences at  ± 3 𝜎  and  ± 1 𝜎 ,  respective- 
ly. 

 
 

 
 

Fig. 6.1 
 

Power functions for testing outliers 
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Ex 6.1 
 

Twenty points have been observed twice each. The true errors of the first setting 
are unknown to the observer, but he has differences between the double readings. 
Points having differences exceeding the tolerances are repeated until two observations 
are accepted. The values in the following table 6.1 represent a simulated sample with 
single observations  𝑁 ( 0 , 0.71 )  and the differences  𝑁 ( 0 , 1 ) .  The sample means 
and the sample variances are given at the end of the table 6.1. 

 
Table 6.1: 
 

True errors of simulated sample and successive differences applying the  1 𝜎 - rule. 
 

Point 
 

no 

True error 
 

1st setting 

Differences applying the  1 𝜎 - rule 

2nd 1st 3rd 1st 4th 1st Further Rem 

𝑒𝑥 𝑒𝑦 𝑑𝑥 𝑑𝑦 𝑑𝑥 𝑑𝑦 𝑑𝑥 𝑑𝑦 𝑑𝑥 𝑑𝑦  

1 -0.952  0.884  0.464  0.060        
2  0.136 -0.141  0.137 -2.526 -0.555 -0.513      
3 -0.850 -0.204  2.455 -0.531  0.046 -0.525      
4  0.279  1.280 -0.323 -0.194        
5 -0.739  0.974 -0.068  0.543        
6  0.596  0.413  0.290 -1.558  0.321  0.595      
7  0.666  0.860 -0.288  0.187        
8  0.739  0.518  1.298 -1.190  2.945  0.881 -1.005 -0.044  0.712  0.203 6th 
9  0.022  0.284  0.241  0.022        

10  0.546  0.160 -0.957  0.525        
11  0.445  0.265  1.486  1.022  1.974 -0.934  0.007 -0.162    
12 -0.380 -1.372 -0.354 -0.472        
13  0.553  0.175 -0.634  1.279 -0.258  1.579    0.376  0.300 3rd 
14  0.042 -0.347  0.697  3.521  0.412  0.161      
15  0.353  0.470  0.926  0.571        
16 -0.298 -0.095  1.375 -1.851  0.439 -1.885   -0.926 -0.034 3rd 
17  1.206 -0.103  0.785  0.194        
18  0.823 -0.352 -0.963  1.192 -0.035  0.371      
19  0.625  0.323 -0.853 -0.501        
20 -0.211  0.752 -1.865 -0.278  1.179 -1.501  0.769 -0.136    

sample 
mean 
st. dev. 
rms 

 0.085  0.237  0.192  0.001        

 0.782  0.595  1.030  1.298        

 0.766  0.623  1.023  1.265        

 
 
 
Applying the  3 𝜎 - rule on  𝑑𝑥  and  𝑑𝑦 ,  observation no. 14 would be repeated, 
giving 3rd - 1st 𝑑𝑥 = 1.394  and  𝑑𝑦 = 0.906  , and thus 
 3rd - 2nd 𝑑𝑥 = 0.697  and  𝑑𝑦 = 2.615  . 

 
We obviously delete setting no. 2 on point 14. 
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Now, we estimate the precision of the setting from the differences that we have after 
applying the  1 𝜎 - rule and the  3 𝜎 - rule. But as we here have simulated data we 
know the true errors and then we can calculate the mean, standard deviation and root 
mean square value of the true errors after taking the average of the accepted two obser- 
vations per point. The decrease of the root mean square (RMS) error after averaging 
is the measure of the gain in accuracy that we obtain by only applying the acceptance 
tolerance for repeated settings. 
 
Table 6.2: 
 

Precision estimated from differences between double readings. 
 
The precision refers to the difference which is  𝑁 ( 0 , 1 ) 
 

 ∞ 𝜎 3 𝜎 1 𝜎 
 x y x y x y 
Mean 0.192 0.001 0.227 -0.130 -0.024 0.074 
St. dev. 1.030 1.298 1.060  1.028  0.560 0.370 
Rms 1.023 1.265 1.058 1.0-0  0.546 0.369 
 
 
Table 6.3: 
 

Accuracy from true errors of the average of two settings. 
 
The accuracy refers to the average which is  𝑁 ( 0 , 0.5 ) 
 

 ∞ 𝜎 3 𝜎 1 𝜎 
 x y x y x y 
Mean 0.276 0.264 0.326 0.239 0.235 0.295 
St. dev. 0.701 0.786 0.744 0.755 0.637 0.801 
Rms 0.737 0.811 0.795 0.773 0.664 0.834 
 
Thus, in this sample the observable improvement in  x  goes from 1.023 to 1.058, 
resp.  0.546, but it corresponds to the real improvement from 0.737 to 0.795, 
resp.  0.664, and in  y  the observable improvement goes from 1.265 to 1.010, 
resp.  0.369, but it corresponds to the real improvement from 0.811 to 0.773, 
resp.  0.834. The conclusion must be that smaller tolerances do not yield any better 
results in relation to the true values of the observed quantities. A tolerance of  5 𝜎 
may be as good as one of  1 𝜎  but without unnecessary work by avoiding rejection of 
good observations. In order to decide in which of the two repeated observations the 
blunder occurs, a third, or more, reading is as a rule done, until two readings are close 
enough. But the difficulty can also be overcome by using the original observations in an 
adjustment where observations in other points help to localize the blunder. 
 
Ex 6.2 
 

Four fiducial marks are measured twice. In one of the fiducial marks the double 
readings differ considerably. 



41 

If the averages of the double measurements are treated as observations in an affine coor- 
dinate transformation we obtain the following matrices 
 

𝐴 =

⎣
⎢
⎢
⎢
⎢
⎡

    

1     𝑎     𝑏
1     𝑎 −𝑏
1 −𝑎     𝑏
1 −𝑎 −𝑏

⎦
⎥
⎥
⎥
⎥
⎤

 

 

𝑁 =

⎣
⎢
⎢
⎡
   

4 0 0
0 4𝑎2 0
0 0 4𝑏2

⎦
⎥
⎥
⎤
 

 

𝑄 =

⎣
⎢
⎢
⎢
⎢
⎡

  

1
4� 0 0

0 1
4𝑎2� 0

0 0 1
4𝑏2�

⎦
⎥
⎥
⎥
⎥
⎤

 

 

𝑄𝑣𝑣 = 𝐼 − 𝐴𝑂 =
1
4

 

⎣
⎢
⎢
⎢
⎢
⎡

  

   1 −1 −1    1
−1    1    1 −1
−1    1    1 −1
   1 −1 −1    1

⎦
⎥
⎥
⎥
⎥
⎤

 

 
From the last matrix it is obvious that an error in any of the observations will be distri- 
buted with equal magnitudes in all residuals. The trace is 1, the relative redundancy 
1/4 = 0.25, all diagonal elements 0.25. The algebraic correlation between the re- 
siduals is  + 1  or  – 1  in all combinations and thus it is not possible to localize the 
blunder. If we eliminate one of the observations, the matrix  𝐼 − 𝐴𝑂  will have only 
zero elements; there is no redundancy left. 
 
The inverse  (𝐼 − 𝐴2 𝑄 𝐴𝑇)−1  does not exist for any two observations. 
 

But, on the other hand, if we introduce the original eight observations in the ad- 
justment of the affine transformation we get the following: 

 

𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

   

1    𝑎    𝑏
1    𝑎    𝑏
1    𝑎 −𝑏
1    𝑎 −𝑏
1 −𝑎    𝑏
1 −𝑎    𝑏
1 −𝑎 −𝑏
1 −𝑎 −𝑏

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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         𝑁 = 8 ∙  

⎣
⎢
⎢
⎡
   

1 0 0
0 𝑎2 0
0 0 𝑏2

⎦
⎥
⎥
⎤
 

 

         𝑄 =
1
8

 ∙  

⎣
⎢
⎢
⎢
⎡

  

1 0 0
0 1

𝑎2� 0

0 0 1
𝑏2�
⎦
⎥
⎥
⎥
⎤

 

 

𝐼 − 𝐴𝑂 =
1
8

 ∙  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

  

5 −3 −1 −1 −1 −1    1    1
   5 −1 −1 −1 −1    1    1

   5 −3    3    3 −1 −1
   5    1    1 −1 −1

   5 −3 −1 −1
   5 −1 −1

   5 −3
   5

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐                                                          ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
The trace is  5 ,  relative redundancy  5/8 = 0.625 ,  the diagonal elements are 
all  0.625 ,  the correlation between the double readings are  𝑟𝑑 = 0.6 ,  while 
the correlation to the other readings is  𝑟𝑣 = ± 0.2 .  Now, it is easy to localize 
the blunders (after standardization by dividing the residuals by  𝑠𝑂  and the square 
root of the corresponding diagonal element of  𝐼 − 𝐴𝑂 ), as the major part of the blun- 
der  (0.625)  stay at the position of its origin, and only a smaller part  (0.375 ,  
resp.  0.125)  is transferred to the other residuals. Let us say that we have a blunder 
in the last observation, and after deletion we get 

 

        𝑄1 =
1

40
 ∙  

⎣
⎢
⎢
⎢
⎡
 
6 −1 𝑎⁄ −1 𝑏⁄

6 𝑎2⁄ 1 𝑎𝑏⁄
6 𝑏2⁄

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐              

 

⎦
⎥
⎥
⎥
⎤
 

 

𝐼 − 𝐴𝑂 =
1

40
 ∙  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

  

24 −16 −4 −  4 −4 −  4    8
   24 −4 −  4 −4 −  4    8

 24 −16    4       4 −8
   24    4       4 −8

24 −16 −8
   24 −8

 16
𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐                                                     ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
The trace is  160/40 = 4 ,  the relative redundancy is  4/7 = 0.571 ,  the residuals 
of the double observations have  𝑞𝑣𝑣 = 24 40 = 0.60⁄  ,  while the single one has 
𝑞𝑣𝑣 = 16 40 = 0.4⁄  ,  all correlation coefficients are absolutely smaller than 
1 ( 0.67 , 0.41 and 0.17 ) ,  which makes it possible to localize a second blun- 
der in the observations, even when it occurs in the last point. 
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The conclusion that can be drawn from this example is the following: In order to 
avoid rejection of good observations and unnecessary repetition of observations the ori- 
ginal measurements rather than their averages should be used in the next adjustment step 
of the procedure. The localization of blunders is then done easier because the design 
matrix  A  is changed. This, however, requires in practice that the computation can 
be done as soon as there are enough repetitions of observations. It is not necessary to 
measure all points twice before adjustment; the testing can start as soon as a solution is 
possible, and then succeeding observations are added to the adjustment by sequential 
techniques referred to in chapter 4.1. Analytical plotters and comparators with on- 
line computational facilities offer the hardware needed for such procedures. 

 
 
 
 

6.3 MULTI - FIDUCIALS 
 
 

In most cameras there are four fiducial marks. Using a conformal fiducial trans- 
formation of coordinates from the comparator system to the camera system we have four 
unknowns, eight observations and four redundant observations giving a relative redun- 
dancy of  0.5 ,  which is just on the limit of acceptability when thinking of blunders. 
But what sort of correlations exist between the residuals after the adjustment? Can we 
localize and eliminate blunders, and still have redundancy? The answer can be found 
in the matrix  𝐼 − 𝐴𝑂 . 

 
 

Ex 6.3 
 

For the case of a conformal transformation on four corner fiducials we have 
 

𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

   

1   0    𝑎 −𝑏

0 1    𝑏    𝑎

1 0    𝑎    𝑏

0 1 −𝑏    𝑎

1 0 −𝑎 −𝑏

0 1    𝑏 −𝑎

1 0 −𝑎    𝑏

0 1 −𝑏 −𝑎
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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𝐼 − 𝐴𝑂 =
1

4 𝑟2
 ∙  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

  

2𝑟2 0 −2𝑎2 +2𝑎𝑏 −2𝑏2 −2𝑎𝑏 0 0

2𝑟2 −2𝑎𝑏 −2𝑎2 −2𝑎𝑏 −2𝑏2 0 0

 2𝑟2 0 0 0 −2𝑏2 +2𝑎𝑏

2𝑟2 0 0 −2𝑎𝑏 −2𝑏2

2𝑟2 0 −2𝑎2 −2𝑎𝑏

2𝑟2 +2𝑎𝑏 −2𝑎2

2𝑟2 0

2𝑟2
𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐                                                                                       

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
 

where   𝑟2 = 𝑎2 + 𝑏2  . 
 
The trace is 4 ,  relative redundancy  4/8 ,  all  𝑞𝑣𝑣 = 0.5  and the correlation 
coefficients 0  ,  𝑎2 𝑟2⁄  , 𝑏2 𝑟2⁄   or  ± 𝑎𝑏 𝑟2⁄   which, for 
 𝑎 = 𝑏 = 𝑟 √2⁄   give  𝜌 = 0  or  𝜌 = ± 0.5  . 
Blunder localization is feasible, but does there remain redundancy after elimination ? 
Using the formula given in chapter 4.1 we find 
 
 

(𝐼 − 𝐴2 𝑄 𝐴2𝑇)−1 = �  
2 0

0 2
� 

 
 
 

𝐴1 𝑄 𝐴2𝑇 =
1

4𝑟2
 ∙  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

  

0 0

0 0

−2𝑏2 −2𝑎𝑏

−2𝑎𝑏 −2𝑏2

−2𝑎2 −2𝑎𝑏

2𝑎𝑏 −2𝑎2
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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𝐴1 𝑄 𝐴2𝑇 (𝐼 − 𝐴2 𝑄 𝐴2𝑇)−1 𝐴2 𝑄 𝐴1𝑇 = 
 

=  
8

16 𝑟4
 ∙  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

  

0 0 0 0 0 0

0 0 0 0 0

 𝑟2𝑏2 0 0 𝑎𝑏𝑟 2

𝑟2𝑏2 𝑎𝑏𝑟2 0

𝑟2𝑎2 0

𝑟2𝑎2
𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐                                             

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
 

𝑄1 =
1

2𝑟2
 ∙  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

  

𝑟2 0 −𝑎2 𝑎𝑏 −𝑏2 −𝑎𝑏

𝑟2 −𝑎𝑏 𝑎2 𝑎𝑏 −𝑏 2

 𝑎2 0 0 𝑎𝑏

𝑎2 −𝑎𝑏 0

𝑏2 0

𝑏2
𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐                                        

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
 

The trace is  2 ,  relative redundancy  2/6 ,  the  𝑞𝑣𝑣  are 0.5 , 

 𝑎2 2𝑟2⁄   or  𝑏2 2𝑟2⁄   (for  𝑎 = 𝑏 = 𝑟 √2⁄   the latter are  0.25 ), 
the correlation coefficients are  0  , ± 1  , ± 𝑎 𝑟⁄   or  ± 𝑏 𝑟⁄   (for 

𝑎 = 𝑏 = 𝑟 √2⁄   the latter two are  ± 0.71 ), 
and we still have redundancy, but not enough for blunder localization in points 
2  and  3 ,  because here the correlation is  ± 1  between  𝑣𝑥2  and  𝑣𝑦3 , 

resp.  𝑣𝑦2  and  𝑣𝑥3 . 
 
 
 
 
 
 
 
 



46 

Ex 6.4 
 

For the case of conformal transformation on four midside fiducials we obtain ana- 
logously 

 

𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

    

1   0    𝑎    0

0   1    0    𝑎

1   0    0 −𝑏

0   1    𝑏    0

1   0 −𝑎    0

0   1    0 −𝑎

1   0    0    𝑏

0   1 −𝑏    0
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
 
 
 

𝐼 − 𝐴𝑂 = 
 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

  

𝑟2 + 2𝑏2 0 −𝑟2 −2𝑎𝑏 − 𝑟2 +2𝑎2 0 𝑟2 −2𝑎𝑏

𝑟2 + 2𝑏 2𝑎𝑏 −𝑟2 0 −𝑟2 + 2𝑎2 −2𝑎𝑏 0

 𝑟2 + 2𝑎2 0 −𝑟2 −2𝑎𝑏 −𝑟2 + 2𝑏2 0

𝑟2 + 2𝑎2 2𝑎𝑏 −𝑟2 0 −𝑟2 + 2𝑏2

𝑟2 + 2𝑏2 0 −𝑟2 −2𝑎𝑏

𝑟2 + 2𝑏2 2𝑎𝑏 −𝑟2

𝑟2 + 2𝑎2 0

𝑟2 + 2𝑎2

 

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐                                                                                                                                                        
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ∙  
1

4𝑟2
 

 
 

The trace is  = 4 ,  relative redundancy  0.5 , 𝑞𝑣𝑥𝑣𝑥 = 1
4

+ 𝑎2

2𝑟2
 

and  𝑞𝑣𝑦𝑣𝑦 = 1
4

+ 𝑏2

2𝑟2
  , both equal  1/2  for  𝑎 = 𝑏 = 𝑟 √2⁄  . 

 
The correlation coefficients  are  0  or  ± 1/2  for  a=b ,  and blunder localiza- 
tion is possible in any point; but after elimination of one point further localization of 
blunders is not possible, as in the previous example. 
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It is very common to use an affine transformation for the fiducial marks, and here 
two more parameters are introduced as unknowns, the design matrix  A  is correspon- 
dingly changed and the redundancy is decreased to such an extent that blunder localiza- 
tion is impossible on four fiducial marks with just one observation. Here, more fiducial 
marks are necessary, as e.g. in the Wild P31 and P32 with  5  or  17 ,  or in the 
Hasselblad MK 70 with  25  fiducial marks. The  𝑄𝑣𝑣 -matrices for affine transforma- 
tions have been presented and discussed in chapter 5.1 and 6.2. 

 
In reseau cameras and in some other types, the fiducial marks have the shape of 

a cross. In this case one can preferably take four (or two times four) measurements on 
the arms of the crosses and compute the intersection rather than repeat the settings in the 
centre, in order to increase the precision. An example of a measuring instruction for 
cross-shaped fiducial is given in appendix 1. 

 
 
 
 

6.4 MULTI - TARGETS 
 
 

The points to be measured are very often targeted before photography. In aerial 
triangulation pre-targeting of all points (known, unknown and tie) has proved to be an 
efficient method to increase the accuracy, thereby avoiding errors in artificial point 
transfer and bad point definition when using natural transfer points. Multi-targeting has 
been used in aerial (e.g. Kupfer (1973) and Hvidegaard (1976)) as well as in close 
range photogrammetry (Hottier (1976)). Multi-targets can be designed in several ways 
depending on the relevant parameters in the specification. Such parameters are, e.g., 
the size and shape of the measuring mark in the comparator, the average image scale, 
the variation of the image scale within and between the pictures, the angle between the 
target plane and the image plane (convergency angle), method of attaching the targets 
to the points on the object (gluing, self-adhesive, painting, nailing) number of targets 
per signalized point, environmental conditions, resolution viewing magnification, etc. 
Some examples of multi-targets are shown in figs. 6.2 - 6.5. 

 
The sevenfold target has the advantage that one can choose the targets such that 

the average of the observations coincides with the position of the central one for any 
number of targets from  1  to  7 .  For  2 ,  3  or  4  targets there are several com- 
binations and the operator can choose the one that has the best pictorial quality. The 
cross-like target is suited for oblique photography with varying image scale. The five- 
circle target is good for varying image scale, but it is limited to  2  or  3  targets per 
point. Hottier (1976) found that the maximum gain of accuracy, by increasing the num- 
ber of targets per object point, is about 40%, which is attained for 4 - 5 targets. He 
recommends as a practical optimum one setting, one target, and three frames, or one 
setting, two targets and two frames. If only one frame is available it seems to be a good 
compromise to have two settings on two targets or one setting on three or four targets as 
judged from Hottier´s results. 
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Fig. 6.2 
The sevenfold target, 
suited for any number 
of targets from  1  to  7 

 

 
 

Fig. 6.3 
The star-like target, 
suited for oblique photos 
in varying scales 

 
 

 
 

Fig. 6.4 
The five-circle target, 
suited for varying image 
scales 

 
 

Fig. 6.5 
The cross-like target, 
suited for oblique photos 
in varying scales 
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6.5 MULTI - FRAMES 
 
 

A most efficient means to increase the precision of the reconstructed bundle of 
rays is to take more pictures on each station and use their average in the following steps. 
Hottier (1976) has studied the effect of this technique for a close range normal case 
stereomodel, and he found that the maximum gain in precision was 40% for up to 5 
frames per station (measured with one setting on single targets). For practical purposes 
recommends one setting per target, two (three) targets per point and two (three) fra- 
mes per station, which yields 40% (50%) gain of precision. 

 
For the duplicated frames Hottier used the same exterior orientation. The effect 

of the random errors is reduced through averaging, but systematic and constant errors 
remain the same. Such systematic errors of our mathematical model of the imaging geo- 
metry can, e.g., be caused by imperfections of the lens, principal point error, bending 
of plates, film flattering and film deformation. These errors can be described in terms 
of radial and tangential components in the image plane. The tangential component, and 
that part of the radial component that is not rotationally symmetric can be determined 
(or averaged out) by rotating the camera around the camera axis between the pictures. 
The rotationally symmetric part of the radial component is not determinable. Here a 
quadratic image format is ideal, since coverage will be identical in the four cardinal po- 
sitions. Taking the average of the bundles of rays from frames with  𝜅 - rotations  0 , 
𝜋

2�  ,𝜋 2�  , 3𝜋
2�   corresponds in some way to the station adjustment in geodetic trian- 

gulation. 
 
 
 

 
 
Fig. 6.6 
Multi-frames on the same station with the camera axes in the same direction but with 
different  𝜅 - rotations make it possible to eliminate tangential image errors and the irre- 
gular part of the radial image errors. 

 
 

Each frame is measured and the observations are transformed to the camera system. 
After rotating the camera systems to one and the same reference position, the sets of image 
coordinates can be compared. Small discrepancies will always occur due to setting pre- 
cision and error propagation from the fiducial transformation, systematic and random er- 
rors (in the camera-film performance, changes of the exterior orientation other than just 
the  𝜅 - rotation, and blunders. Therefore, for comparison of different sets of coordinates 
a differential perspective transformation is appropriate. If tangential distortion is consi- 
derable the observation equations have to be amended with terms covering this effect. 
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After the perspective transformation has been done we can study the residuals in 
order to detect, localize and eliminate occurring blunders, and for that purpose we need 
the  𝑄𝑣𝑣 - matrix, which as usual is  (𝐼 − 𝐴𝑂) . 

 
Assume that we have pictures taken with a camera having a format slightly larger 

than 2/3 x 2/3 of the principle distance  c  (e.g. Hasselblad MK 70 with Biogon 60) 
and that the perspective transformation is based on 25 well distributed image points lo- 
cated in grid intersections with the  𝑥′  and  𝑦′  coordinates equal to  0 , ± 𝑐 6 , ± 𝑐 3⁄⁄  . 
The  𝑄𝑣𝑣 - matrix has 50 x 50 elements, but due to the point symmetry there is a good 
symmetry in the matrix as well and it is not necessary to calculate more than 1/8 of the 
elements. The diagonal elements are shown in Table 6.4. The maximum absolute va- 
lue of the correlation coefficients between the residuals is 0.210, and it occur bet- 
ween  𝑣𝑥  of a corner point and  𝑣𝑥  of its closet neighbour having the same  𝑥′ - 
coordinate (and similarly for  𝑣𝑦  and  𝑦′ ). It can be noted that the maximum va- 
lue of  𝑞𝑣𝑖𝑣𝑖  does not belong to the central point. The corner points take the small- 
est               values as expected. The trace of the matrix is 44, which is the num- 
ber of degrees of freedom in the adjustment. The mean value of the diagonal elements 
is  0.880 ,  and the range thus  0.762-0.944 .  In this case it is easy to localize and eli- 
minate blunders because the correlation coefficients are small, the inverse 
exist, and the diagonal elements are well over  0.5 . 
 

In order to determine or eliminate the effect of the rotationally symmetric part of 
the radial component, the frames have to be taken with the camera axis pointing in dif- 
ferent directions. This has been applied by Borchers (1965) in structural deformation 
measurements. He determined the bending of the plates from the radial components and 
the structural deformation from the tangential components of the image displacement vec- 
tor. Taking nine frames as indicated in Fig. 6.7 we can determine both tangential and 
radial error components. For very high accuracy requirements, e.g. camera calibration, 
the "nine-frame-pattern" can be repeated for the four cardinal  𝜅 - rotations giving in 
total 36 frames of the same bundle of rays. This certainly is too much to be practical, 
and the optimum combination might be found by an investigation devoted to that particu- 
lar problem. A combination of  4 𝜅 - rotated central pictures, two  𝜔 - rotated and 
two  𝜑 - rotated would possibly yield an optimum. To facilitate a convenient photogra- 
phy one has to design and build a camera support with gimbals axes going through the ex- 
terior projection centre, so that the camera position is unchanged when the directions 
are varied. For ultra precise work the eccentricities might have to be considered in the 
computations. The systematic components can be formulated as additional parameters in 
the mathematical model as it is done in aerial block adjustment. 
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Fig. 6.7 
Nine-frame experimental design with different directions of the camera axes that makes 
it possible to eliminate radial image errors. 
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But there is a difference between aerial and close range photogrammetry as to the 
exterior orientation of the frames. In aerial block adjustment there are a large number 
of frames all having different exterior orientation and typically 60 % by 20 % or 60 % 
by 60 % overlap. In close range we can have groups of frames with the same exterior 
orientation except for some or all three directions of the camera axis. This can certainly 
provide advantages compared to the aerial case. The possibilities have not yet been 
studied for close range applications. There are some studies on the effect of multiple 
strips with different flight directions in aerial photography for the determination of addi- 
tional parameters, e.g. Thomas (1977). 

 
 

 
6.6 MULTI - STATIONS 
 
 

The concept of multi-stations is well known in photogrammetry through bundle 
block adjustment and a series of analytical solutions in close range photogrammetric 
measurement problems. The ordinary case in aerial block adjustment with vertical pho- 
tography over flat terrain from the same altitude with one and the same 15 x 23 x 23 
camera in parallel strips standardized overlap and control points according to well 
known thumb-rule patterns has to be generalized in close range photogrammetry with re- 
spect to camera orientation (interior and exterior), object geometry, overlaps, control 
points, object geometry conditions, targeting, etc. It is typical for high precision close 
range photogrammetry to try planning the photography in such a way that the ray inter- 
sections in the reconstructed model will be as good as possible, preferably under right 
angles. This leads to convergent photography with nearly 100 % overlap, and to get 
a homogeneous precision one often uses long focal lengths if the space around the object 
is large enough, in order to give approximately the same image scale over the entire ob- 
ject. Under these circumstances it is not very convenient to measure the pictures in 
pairs in a stereo comparator and treat the data in units of stereomodels. The appropri- 
ate approach obviously is the bundle adjustment, and thus the pictures preferably are 
measured one by one, and the image coordinates are the observations to be adjusted. 
Most of the theoretical and practical investigations into the accuracy of analytical close 
range photogrammetry have been related to the precision of the object coordinates. 
Some investigations treat the formulation of the proper mathematical model for the ima- 
ging geometry. Very few reports are given on studies of the reliability of the experimen- 
tal design in close range photogrammetry. One recent report is given by Grün (1978b). 
He applies the "data-snooping" according to Baarda, defines measures for precision and 
reliability of the experimental design, and he simulates examples with close range bund- 
le block having 2 - 4 frames. The precision indicator  𝑃𝐼  defined by Grün is the 
mean value of the root of the diagonal elements of the inverse of the normal equation 
matr ix  𝑄𝑥𝑥 ,   thus  𝑃𝐼 = 𝑡𝑟 ��𝑄𝑥𝑥 �  𝑝�  .   The rel iabi l i ty indicator  𝑅𝐼  i s  def ined 
as the mean of the  𝑞𝑣𝑖𝑣𝑖  values, thus  𝑅𝐼 = 𝑡𝑟 (𝑄𝑣𝑣) 𝑟⁄  .   ( I  think that a more 
proper definition                   of the precision indicator would be  𝑃𝐼 = 𝑡𝑟 (𝑄𝑥𝑥) 𝑝⁄  . 
Grün´s results show that good precision is obtained from good intersection angles of the 
rays in the object points, i.e. good base-to distance ratios. This holds also for pairs 
of pictures. Good reliability on the other hand is obtained if four pictures, three of 
which do not lie in the same straight line, form a block to determine the object points 
with rays of which not more than two are in the same plane. This holds also for small 
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base-to-distance ratios. For such a photoquadruple the reliability indicator is 
𝑅𝐼 = 0.62. In the case of a stereo-pair the  𝑞𝑣𝑖𝑣𝑖 - values will be zero for the coor- 
dinate that is orientated in the epipolar plane          direction (zero variance prob- 
lem). This, of course, is well known; it is just the vertical coordinate that is control- 
led in the stereo-pair case (vertical parallax). For three pictures with camera axes in 
the sample plane the situation is slightly better, but not good enough, as the reliability 
is much better for  𝑦′  than  𝑥′ .  Grün suggests that the three camera stations be 
chosen such that the intersection rays in the object points form three planes which do 
not coincide. In this way a more uniform reliability is expected in the different co- 
ordinate directions. The importance of multiple-ray intersection for the reliability has 
been further studied by Grün (1979b), but for aerial blocks. It appears from that stu- 
dy that, at least four intersecting rays are necessary for a good reliability, and that the 
rays must form at least four different planes intersecting but not coinciding in the object 
point. The  𝑞𝑣𝑖𝑣𝑖 - values are for these points on the average 0.50 .  (Grün uses in 
his paper  �𝑞𝑣𝑣    , thus obtaining  0.70  as an average). The results presented by 
Grün (1978b) and (1979b) indicate that the following thumb-rule might be valid: 
In order to obtain good reliability in photogrammetric block adjustment, it should be 
such a geometry that the object points are determined from at least four rays that pair- 
wise, form epipolar planes that do not coincide; and to obtain good precision these 
epipolar planes should intersect at right angles. The geometry is demonstrated in 
Fig. 6.8. The validity of this thumb-rule should be investigated and studied in theory 
and practice. 

 

 
 
Fig. 6.8  Epipolar planes form four pictures 1, 2, 3 and 4 of one point P. 
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6.7 MULTI - CONTROL 
 
 

In most cases control is given as coordinates of full  (XYZ) ,  planimetric  (XY) 
or height  (Z)  control points. In some aerial block adjustment programs there is a pos- 
sibility to use the information that all points on the shoreline of a lake have the same 
but unknown height. In some cases auxiliary data from statoscope, APR and the like 
can be used in the adjustment. Similar information originating from both object and 
photography can efficiently be used in close range photogrammetry. 

 
In analogue methods approximate values are used in the orientation process, e.g. 

in aerial photogrammetry, where vertical photography is assumed, the operator can use 
this information to orient the model even if the control is insufficient, say, the height 
control is mainly located in a line. Then the operator uses the approximation to the 
vertical to orient the model in height so that at least planimetry can be plotted and per- 
haps also topographic form-lines if they can serve the purpose for which the map is in- 
tended. If there is insufficient control in the numerical orientation, this leads to a sin- 
gular matrix of observation equation coefficients. A general method to overcome this 
problem is to add a number of equations which correspond to direct observations on the 
unknowns in the form of approximate values. These equations are given weights that 
take into account the uncertainty of the approximations. Direct observations on the ex- 
terior orientation parameters can also be introduced in the system of observation equa- 
tions. This is often the case for levelled metric cameras and photo-theodolites. For ste- 
reometric cameras with fixed base the distance between the two projection centres can 
be introduced as a ficticious observation with weight corresponding to the precision of 
the base. In the same way ficticious observations on the interior orientation elements 
can be introduced, and corrections will be computed to these values in the adjustment. 
See e.g. Wrobel-Kruck (1978) and Hell (1979). 

 
In this way a singular system of equations will always be avoided. As approxima- 

tions have to be calculated anyhow, or given in input, for the linearization, they all 
are available, and in the described way the same algorithm can be used for all cases, 
also such where control is missing. The effect will also show up in the errors of the un- 
knowns and functions of them, in such a way that the elements in the normal equation 
inverse  𝑄 = (𝐴𝑇 𝑃 𝐴)−1  will be large for the weakly controlled unknowns. For uncon- 
trolled unknowns  𝑥𝑖  the  𝑄𝑥𝑖𝑥𝑖  corresponds to the weight of the approximations 
𝑃𝑖 𝑖 = 𝑠02 𝑠𝑖2⁄   given a priori. 

 
Utilization of vertical and horizontal planes, straight lines, angles, etc., for the 

relative and absolute orientation in analogue methods of close range photogrammetry 
has also to be formulated in a mathematical way and must be included in the adjustment 
(Kager-Kraus (1976), and Hell (1979)). Doing so, there will sometimes be intro- 
duced new unknown parameters in the adjustment, e.g. position and attitude of an arbi- 
trary plane in the object space. These condition equations are given weights that corres- 
pond to the precision with which the condition can describe the corresponding matter in 
reality. It happens very often that these conditions are non-linear, and thus they have 
to be linearized before they are entered into the equation system. 
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6.8 MULTI - PURPOSE  PROGRAM 
 
 

To summarize, we now have a system of equations that has the 
following structure: 

 
𝐴 𝑌 + 𝐵 𝑋             + 𝐺 𝑍  =  𝐿1 ,𝑃𝑏 – image coordinates 
 
            𝐶 𝑋                            =  𝐿2 ,𝑃𝑔 – given object control coordinates 
 
𝐷 𝑌                                        =  𝐿3 ,𝑃𝑦 – conditions and observations on exterior 
  orientation elements 
 
𝐼 𝑌                                          =  𝐿4 ,𝑃𝑛𝑦 – approximations on the exterior 
  orientation elements 
 
            𝐼 𝑋                              =  𝐿5 ,𝑃𝑛𝑥 – d : o  on object points 
 
                        𝐼 𝑈                  =  𝐿5 ,𝑃𝑛𝑢 – d : o  on geometric condition parameters 
 
                                     𝐼 𝑍      =  𝐿6 ,𝑃𝑛𝑧 – d : o  on additional parameters 
 
           𝐸 𝑋 + 𝐹 𝑈                  =  𝐿7 ,𝑃𝑒 – geometric conditions in object space 
 
where the 
 
A  B  C  D  E  F  G     are coefficient matrices 
 
Y vector of corrections to approximations of exterior orientation 
 elements  (𝑋𝑂  𝑌𝑂  𝑍𝑂  𝜔  𝜑  𝜅)𝑖 
 six elements for each photo  𝑖 
 
X vector of corrections to approximations of object 
 space coordinates  (𝑋  𝑌  𝑍)𝜅 
 3 unknowns for each point  𝜅 
 
Z vector of corrections to approximations of interior orientation parameters 
 and additional parameters 
 �𝑥′𝑂  𝑦′𝑂  𝑐  𝑎3  𝑎5  …  𝑝1  𝑝2  …  𝑎𝑖𝑗   𝑏𝑖𝑗�𝑙 
 a set of selected parameters for each camera  𝑙  used 
 
U vector of corrections to approximations of unknown parameters in 
 geometric object space conditions 
 
I unit matrix 
 
𝐿1 . . .  𝐿7 right hand side term in the linearized observation equation (often called 
 discrepancies) 
 
𝑃𝑏 . . .  𝑃𝑒 weight matrices for the observation equations. 
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The equations of type 2 and 5 are of the same kind, the only difference being 
that the weights of the given control points are much higher than those of the unknown 
points for which we have just approximations. The same holds for equations of type 3 
and 4. 

 
The model is very general, it can be used for calibration purposes, for point de- 

termination, for resection, etc. For camera calibration the interior orientation ele- 
ments  Z  are unknowns. If the calibration is based on testfield then  X  is known 
with high accuracy. 

 
𝐴 𝑌 + 𝐵 𝑋 + 𝐺 𝑍 =  𝐿1 ,𝑃𝑏 

 
            𝐶 𝑋             =  𝐿2 ,𝑃𝑔 

 
𝐼 𝑌                          =  𝐿4 ,𝑃𝑛𝑦 

 
                    + 𝐼 𝑍  =  𝐿6 ,𝑃𝑛𝑧 

 
If the given points are regarded as free from errors we have  𝑃𝑔 = ∞ . 
Then,  𝑋 =  𝐶−1 𝐿2 .  Introducing this in the first set of equations we get 

 
𝐴 𝑌 + 𝐺 𝑍 =  𝐿1 − 𝐵 𝐶−1 𝐿2 ,𝑃𝑏 

 
𝐼 𝑌             =  𝐿4                       ,𝑃𝑛𝑦 

 
            𝐼 𝑍 =  𝐿6                       ,𝑃𝑛𝑧 

 
As here in this case all coordinates of all points are known we have  𝐶 = 𝐼 . 
𝐿1  are measured image coordinates and  𝐵 𝐶−1 𝐿2 = 𝐵 𝐿2  are given object coor- 
dinates  𝐵 𝐿2  using the approximate values on  Y  and  Z .  Often  𝑃𝑛𝑦  and 
𝑃𝑛𝑧  are put to zero, so that we only have equations of the first type.  The number of 
photos can be limited when test-field are used but they must have a point distribution 
in space such that  (𝐴 ;𝐺)  is non-singular. 
 

If self-calibration is used, all or most of the elements in  X  are unknowns but 
more photos of the same object with varying exterior orientation  Y  are introduced 
in the adjustment compared to the test-field case. A large number of equations for 
geometric object space conditions can be introduced, which is the case for e.g. the 
plumbline method. 

 
Testfield calibrations and self-calibrations give a set of constants for the interior 

orientation  Z  and the intention is to use them in future projects as given values in 
functions that correct the image coordinates for the systematic errors before adjustment. 
The type  1  equation then is written in the form 

 
𝐴 𝑌 + 𝐵 𝑋 =  𝐿1 −  𝐺 𝑍  . 

 
It is important to note here that the set of constants in  Z  should be the same 
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as in the calibration. The calibration should also be designed such that the estimate of 
Z  is not correlated so that of  Y  after the adjustment of the calibration observations. 
If a subject  𝑍1  of the calibration parameters  Z  will be used in later projects, this 
subset  𝑍1  should be chosen such that it is uncorrelated to the remaining set  𝑍2 . 
The normal equation in calibration takes the form 
 

𝑁11 𝑌 +  𝑁12 𝑍 =  𝐻1 
 
𝑁21 𝑌 +  𝑁22 𝑍 =  𝐻2  . 

 
Partitioning the calibration variables in two groups,  𝑍1  and  𝑍2 ,  the inverse  𝑁−1 
can be written in the form 
 

𝑄𝑌𝑌 𝑄𝑌𝑍  

𝑄𝑍𝑌 𝑄𝑍1𝑍1 𝑄𝑍1𝑍2 

 𝑄𝑍2𝑍1 𝑄𝑍2𝑍2 

 
We now require the calibration adjustment to yield 
 

𝑄𝑌𝑍     = 0 
 
𝑄𝑍1𝑍2 = 0  . 

 
The reach this the whole calibration procedure has to be studied, because  Q  de- 

pends on the design of the experiment. 
 
Wrobel (1978) has drawn attention to the fact that the determined calibration 

constants should be, if possible, uncorrelated to exterior element and between them- 
selves in order to be easily used later on. 

 
On-the-job calibration means that all types of unknowns are included in the ad- 

justment, exterior elements, interior elements, point coordinates and geometric condi- 
tion parameters. The same pictures are, at the same time, used for the calibration and 
for the project. Grün has discussed the problem of over-parameterization (Grün (1978a) 
and (1978b)) which has the effect that the standard errors of the unknowns and the co- 
variance between them increase although the standard error of unit weight decreases. 
A possible solution to this is to design the additional parameters to be orthogonal to the 
other unknowns, and then combine this with statistical tests on their significance. The 
general bivariate polynomial approach is thus abandoned. For aerial triangulation 
Grün (1979a) has found that additional parameters i.e. on-the-job-calibration, are 
somewhat superior to testfield calibration methods. In many close range applications it 
may be difficult to get a good design of the project for on-the-job calibration, in other 
cases it is easier. Our opinion principle is to expect higher accuracy if more observa- 
tions are included in the process, which is the case for projects based on testfield cali- 
bration. On the other hand, on-the-job calibration determines the interior orientation 
of exactly the same photos as for the project, which eliminates the effect of variation 
of systematic errors between calibration and project. 
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The multi-purpose program concept contains so many different features that great 
flexibility is needed for the practical use of the program for calculations. The possibi- 
lity of interactive work to edit input and output seems to be an advantage that is worth- 
while to be tried, in order to facilitate the effective use of the computational tools. 
These tools are partly the software and programs written by the photogrammetrists, partly 
the hardware such as computer peripherals, output devices, interactive numerical and 
graphical terminals, input from image coordinate measuring instruments, and the like. 
As the design and solutions in analytical close range photogrammetry vary considerably 
from one project to the other, the interactive approach to the adjustment calculation 
must be the best way to follow. 

 
 
 
 

7 C O N C L U S I O N S  
 
 

Classical theory of errors of measurements divide errors in three groups: random, 
systematic and gross errors (blunders). The combined effect of these types of errors 
gives the accuracy. The random errors are supposed to be normally distributed and usu- 
ally also independent, the systematic errors follow some known rules and the observations 
can be corrected for their effect, the gross errors are blunders or mistakes made by obser- 
vers or malfunctioning equipment. 

 
The random errors and their effect are connected to the concept of precision. The 

systematic errors are related to the mathematical model for the adjustment of the photo- 
grammetric observations. The better the model fits to the reality, the better is the model 
fidelity. The gross errors and blunders are related to the concept of reliability of the ad- 
justment. The accuracy thus comprises three parts: precision, model fidelity and relia- 
bility. 

 
All three parts of accuracy are improved by redundant observations. Redundancy 

is needed in each step of the photogrammetric procedure and in the determination of the 
final result. Some main steps of the procedure where improvement through redundancy 
can be obtained are: 

 
– photography :  the importance of good photographic quality is not always recog- 

nized 
 
– comparators :  correction of systematic errors determined by calibration 
 
– multi-readings :  repeated settings on each image point 
 
– multi-fiducials :  more than four fiducial marks are of value 
 
– multi-targets :  local irregularities of the imaging and measuring system (atmos- 

phere, lens, emulsion, comparator, operator, etc.) is averaged out by more fold 
targets on each object point 
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– multi-frames :  more exposures on each station give an averaged bundle of rays, 
and the camera can be rotated  𝜔 ,𝜙  and  𝜅  between the exposures so as to es- 
timate or eliminate systematic errors of the bundle of rays 

 
– multi-stations :  more than the necessary two photography stations for a stereopair 

yield very effective means to improve accuracy by having each object point de- 
termined by three, four and more rays intersecting from various directions in 
space 

 
– multi-control :  absolute orientation and control of model deformation is obtained 

not only by given co-ordinates of control points but also by geometric object space 
conditions such as lines, planes, distances, etc. 

 
– multi-purpose program :  a rigorous computer program is needed to handle all in- 

formation, it has to be flexible for various purposes and mathematical models in 
photogrammetry, it should preferably be based on interactive checks on interme- 
diate results. 

 
The multi-concept will be very expensive to introduce in all steps. It does not 

seem to be necessary to do so in order to improve precision, fidelity and reliability. 
Hottier (1976) has given recommendation for combinations of numbers of settings, tar- 
gets and frames for photogrammetric intersection from two stations to improve precision. 
Grün (1978) has shown the effect of base-distance-ratio and intersection from more 
than two stations on precision and reliability. Calibration of cameras and comparators 
and additional parameters in adjustments have improved the model fidelity. Provided 
there is a general computer program available for the adjustment it seems to be reason- 
able to assume that intersection of object points from four different photography stations 
yields a good precision and reliability. The improvement of the model fidelity can be 
achieved by precalibration or multi-frames on each station combined with on-the-job 
calibration. Research, development and practical experience are needed to find the 
relation between time consumption, cost, and accuracy improvement so as to find the 
best design of photogrammetric solution of a particular measuring task. 
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Appendix 
 
PROGRAM  MULTI - PHOTOGRAMMETRY 
 
 
INSTRUCTIONS  FOR  INPUT  OF  COMPARATOR  MEASUREMENTS 
 
 

Each record starts with an identifier defining the type of record. The identifier 
is a two digit number  [ 00 , 99 ] .  Measurements from mono- and stereocomparators are 
accepted. Readings in mm-units. The measuring file starts with a title record 
(id = 10) and ends with a stoprecord (id = 99). The file contains measurements on an 
arbitrary number of photos (or pair of photos in case of a stereocomparator). A series 
of measurements on a photo (pair of photos) begins with id = 12 and ends with id = 98. 
The same photo (pair of photos) can be measured several times with changed positions in 
the comparator. Such a replication begins  id = 12  and ends  id = 98. With each se- 
ries the observations on the image points may be repeated once, i.e. double measure- 
ment on the same point is allowed between  id = 12  and  id = 98. Such double read- 
ings are identified with the point number. There can be single and double readings on 
the same photo.  For each photo the readings are of four kinds :  fiducial marks 
(id = 20-29), control points  (id = 30-39, 60-69), auxiliary points  (id = 40-49, 
70-79) and new points  (id = 50-59, 80-89).  id = X0 :  no double readings.  id = X1 
double readings. If the fiducial marks are crosses, they can be measured on the four 
bars instead of centrally.  id = 24  means four single readings on the bars,  id = 28 
means four double readings on the bars. For object points with multi-targets the second 
digit of the id-number indicates the number of targets measured for that point. If 
id ≥ 62  there are double readings on multi-targets. Point numbers are positive and 
have at most 6 digits (000 001 , 999 999). 
 
Specification for the identifiers. 
 
id = 10 "text string with max 72 characters" 
 
id = 11 comp. no. 

Identification no for the comparator. Has to be the same as in the compa- 
rator calibration file. 

 
id = 12 p1, k1 (p2, k2) 

p1 is an identification number for the photo, 
k1 is the camera number (When a stereocomparator is used, p2 is the 
 photo on the parallax carriage taken with camera no k2.). 

 
id = 20- 

-id = 89  pt, x, y, (px, py) 
 pt : point no  (000 001 - 999 999) 

  x : x coordinate in mm 
  y : y coordinate in mm 
px : x-parallax, in case of stereocomparator 
py : y-parallax, in case of stereocomparator 
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id = 20 single reading on fiducial mark 
 
id = 21 double reading on fiducial mark 
 
id = 24 single reading on a bar of fiducial mark 
 
id = 28 double reading on a bar of fiducial mark 
 
id = 30 single reading on control point, single target 
 
id = 31 double reading on control point, single target 
 
id = 32 single reading on control point, 2-fold target 
 
id = 62 double reading on control point, 2-fold target 
 
id = 33 single reading on control point, 3-fold target 
 
id = 63 double reading on control point, 3-fold target 
 
id = 34 single reading on control point, 4-fold target 
 
id = 64 double reading on control point, 4-fold target 
 
id = 35 single reading on control point, 5-fold target 
 
id = 65 double reading on control point, 5-fold target 
 
id = 36 single reading on control point, 6-fold target 
 
id = 66 double reading on control point, 6-fold target 
 
id = 37 single reading on control point, 7-fold target 
 
id = 67 double reading on control point, 7-fold target 
 
id = 4X single readings on auxiliary points 
 
id = 7X double readings on auxiliary points 
 
 The second digit  X  has the same meaning as for  id = 3X  and  id = 6X 

series above. The auxiliary points are observed extra to give a strong 
connection between the photos. A pair of photos has a common object 
space. Auxiliary points can be taken in such positions as to 

 
 a) cover the common image area 
 
 b) cover the object space volume. 
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id = 5X single readings on new points to be determined 
 
id = 8X double readings on new points to be determined 
 
 The second digit  X  has the same meaning as for  id = 3X  and  id = 6X 

series above. 
 
id = 98 pt, x, y  (, px, py) 
 End of photos  (Dummy recording of pt, x, y) 
 
id = 99 pt, x, y  (, px, py) 
 End of measurement file  (Dummy, recording of pt, x, y) 
 
 
Note 1: 
 
id = 24 Readings on bars of the fiducial mark is for a single four bar recording done 

such that the two first readings are taken on opposite bars and the two last 
on those bars perpendicular to the first ones. The point no is that of the fi- 
ducial mark for all 4 settings. 

 
 
Note 2: 
 
id = 28 For double readings on the bars the pattern above is repeated later on, pre- 

ferably at the end of the photo readings. The point no is that of the fiducial 
mark for all 8 settings. 

 
 
Note 3: 
 
id = 24 For cameras without fiducial marks the side lines (the edges) of the image 

format can be used. The four bar readings on each fiducial mark and here 
instead four readings on the two sides forming the image corner. The loca- 
tion of readings 1 - 4 should be the same as when calibrating the camera to 
avoid bias. The point no is the same for all 4 settings, i.e. that of the 
fiducial mark, here = image corner. 

 
 
Note 4: 
 
id = 28 Double readings on side lines are possible. The point no is the same for 

all 8 settings, i.e. that of the fiducial mark, here = image corner. 
 
 
Note 5: 
 
 Photos are measured in a right handed xy system with the photos in posi- 

tions as diapositives. Parallax readings are defined from the comparator 
file. 
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