
Chapter 6

ANTI-FORENSIC CAPACITY AND
DETECTION RATING OF HIDDEN
DATA IN THE Ext4 FILESYSTEM

Thomas Göbel and Harald Baier

Abstract The rise of cyber crime and the growing number of anti-forensic tools
demand more research on combating anti-forensics. A prominent anti-
forensic paradigm is the hiding of data at different abstraction layers,
including the filesystem layer. This chapter evaluates various techniques
for hiding data in the ext4 filesystem, which is commonly used by An-
droid devices. The evaluation uses the capacity and detection rating
metrics. Capacity reflects the quantity of data that can be concealed
using a hiding technique. Detection rating is the difficulty of finding
the concealed artifacts; specifically, the amount of effort required to dis-
cover the artifacts. Well-known data hiding techniques as well as new
techniques proposed in this chapter are evaluated.

Keywords: Anti-forensics, data hiding, ext4, filesystem forensics

1. Introduction
The rise of cyber crime and the proliferation of anti-forensic software

and tools that interfere with forensic investigations demand more re-
search in the area of anti-forensics [15]. In 2007, Garfinkel [7] cautioned
about the number of tools that were available to frustrate forensic in-
vestigations. More recently, Conlan et al. [4] have released a huge data
set that includes 308 anti-forensic tools. While investigators generally
take strong measures to keep digital evidence intact, malicious entities
attempt to hide, remove, destroy or alter evidence, rendering forensic in-
vestigations difficult, time-consuming and expensive. Anti-forensics also
deals with data hiding techniques [13]; a variety of artifact wiping tools
and trail obfuscation methods are used to deliberately disorient forensic
investigations.

c© IFIP International Federation for Information Processing 2018

Published by Springer Nature Switzerland AG 2018. All Rights Reserved

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XIV, IFIP AICT 532, pp. 87–110, 2018.

https://doi.org/10.1007/978-3-319-99277-8_6

88 ADVANCES IN DIGITAL FORENSICS XIV

The popular ext4 filesystem is used as the default by Android and
many Linux operating system distributions since kernel 2.6.28 [18]. It
was created as the successor to the ext3 filesystem to keep up with
increasing disk capacities and advanced features [10]. In the context
of forensic investigations, it is important to know about the potential
hiding places in ext4 volumes, especially due to the extensive use of ext4
in Android smartphones since version 2.3 Gingerbread [16].

Anderson et al. [1] conducted a study of data hiding in filesystem
metadata and developed a steganographic filesystem. This resulted in
the creation of StegFS [11], a steganographic filesystem based on ext2
that secured hidden data.

Various data hiding techniques for the ext2 and ext3 filesystems, as
well as suitable countermeasures, are discussed in [3, 5, 12]. A security
analyst named The Grugq [14] has developed several anti-forensic tools
that hide data within ext2, but these tools have not been updated for
newer versions of the ext filesystem. The most recent contribution is a
low-level study and comprehensive forensic analysis of the most impor-
tant ext4 filesystem data structures by Fairbanks [6]. This research also
identified potential hiding places in ext4, such as HTree nodes, group
descriptor growth blocks (GDGBs) and data structures in uninitialized
block groups, but it did not study these hiding places any further.

Mathur et al. [10] have published extensive research related to the
new ext4 filesystem. Wong [19] has created the Ext4 Wiki, an important
reference for filesystem analysis. Both these references have been used
in this research to locate possible hiding places in the ext4 filesystem.
Essential information about the ext4 filesystem layout can be found in
the source code of the Linux kernel (see, e.g., [17]).

Some academic research has focused on data hiding in previous ver-
sions of the ext filesystem. However, public research related to ext4
anti-forensics is practically non-existent.

This research focuses on the key question – How can data be hidden in
an ext4 volume? In particular, the research differentiates between new
methods and known techniques discussed in research related to previous
ext filesystem versions, and studies their functionality in the context of
ext4. New features and data structures of ext4 are analyzed and their
efficacy in hiding data is evaluated; this helps identify specific filesys-
tem structures that can be used to hide data. The data hiding methods
are evaluated using two metrics: (i) capacity; and (ii) detection rat-
ing. Capacity expresses the amount of data that can be hidden whereas
the detection rating expresses the difficulty of finding concealed arti-
facts (e.g., effort required on the part of forensic investigators). For this
reason, ext4 volumes are examined using common, open-source forensic

Göbel & Baier 89

Table 1. Overview of ext4 hiding techniques.

Data Hiding Techniques Filesystems

Previous Techniques
File and Directory Slack Space [3, 5] ext2/ext3
Null Directory Entries [14] ext2
Partition Boot Sector [12] ext2/ext3
Superblock: Slack Space [3] ext2/ext3
Superblock: Reserved Space [14] ext2
Superblock: Backup Copies [12] ext2/ext3
Group Descriptor Table: Slack Space [3] ext2/ext3
Block Group Descriptor: Reserved Space [14] ext2
Inode Table: Reserved Inodes [5, 12] ext2/ext3
Inode: Reserved Space [14] ext2

New Techniques
Block Bitmap: Slack Space [*] ext4
Inode Bitmap: Slack Space [*] ext4
Inode: Slack Space/Extended Attributes [*] ext4
Inode: Nanosecond Timestamps [*] ext4
Group Descriptor Table: Backup Copies [*] ext4
Group Descriptor Table: Growth Blocks [6] ext4
Extent: Persistent Preallocation [*] ext4
Data Structures in Uninitialized Block Groups [6] ext4

tools such as FTK Imager, Autopsy and Sleuthkit. Finally, the research
evaluates the forensic implications of the various data hiding methods.

Table 1 lists all the ext4 data hiding techniques evaluated in this
research. The table is organized into two sections, one containing tech-
niques applied to earlier versions of the ext filesystem and the other
containing new or untested techniques for the ext4 filesystem. The new
techniques, which are marked as [*], are the primary contributions of
this research.

2. Background
This section discusses anti-forensics and the technical aspects of the

ext4 filesystem.

2.1 Anti-Forensics
Baggili et al. [2] have observed that research papers combating anti-

forensic techniques are vastly outnumbered by the number of websites
that discuss how to exploit the digital forensic process [8]. Combating
anti-forensics requires a consensus view and a standardized definition

90 ADVANCES IN DIGITAL FORENSICS XIV

and categories of anti-forensic methods in order to develop mitigation
strategies [8]. Definitions of anti-forensics were proposed in 2005 by
Rogers [13] and in 2006 by Harris [8]. The most recent definition was
formulated in 2016 by Conlan et al. [4], who summarized the previ-
ous definitions and defined anti-forensics as “attempts to alter, disrupt,
negate, or in any way interfere with scientifically valid forensic investi-
gations.”

Anti-forensic techniques fall into several categories. Rogers [13] has
proposed four categories: (i) data hiding; (ii) artifact wiping; (iii) trail
obfuscation; and (iv) attacks against the digital forensic process and
tools. A more recent taxonomy was specified by Conlan et al. [4]. This
taxonomy adds a new category to Rogers’ classification: (v) possible
indications of anti-digital-forensic activity. It also specifies several sub-
categories in order to create a more comprehensive and up-to-date tax-
onomy. The methods considered in this research can be classified as
data hiding techniques that are mapped to the filesystem manipulation
subcategory in the extended taxonomy of Conlan et al. [4].

In general, there are three ways to hide data in an ext filesystem.
First, data can be hidden in slack space. This is because ext has a
fixed block size and a write operation that (in most cases) does not
need an exact multiple of the block size, making slack space available in
several places. Of course, it is important to distinguish between different
types of slack space, for example, classical file/directory slack space and
metadata slack space associated with several filesystem data structures.

The second way is to hide data in reserved space. Multiple locations
distributed across the filesystem are reserved for future use, for example,
reserved group descriptor growth blocks for future filesystem expansion.
Reserved areas can also be leftovers from earlier versions that are no
longer used.

The third way is to misuse filesystem structures to hide data. This
approach is effective because it is difficult to distinguish hidden data
from normal content. An analysis tool will not report an inconsistency
if the hidden data matches the normal internal structures (i.e., there is
no anomaly). An example is data hidden in inode timestamps, which
the e2fsck tool would interpret as ordinary timestamps.

2.2 Ext4 Filesystem Layout
Figure 1 shows the ext4 filesystem layout. The filesystem allocates

disk space in units of blocks comprising multiple sectors; the typical
block size is 4 KiB. Blocks are, in turn, grouped into larger units called
block groups.

Göbel & Baier 91

Flex Block
Group 0

Flex Block
Group 1

Flex Block
Group 2

Flex Block
Group n-1

...

Block
Group 0

Block
Group n-1

Block
Group 2

Block
Group 1

...

Reserved Area

SB
Group
Desc
Table

Group Desc
Growth
Blocks

Flex Group
Block

Bitmap

Flex Group
Inode

Bitmap

Flex Group
Inode Table

DB DB DB...

Block 0 Block 1 n Block
Bitmaps

n Inode
Bitmaps

n Inode
Tables

Block N

Figure 1. General ext4 filesystem layout.

The entire partition is divided into a series of block groups. The ext4
filesystem offers a new feature called a flexible block group (INCOMPAT -
FLEX BG). This feature provides better performance by allowing the com-
bination of several block groups into a single logical block group. The
block metadata of multiple block groups (i.e., block bitmaps, inode
bitmaps and inode tables) are placed close together as one long run
in the first block group of the flexible block group.

Figure 2 shows an example ext4 filesystem layout with one flexible
block group that includes four block groups (left-hand side of the figure),
and the sparse feature.

A block group contains a number of data structures [19]. The first
1,024 bytes are reserved for the boot sector. Following this is the su-
perblock, which generally starts after the reserved area at byte offset
1,024; the superblock is essential to smooth filesystem operation. It
records various information about the layout, size and enabled features
of the filesystem.

The superblock is followed by the group descriptor table (GDT). Each
block group of the filesystem has a table entry, the so-called block group
descriptor. It contains metadata about the block group, for example,
the locations of the associated block bitmap, inode bitmap and inode
table.

To support future expansion of the filesystem, mke2fs allocates several
group descriptor growth blocks after the group descriptor table. If the
sparse feature flag (RO COMPAT SPARSE SUPER) is set, then redundant

92 ADVANCES IN DIGITAL FORENSICS XIV

S
B

S
B

S
B

D
B

D
B

D
B

D
B

D
B

D
B

D
B

D
B

D
B

D
B

D
B

...

...

...

...

G
D
T

G
D
T

G
D
T

GDGB FGBBM FGIBM FGIT

GDGB

GDGB

Block Grp. Block Number Data Structure

0 0 Super Block Copy

0 1 Group Descriptor Table

0 2 - 62 Group Descriptor Growth Blocks

0 63 Flex Group Block Bitmap

1 63 Flex Group Block Bitmap

2 63 Flex Group Block Bitmap

3 63 Flex Group Block Bitmap

0

1

2

3

67

68

69

70

Flex Group Inode Bitmap

Flex Group Inode Bitmap

Flex Group Inode Bitmap

Flex Group Inode Bitmap

0

1

2

3

0

1

1

1

Flex Group Inode Table

Flex Group Inode Table

Flex Group Inode Table

Flex Group Inode Table

Data Blocks

Super Block Copy

Group Descriptor Table

Group Descriptor Growth Blocks

71 - 1047

1048 - 2024

2025 - 3001

3002 - 3978

3979 - 32767

32768

32769

32770 - 32830

1

2

3

3

3

3

Data Blocks

Data Blocks

Super Block Copy

Group Descriptor Table

Group Descriptor Growth Blocks

Data Blocks

32831 - 65535

65536 - 98303

98304

98305

98306 - 98366

98367 - 124999

Figure 2. Example ext4 filesystem layout.

copies of the superblock, group descriptor table and group descriptor
growth blocks are placed in groups whose group number is 0 or a power
of 3, 5 or 7. Otherwise, each block group contains a backup copy.

Following this are the block bitmap, inode bitmap and inode table.
The block bitmap tracks the usage of each data block in the block group.
The inode bitmap records the entries in the inode table that are in use.
The inode table contains the metadata of a file or directory (e.g., file
owner, permissions and timestamps). While the bitmaps usually use
one block each, the inode table uses multiple contiguous blocks. Leftover
space is used by the data blocks that store actual user data.

3. Evaluation Methodology
An anti-forensic hiding approach seeks to conceal data. A user who

employs such a technique is mainly interested in two aspects. The first
aspect is the amount of data that can be hidden by the technique – the
more, the merrier. The second is the ease with which hidden data can
be discovered by a digital forensic expert – the harder, the better.

Göbel & Baier 93

Table 2. Relevant metadata information in the ext4 test volumes.

Metadata Information 64 GiB Volume 500 GiB Volume

Block Size 4,096 4,096
Inode Size 256 256
Inode Range 1 – 4,194,305 1 – 32,768,001
Free Blocks 16,369,541 128,734,265
Free Inodes 4,194,293 32,767,989
GDT Size (in Blocks) 8 63
Number of Block Groups 512 4,000
Blocks per Block Group 32,768 32,768
Inodes per Block Group 8,192 8,192
Superblocks (with Sparse Feature) 13 18
Superblocks (without Sparse Feature) 512 4,000

Therefore, a hiding approach is evaluated based on: (i) capacity; and
(ii) detection rating. Comparable evaluation metrics have not been pro-
posed in the digital forensics literature.

Capacity: The maximum hideable amount of data in bytes over
the entire filesystem is specified for each technique. If there is in-
sufficient space for an entire file to be hidden in one location, it
can be divided into several pieces and hidden in multiple locations
across the filesystem. Furthermore, the maximum hiding capaci-
ties of a 64 GiB volume (e.g., Android internal flash memory) and
a 500 GiB volume (e.g., laptop SSD) are specified. Reasonable es-
timates of the hiding capacity were made based on information
extracted from sample test images using Sleuthkit (Table 2).

Detection Rating: The following detection rating scheme is em-
ployed:

– The “easy” rating implies that a digital forensic investigator
will typically find the hidden data.

– The “advanced” rating implies that the hidden data would
not ordinarily be found, but a digital forensic expert would
find it if there is an anomaly.

– The “difficult” rating implies that the hidden data would
hardly ever be found.

The Sleuthkit, FTK Imager and Autopsy tools were used to obtain
ratings of the data hiding techniques. Modern volumes are getting larger
and forensic investigators often do not have the expertise or resources to
perform manual examinations using hex editors. Forensic tools are used

94 ADVANCES IN DIGITAL FORENSICS XIV

to examine volumes and alert investigators to anomalies. If an alert does
not point an investigator to the hidden data, it can remain undetected.

The e2fsckand debugfsfilesystem checking utilities in the e2fsprogs
suite may be used to find filesystem inconsistencies and provide hints
about hidden data. The e2fsck utility can be forced to check a filesys-
tem using the -f argument. Beyond this, file carving can be used to
obtain hidden data, but this is outside the scope of this research, which
focuses on data hiding and detection using filesystem structures instead
of treating the entire volume as an image without metadata.

It is important to note that detecting hidden data does not solve the
problem of interpreting the hidden data. Therefore, after an anomaly
indicates the presence of hidden data, reverse engineering and decryption
techniques may have to be applied to determine the meaning of the
hidden content. Obfuscated and encrypted data significantly complicate
hidden data detection using carving techniques.

This research focuses on the capabilities of forensic tools to find hidden
data in unexpected locations. When assessing the hiding techniques in
this research, it was assumed that a forensic investigator would know the
tools well, but not the details about the ext4 filesystem. Furthermore, it
was assumed that the investigator would not examine the entire volume
manually if nothing unexpected was encountered.

Experiments were performed on several images created using the dd
command and formatted with certain ext4 settings using mke2fs. The
data, which included JPG, TXT and ZIP files, and single ASCII char-
acters, was subsequently hidden in the created images using dd.

4. Hiding Methods Based on Previous Research
This section evaluates whether or not the hiding techniques proposed

for ext2/ext3 or other filesystems work on the ext4 filesystem.
The experiments demonstrate that nine of the ten tested techniques

still work. Table 3 lists each of the tested methods along with its hiding
capacity and detection rating.

4.1 File and Directory Slack Space
Data can be hidden in file slack space [5] as well as in directory slack

space [3]. Slack space hiding methods developed for previous ext versions
also work on the ext4 filesystem.

The available slack space depends on the block size, amount of data
stored in the corresponding block and number of allocated files. This
makes it possible to conceal BlockSize

2 ·UsedInodes bytes on average. Just
like any other file, ext4 directories are allocated in blocks. They contain

Göbel & Baier 95

T
ab

le
3.

S
u
m

m
a
ry

o
f
a
d
a
p
te

d
ex

t4
h
id

in
g

te
ch

n
iq

u
es

w
it
h

h
id

in
g

ca
p
a
ci

ty
a
n
d

d
et

ec
ti
o
n

ra
ti
n
g

m
et

ri
cs

.

D
a
ta

H
id

in
g

C
a
p
a
c
it
y

(B
y
te

s)
C
a
p
a
c
it
y

C
a
p
a
c
it
y

D
e
te

c
ti
o
n

T
e
c
h
n
iq
u
e

(U
sa

b
le

S
p
a
c
e
)

6
4
G
iB

5
0
0
G
iB

R
a
ti
n
g

V
o
lu

m
e

V
o
lu

m
e

F
il
e/

D
ir

ec
to

ry
B
lo

c
k
S
iz

e
2

·U
se
d
In

od
es

8
G

iB
6
2
.5

G
iB

E
a
sy

S
la

ck
S
p
a
ce

N
u
ll

D
ir

ec
to

ry
(B

lo
ck

S
iz

e
−

(3
·1

2
)
−

8
)·

6
1
.7

7
G

iB
4
8
5
.8

G
iB

A
d
va

n
ce

d
E

n
tr

ie
s

U
se

d
D

a
ta

B
lo

ck
s

P
a
rt

it
io

n
B

o
o
t

S
ec

to
r

1
,0

2
4

1
,0

2
4
B

1
,0

2
4

B
E

a
sy

S
u
p
er

b
lo

ck
:

S
la

ck
S
p
a
ce

B
lo

ck
S

iz
e
−

1
,0

2
4

1
.5

M
iB

1
1
.7

1
M

iB
E

a
sy

S
u
p
er

b
lo

ck
:

R
es

er
v
ed

S
p
a
ce

3
9
4

–
–

E
a
sy

S
u
p
er

b
lo

ck
:

B
a
ck

u
p

C
o
p
ie

s
B

lo
ck

S
iz

e
·(

B
lo

ck
G

r
o
u
p
s
−

1
)

2
M

iB
1
5
.6

2
M

iB
A

d
va

n
ce

d

G
ro

u
p

D
es

cr
ip

to
r

T
a
b
le

:
G

D
T

S
iz

e
−

(G
r
o
u
p
D

es
cS

iz
e·

–
7
.8

1
M

iB
E

a
sy

S
la

ck
S
p
a
ce

B
lo

ck
G

r
o
u
p
s)

B
lo

ck
G

ro
u
p

D
es

cr
ip

to
r:

4
·B

lo
ck

G
r
o
u
p
s

2
K

iB
1
5
.6

2
K

iB
A

d
va

n
ce

d
R

es
er

v
ed

S
p
a
ce

In
o
d
e

T
a
b
le

:
R

es
er

v
ed

In
o
d
es

2
·(

I
n
o
d
eS

iz
e
−

2
0
)

4
7
2
B

4
7
2

B
A

d
va

n
ce

d

In
o
d
e:

R
es

er
v
ed

S
p
a
ce

2
·(

I
n
o
d
es

−
8
)

8
M

iB
6
2
.5

M
iB

A
d
va

n
ce

d

96 ADVANCES IN DIGITAL FORENSICS XIV

e2fsck 1.43.7 (16-Oct-2017)

Pass 1: Checking inodes, blocks and sizes.

Pass 2: Checking directory structure.

Directory inode 12, block #0: directory passes checks but fails

the checksum. Fix<y>? yes.

Figure 3. Repair of an directory inode checksum using e2fsck.

several directory entries, including at least one entry each for the cur-
rent directory and parent directory. The available space depends on the
number of directory entries. Data can be hidden in the space between
the last directory entry and before the ext4 dir entry tail structure
because the last existing entry points to this structure at the end of the
block [19], leaving the remaining space unused. The downside of using
slack space is that modifying the original file or directory often over-
writes the hidden data; consequently, this method should be restricted
to static files and directories.

Hidden data in file slack space does not cause an e2fsck or kernel
warning. However, hidden data in directory slack space causes checksum
errors. These can be fixed by e2fsck without losing the hidden data as
shown in Figure 3. According to the information in Table 2, the 64 GiB
volume provides about 8 GiB of available slack space on average whereas
the 500 GiB volume provides about 62.5 GiB.

It is common knowledge that data can be hidden in file slack space;
therefore, it is classified as easy to find. Common forensic tools check
the file slack space by default. However, Autopsy does not show the
file slack space automatically; directory slack space is visible using the
built-in hex viewer. FTK Imager shows the file slack space in the file
browser, but the directory slack space is not visible in the same way.
The Sleuthkit command icat -s can help extract a file, including its
slack space. Directory slack space should not be ignored during an in-
vestigation. Many seemingly useless small files or empty directories in a
volume could indicate hidden data in file slack space and directory slack
space. File carving can help distinguish hidden data from normal binary
data in file slack space.

4.2 Null Directory Entries
The anti-forensic tool KY FS [14] shows how data can be hidden in

an ext2 directory entry. In the ext4 filesystem, this can still be done by
setting the values of the inode and name len attribute of a directory
entry to zero. After this is done, the directory entry appears as unused
and is not visible in a normal file explorer. The length rec len is set

Göbel & Baier 97

to the length of the entire block and data is then hidden in the name
field of the entry. Note that 12 bytes each for the current directory,
parent directory and structure ext4 dir entry tail at the end of the
block including the checksum, as well as 8 bytes for the null directory
entry itself, cannot be used to conceal data. With the exception of the
above-mentioned entries (BlockSize−(3 ·12)−8)·UsedDataBlocks bytes
remain to hide data.

In the experiments, 61.77 GiB of data could be hidden in the 64 GiB
image and 485.8 GiB in the 500 GiB image. Invalid directory inode check-
sums can also be fixed by e2fsck as shown in Figure 3.

This is an advanced data hiding technique because null directory en-
tries can be difficult to recognize among the variety of directory entries;
in fact, their content would appear almost invisible at first sight. Hidden
data can be viewed manually using the FTK Imager and Autopsy hex
viewers, but no user notifications are provided. Forensic investigators
should pay attention to the presence of numerous empty directories.

4.3 Partition Boot Sector
Piper et al. [12] have shown that the first 1,024 bytes (boot sector) of

an ext2 volume can be used to hide data. This method is applicable to
ext4. No errors are detected during a forced filesystem check.

The ability to hide data in the boot sector is well known and a forensic
investigator should find it easy to find the hidden data. FTK Imager
provides the option to examine the boot sector using its hex viewer.
However, Autopsy has no option to show this data structure.

4.4 Superblock: Slack Space
Berghel et al. [3] mention that unused space exists behind the su-

perblock up to the end of the block in the ext3 filesystem. In the ext4
filesystem, the superblock also has a total size of 1,024 bytes. In general,
this provides BlockSize − 2, 048 bytes of usable space in block group 0
and BlockSize−1, 024 bytes in each remaining block group, including a
superblock backup copy, since the first superblock has an offset of 1,024
bytes to make room for the additional boot sector.

Hidden data does not affect e2fsck. The available space depends on
whether the sparse super feature flag is set. In the experiments, the
64 GiB volume provided 38 KiB of usable space with the sparse feature
and 1,535 KiB without the feature. The 500 GiB volume provided 53 KiB
of usable space with the sparse feature and 11.71 MiB without it.

Hidden data in the slack space of a superblock is easy to find because
this area is normally empty. In fact, a forensic investigator should be

98 ADVANCES IN DIGITAL FORENSICS XIV

e2fsck 1.43.7 (16-Oct-2017)

ext2fs_open2: Superblock checksum does not match superblock.

e2fsck: Superblock invalid, trying backup blocks...

Figure 4. Automated repair of an invalid superblock.

suspicious if it is not empty. FTK Imager provides the option to examine
a superblock with its hex viewer. However, Autopsy has no special
option to show this data structure and does not provide any warnings.

4.5 Superblock: Reserved Space
The anti-forensic tool Data Mule FS has been shown to use 759 bytes

in a superblock to hide data [14]. According to the Linux kernel source
code [17], the reserved space in the ext4 superblock is 394 bytes (2 bytes
in s reserved pad and 392 bytes in array s reserved[98]). However,
this hiding technique is useless. In the experiments, all the attempts at
concealing data in the reserved space of the primary superblock failed
because e2fsck generated invalid checksum errors. Subsequent recovery
using the backups of the superblock overwrote the hidden content (Fig-
ure 4). However, as discussed in the next section, this behavior does not
apply to the backup copies. Due to the warnings, data hidden in the
reserved space of a superblock is easily spotted.

4.6 Superblock: Backup Copies
Piper et al. [12] have shown that it is possible to hide data in ext3

superblock backups. This data hiding method is still applicable to ext4.
In fact, redundant superblocks can be fully used to hide data as long
as the first superblock is undamaged. No warnings are issued when the
volume is mounted or checked with e2fsck. If the sparse feature flag
is not set, then BlockSize · (BlockGroups − 1) bytes are available to
conceal data; otherwise, the space available is reduced to the number of
block groups including the backups.

In the experiments, the 64 GiB volume provided about 48 KiB of
space for data hiding with the sparse feature and 2 MiB without it.
The 500 GiB volume provided about 68 KiB with the sparse feature and
15.62 MiB without it. However, data loss could occur if the first su-
perblock is corrupted; this is because e2fsck attempts to restore the
original data structure in all backups and overwrites the hidden con-
tent. Also, if no valid backup is found, a successful filesystem recovery
is impossible.

Göbel & Baier 99

This method is classified as advanced in terms of its difficulty. This is
because real data is actually expected in the superblock backups, unlike
slack space, which is normally empty. The superblocks can be viewed
manually using FTK Imager with its hex viewer, but Autopsy has no
such option. The e2fsck utility does not point to the manipulated
backups, so hidden data may remain undetected. A forensic investigator
should check for a missing sparse feature flag, which is set by default.
The flag could have been deliberately removed by an attacker to obtain
additional space for data hiding.

4.7 Group Descriptor Table: Slack Space
Berghel et al. [3] have identified the presence of group descriptor slack

space in previous ext versions. The ext4 filesystem still has some slack
space behind the group descriptor table when its last block is not com-
pletely filled with table entries. Hiding data in this slack space assumes
that the filesystem will not grow in size because any added group de-
scriptors would overwrite the hidden data.

The ext4 filesystem extends the group descriptor size from 32 to
64 bytes when the 64-bit feature is enabled. This provides GDTSize −
(GroupDescSize · BlockGroups) bytes per table for hiding data. The
number of group descriptor table backups depends on the sparse super
feature flag. Hidden data does not affect e2fsck.

In the experiments, data could not be concealed in the 64 GiB image
because all the group descriptor table blocks were completely filled with
group descriptors. However, the 500 GiB volume provided 2,048 bytes
per table, corresponding to 36 KiB with the sparse feature and 7.81 MiB
without the feature for the entire filesystem.

Just like any other method that hides data in slack space, this tech-
nique is rated as easy to detect. FTK Imager enables the group descrip-
tor table to be examined using its hex viewer; Autopsy does not provide
this option.

4.8 Block Group Descriptor: Reserved Space
Data Mule FS has utilized 14 bytes of reserved space to hide data in

each ext2 group descriptor [14]. The Linux kernel source code [17] shows
that ext4 group descriptors still have a 4-byte bg reserved structure for
padding when the 64-bit feature is enabled. The available storage per
group descriptor table, which depends on the number of block groups,
amounts to 4·BlockGroups bytes. Therefore, each group descriptor table
in the 64 GiB volume provides 2KiB of usable space while each group de-
scriptor table in the 500 GiB volume provides 15.62 KiB of usable space.

100 ADVANCES IN DIGITAL FORENSICS XIV

e2fsck 1.43.7 (16-Oct-2017)

One or more block group descriptor checksums are invalid.

Fix<y>? yes.

Group descriptor 0 checksum is 0x5009, should be 0x7d85.

FIXED.

Figure 5. Repair of an invalid group descriptor checksum.

After manipulating the group descriptors, e2fsck can be used to fix in-
valid checksums (Figure 5). No more errors occur in further filesystem
checks.

FTK Imager provides the option to examine the group descriptor
table with its hex viewer, but does not give any warnings; Autopsy has
no such option. However, due to the fact that only four bytes per group
descriptor are available, hidden data would almost certainly be spread
over many group descriptors. If a forensic tool does not explicitly report
a non-empty reserved field, the fragmented data can render the forensic
investigation more difficult. Therefore, this data hiding technique is
classified as advanced.

4.9 Inode Table: Reserved Inodes
Data hiding using reserved inodes has been discussed for ext2 and

ext3 [5, 12]. In ext4, inodes 1 to 10 are reserved for internal filesystem
use. Inode 0 is not used. Inode 11 is the first available inode and
is typically used for the lost+found directory. However, the kernel
source code [17] does not explicitly mention the use of inodes 9 and 10.
According to Holen [9], inode 9 is used for snapshots by Next3fs and
inode 10 is used for ext4 metadata replication. Both are non-standard
options and are not used without a patched kernel.

e2fsck 1.43.7 (16-Oct-2017)

Pass 1: Checking inodes, blocks and sizes.

Inode 12 passes checks, but checksum does not match inode.

Fix<y>? yes.

Figure 6. Repair of an invalid inode checksum.

Tests have shown that the fields i mode, i blocks lo, l i blocks -
hi, i flags, i size high, l i checksum lo and i checksum hi should
not be manipulated because they cause errors in e2fsck. Therefore,
2 · (InodeSize− 20) bytes remain, which provides 472 bytes in each test
volume. The e2fsck utility corrects the inode checksums after manipu-
lation (Figure 6).

Göbel & Baier 101

It should be mentioned that data can be hidden in blocks that are
marked bad using the reserved inode 1. The filesystem prevents bad
blocks from being allocated to a file or directory. Any block can be
added to the list of bad blocks (using e2fsck [-l bad blocks file]
device), which provides almost unlimited space.

FTK Imager supports the examination of the inode table with its
hex viewer; Autopsy has no such option. This data hiding technique is
classified as advanced because reserved inodes are usually not assumed
to be empty. Therefore, all inodes, including reserved inodes and slack
space, should be analyzed by default using forensic software.

4.10 Inode: Reserved Space
Data Mule FS has utilized 10 bytes per ext2 inode to hide data [14].

However, the ext4 inode structure only has two bytes available in l i -
reserved [17]. With the exception of the reserved inodes 1 to 8, this field
can be abused, providing 2·(Inodes−8) bytes for hiding data. Therefore,
the 64 GiB volume offers approximately 8MiB of space for hiding data
and the 500 GiB volume offers 62.5 MiB. Invalid inode checksums can be
fixed using e2fsck after data has been hidden (Figure 6).

FTK Imager provides the option to investigate the inode table man-
ually; Autopsy has no special option.

The inode reserved space is mentioned in the ext4 documentation [19].
Nevertheless, this data hiding method is rated as advanced because the
same situation applies as in the case of the group descriptor reserved
space. Hidden data is hard to find when it is distributed in multiple
entries across the inode table. An investigator should, therefore, keep
an eye on the various reserved areas.

5. New Hiding Methods
This section discusses locations for hiding data that have been iden-

tified during this research project. Some techniques have not been de-
scribed in the literature because they are only applicable to ext4. Fur-
thermore, this section verifies whether or not any of the potential ext4
hiding places proposed in the literature, but that have not been tested,
actually work.

The experiments demonstrate that all eight tested techniques work.
Table 4 summarizes the results of the eight techniques.

5.1 Block Bitmap: Slack Space
The block bitmap is one block in size because the number of blocks

per block group corresponds to the number of bits of one block (e.g.,

102 ADVANCES IN DIGITAL FORENSICS XIV

T
able

4.
S
u
m

m
a
ry

o
f
n
ew

ex
t4

h
id

in
g

tech
n
iq

u
es

w
ith

h
id

in
g

ca
p
a
city

a
n
d

d
etectio

n
ra

tin
g

m
etrics.

D
a
ta

H
id

in
g

C
a
p
a
c
ity

(B
y
te

s)
C
a
p
a
c
ity

C
a
p
a
c
ity

D
e
te

c
tio

n
T
e
c
h
n
iq
u
e

(U
sa

b
le

S
p
a
c
e
)

6
4
G
iB

5
0
0
G
iB

R
a
tin

g
V
o
lu

m
e

V
o
lu

m
e

B
lo

ck
B

itm
a
p
:

(B
lo

ck
S

iz
e−

(
B
lo

c
k
s
P
e
r
G
r
o
u
p

8
))·

V
a
ria

b
le

V
a
ria

b
le

E
a
sy

S
la

ck
S
p
a
ce

B
lo

ck
G

r
o
u
p
s

In
o
d
e

B
itm

a
p
:

(B
lo

ck
S

iz
e−

(
I
n
o
d
e
s
P
e
r
G
r
o
u
p

8
))·

1
.5

M
iB

1
1
.7

1
M

iB
E

a
sy

S
la

ck
S
p
a
ce

B
lo

ck
G

r
o
u
p
s

In
o
d
e:

S
la

ck
S
p
a
ce/

(I
n
o
d
eS

iz
e−

(1
2
8

+
i

ex
tr

a
isiz

e))·
I
n
o
d
es

3
8
4
M

iB
3
,0

0
0

M
iB

A
d
va

n
ced

E
x
ten

d
ed

A
ttrib

u
tes

In
o
d
e:

N
a
n
o
seco

n
d

1
5·

U
sed

I
n
o
d
es

6
0
M

iB
4
6
9

M
iB

D
iffi

cu
lt

T
im

esta
m

p
s

G
ro

u
p

D
escrip

to
r

T
a
b
le:

G
D

T
S

iz
e·

(B
lo

ck
G

r
o
u
p
s−

1
)

1
6
M

iB
9
8
4

M
iB

A
d
va

n
ced

B
a
ck

u
p

C
o
p
ies

G
D

T
S

iz
e

=
B

lo
ck

S
iz

e·
�
B
lo

c
k
G
r
o
u
p
s·s

d
e
s
c

s
iz

e
B
lo

c
k
S
iz

e
�

G
ro

u
p

D
escrip

to
r

T
a
b
le:

s
r
eser

v
ed

g
d
t

blo
ck

s·
B

lo
ck

S
iz

e·
2
G

iB
1
5
.6

G
iB

A
d
va

n
ced

G
row

th
B

lo
ck

s
(B

lo
ck

G
r
o
u
p
s−

1
)

E
x
ten

t:
P
ersisten

t
1
6
T

iB
V
a
ria

b
le

V
a
ria

b
le

A
d
va

n
ced

P
rea

llo
ca

tio
n

D
a
ta

S
tru

ctu
res

in
D

a
ta

S
tr

u
ctu

r
eS

iz
e·

U
n
in

itB
lo

ck
G

r
o
u
p
s

V
a
ria

b
le

V
a
ria

b
le

A
d
va

n
ced

U
n
in

itia
lized

B
lo

ck
G

ro
u
p
s

Göbel & Baier 103

there are 32,768 blocks per block group with a default block size of
4,096 bytes). Default settings leave no room between the block bitmap
and the end of the block. However, slack space can still exist because
the number of blocks per group does not necessarily have to match the
number of bits in a block, and it is adjustable during formatting. The
command mkfs.ext4 -g [image] deliberately creates a filesystem with
fewer blocks per group.

Several regions of block bitmap slack space exist, one in each block
group. The amount of data that can be hidden depends on the num-
ber of block groups and amounts to (BlockSize − (BlocksPerGroup

8)) ·
BlockGroupsbytes. The amount of usable slack space varies, but cor-
responds to the inode bitmap. Hidden data survives a forced check by
e2fsck.

FTK Imager presents the block bitmaps in its hex viewer; Autopsy
has no such option. Hidden data should be easy to find because, with
the default filesystem settings, no slack space is available behind the
block bitmap; if there is space, it should contain only zeros.

5.2 Inode Bitmap: Slack Space
There are fewer inodes than blocks per block group. Therefore, un-

like the block bitmap, several bytes remain unused at the end of each
inode bitmap with the default settings. The amount of usable space is re-
peated per block group and this provides (BlockSize−(InodesPerGroup

8))·
BlockGroups bytes. The 64 GiB volume can store 1.5 MiB of hidden
data and the 500 GiB volume can store 11.71 MiB. The hidden data sur-
vives a forced check by e2fsck.

FTK Imager provides the option to view the inode bitmaps manually
whereas Autopsy does not provide this option. The slack area behind
the inode bitmap up to the end of the block normally contains zeros.
Any other data would be easily found by a forensic investigator.

5.3 Inode: Slack Space/Extended Attributes
The ext2 and ext3 filesystems have an inode size of 128 bytes and

leave no space for data hiding. The default size of an inode record in
ext4 is 256 bytes [10]. It can even be set to the filesystem block size us-
ing the mkfs.ext4 [-I inode size] option at format time. The extra
128 bytes are divided into a range of fixed fields and a range of extended
attributes as shown in Figure 7. Each inode contains the field i extra -
isize, which records the additional number of bytes for the fixed fields
beyond the original 128 bytes. The extra space between the end of the in-
ode structure and the end of the inode record is meant to store extended

104 ADVANCES IN DIGITAL FORENSICS XIV

Ext4 Large Inode
Original

128-Byte Inode
i_extra_isize
i_checksum_hi
i_c me_extra
i_m me_extra
i_a me_extra

i_cr�me
i_cr me_extra
i_version_hi
i_projid

Extended
A ributes

Fixed Fields

0
…
127

255

Figure 7. Ext4 inode structure layout (adapted from [10]).

attributes, but it can also be used to hide data. The maximum con-
cealable amount of data is (InodeSize− (128 + i extra isize)) · Inodes.
Thus, 384 MiB of space is available in the 64 GiB volume and 3,000 MiB
in the 500 GiB volume (when i extra isize is set to 32). After an in-
ode is manipulated, its checksum can be fixed by e2fsck (Figure 6). No
warnings occur during additional checks.

If no extended attributes are used, the area behind the actual inode
structure is normally empty and any hidden data would be suspicious.
Since this is not generally the case and none of the tools give any indica-
tions of hidden data, the detection rating is advanced. Any inodes that
do not have the default size of 256 bytes should raise further suspicion.
In extreme cases, each inode can have the size of an entire block, thereby
providing additional space.

5.4 Inode: Nanosecond Timestamps
With larger inodes (256 bytes), there is room to support nanosecond

timestamps, so additional 32-bit i [c|m|a|cr]time extra fields were
added to the original inode structure as shown in Figure 7. Since 30 bits
are sufficient to enable nanosecond precision, the remaining two bits are
used to extend the Unix epoch (new overflow date is 2446-05-10) [19].
If the additional precision for the timestamps is not required, then the

Göbel & Baier 105

four fields can conceal 16 bytes in each inode. However, the use of the
lower two epoch bits leads to dates beyond the year 2038, which looks
suspicious and could help reveal the hidden data. Therefore, it makes
more sense to hide data only in the upper 30 bits of the nanosecond
timestamps. This provides 15 ·UsedInodes bytes if all four timestamps
are used. Thus, the 64 GiB volume offers almost 60 MiB of usable space
while the 500GiB volume offers as much as 469 MiB of space. After
the checksums of the manipulated inode entries are repaired (Figure 6),
hidden data survives another forced e2fsck check and no warnings are
given when the filesystem is mounted.

Data hidden in this manner is difficult to find. Common file explor-
ers, as well as ls -la, do not support nanosecond accuracy. FTK Im-
ager and Autopsy also do not show the nanosecond timestamps in their
file explorers. Commands such as stat [file] or debugfs -R ‘stat
<inode>’ [image] can parse the timestamps, but this does not provide
concrete information about the hidden data. Furthermore, tests have
shown that the istat command of Sleuthkit does not take the extra
epoch bits into account and, therefore, timestamps beyond 2038 are not
decoded properly. A forensic investigator should keep an eye on access
or modification timestamps that occur before the creation time.

5.5 Group Descriptor Table: Backup Copies
During this research it was discovered that, in addition to the su-

perblock backup copies, backups of the group descriptor table can be
used to hide data. The amount of space depends on the size of the group
descriptor table and corresponds to GDTSize · (BlockGroups−1) if the
sparse feature is disabled; otherwise, the space is reduced to the num-
ber of block groups including the backups. The 64 GiB volume provides
16 MiB and 384 KiB of usable space without and with the feature, re-
spectively; the corresponding values for the 500 GiB volume are 984 MiB
and 4 MiB, respectively. The e2fsck utility does not give any warnings.
However, when the first group descriptor table is damaged, any hidden
data is overwritten during the filesystem check.

As in the case of the superblock backups, this method is rated as
advanced because real data is typically already present in this location.
FTK Imager provides the option to examine the group descriptor table
manually, but Autopsy does not. None of the tools give any warnings.

5.6 Group Descriptor Table: Growth Blocks
Reserved group descriptor table growth blocks enable the expansion

of the group descriptor table and filesystem. Fairbanks [6] points out

106 ADVANCES IN DIGITAL FORENSICS XIV

e2fsck 1.43.7 (16-Oct-2017)

Pass 1: Checking inodes, blocks and sizes.

Inode 7 has illegal block(s). Clear<y>? no.

Too many illegal blocks in inode 7.

Figure 8. e2fsck error after group descriptor table growth block manipulation.

that these additional blocks may be used to hide data. The number of
reserved group descriptor table blocks for future filesystem expansion is
stored in the superblock if the feature flag COMPAT RESIZE INODE is set.
All attempts to hide data in reserved group descriptor table blocks of
block group 0 failed because e2fsck generated errors (Figure 8).

However, there are several backups in other block groups where data
can be hidden without raising any warnings (as in the case of the su-
perblock/group descriptor table backups). The amount of space corre-
sponds to s reserved gdt blocks · BlockSize · (BlockGroups − 1). The
64 GiB volume provides about 2 GiB of space whereas the 500 GiB vol-
ume provides nearly 15.6 GiB of usable space.

Because of the e2fsck warning, hidden data in block group 0 is discov-
ered easily. In this case, the error message relates to inode 7 (reserved
group descriptor inode), which is an indication of errors in the group
descriptor table blocks. However, this does not apply to other block
groups. The data hiding technique is rated as advanced because the
growth blocks are not a well-known ext4 data structure. FTK Imager
and Autopsy do not provide any options to examine this data structure.

5.7 Extent: Persistent Preallocation
In the ext4 filesystem, the old indirect block mapping scheme is re-

placed with an extent tree. An extent no longer provides a one-to-one
mapping from logical blocks to disk blocks; instead, it efficiently maps a
large part of a file to a range of contiguous physical blocks [10]. Instead
of saving many individual block numbers, an extent only has to save
the first block number that it covers, the number of blocks it covers and
the physical block number to which it points (Figure 9). The persistent
preallocation feature permits the preallocation of blocks for a file, which
typically extends its size (e.g., database) without having to initialize the
blocks with valid data or zeros [10]. The most significant bit of the
ee len field in the ext4 extent structure indicates whether an extent
contains uninitialized data. If the bit is set to one, the filesystem only
returns zeros during a read of the uninitialized extent. For this reason,
data can be hidden using persistent preallocation. Hidden data does not
induce e2fsck errors or kernel warnings when a volume is mounted. The

Göbel & Baier 107

Ext4_extent Structure

Physical Block # Logical Block #

95 47 31 0

Uninitialized Extent Flag Length

Figure 9. Ext4 extent structure (from [10]).

amount of space is limited to the maximum file size, which is 16 TiB in
the case of 4 KiB blocks [6].

This is rated as an advanced data hiding technique because the unini-
tialized extent flag can be overlooked. However, few forensic investiga-
tors are knowledgeable about the new features introduced in ext4. Data
that returns only zeros should be deemed suspicious. Additionally, Fair-
banks [6] points out that uninitialized extents may contain remnants of
previous data, making it even more important to examine them. Foren-
sic tools should have the ability to show the real content of preallocated
blocks instead of zero-filled blocks.

5.8 Uninitialized Block Groups
Data could be stored in several data structures in uninitialized block

groups. This technique can be applied as long as the uninit bg flag
(RO COMPAT GDT CSUM) is set on the volume. Three block group descrip-
tor flags enable mke2fs to skip the initialization of parts of the block
group metadata. The INODE UNINIT and BLOCK UNINIT flags enable the
inode table/bitmap and block bitmap for the block group to be calcu-
lated and, therefore, the on-disk bitmap and table blocks are not initial-
ized immediately during formatting. This is generally the case for an
empty block group that only contains fixed-location metadata.

This technique provides considerable storage for hidden data. In fact,
the entire space of the uninitialized inode/block bitmaps or inode tables
can be used to hide data, instead of just the slack space. It is better to use
block groups with high group numbers because they are initialized later.
This offers DataStructureSize·UninitBlockGroups bytes for concealing
data.

Hidden data does not affect a forced check by e2fsck. FTK Imager
enables inode bitmaps to be viewed manually using its hex viewer; Au-
topsy has no such option. This technique has an advanced detection
rating because many forensic investigators are not aware of this new
ext4 data structure.

108 ADVANCES IN DIGITAL FORENSICS XIV

6. Conclusions
Hidden data in ext4 filesystems may constitute valuable evidence in

forensic investigations and should not be underestimated. Seventeen of
the eighteen data hiding techniques tested in this research were found to
be successful. New hiding places were discovered, previously-proposed
techniques were proven to work and even very old methods were verified
as still applicable. Most of the data hiding techniques exploit unallocated
block space or specific reserved metadata fields of the ext4 filesystem.

The usable data hiding capacity strongly depends on the data struc-
ture and the filesystem settings and its size. Ext4 volumes are easily
set up to provide enough space to hide data; for example, the sparse
feature can be disabled, inode size can be set to the size of an entire
block and larger numbers of inodes than usual can be created. The use
of non-standard filesystem settings should be cause for alarm in a digi-
tal forensic investigation. However, even with default settings, adequate
space – ranging from a few bytes to several gigabytes – is available to
conceal data in the filesystem data structures. For example, malware
could be hidden in various locations (e.g., on an Android smartphone)
to remain partially undetectable. Also, data can be hidden in several
data structures and distributed across the filesystem, making a forensic
investigation much more difficult.

This research has shown that existing forensic tools, as well as filesys-
tem checking utilities, do not recognize hidden data in locations that are
not normally used. Ten of the techniques tested are rated as advanced
and, therefore, require substantial forensic expertise. Data hidden in
nanosecond timestamps is difficult to detect because it would be spread
over several timestamps and would be very similar to normal data. The
detection rates of forensic tools could be improved if official filesystem
specifications were published, including standards of how reserved fields
and unused space should be treated. This would help forensic tools keep
up with changes to the specifications, enabling them to interpret all the
data structures correctly and provide automatic warnings when hidden
data is discovered.

Future research should focus on unresearched locations such as hash
tree directories and non-essential fields such as the unused field in the
extent tree. The use of the ext4 journal for data hiding should also
investigated. Another important topic is the measurement of entropy
of data in potential hiding places, which would enhance the detection
of hidden data because anomalies are easily discovered in locations that
normally contain null bytes. Finally, the implementation of an anti-

Göbel & Baier 109

forensic data hiding toolkit and detection utility would be invaluable to
the digital forensic community.

Acknowledgement
This research was supported by the German Federal Ministry of Ed-

ucation and Research (BMBF) under the funding program Forschung
an Fachhochschulen (Contract No. 13FH019IB6) and by the Hessen
State (Germany) Ministry for Higher Education, Research and the Arts
(HMWK) under CRISP (www.crisp-da.de).

References

[1] R. Anderson, R. Needham and A. Shamir, The steganographic file
system, Proceedings of the Second International Workshop on In-
formation Hiding, pp. 73–82, 1998.

[2] I. Baggili, A. BaAbdallah, D. Al-Safi and A. Marrington, Research
trends in digital forensic science: An empirical analysis of pub-
lished research, Proceedings of the Fourth International Conference
on Digital Forensics and Cyber Crime, pp. 144–157, 2012.

[3] H. Berghel, D. Hoelzer and M. Sthultz, Data hiding tactics for Win-
dows and Unix file systems, Advances in Computers, vol. 74, pp.
1–17, 2008.

[4] K. Conlan, I. Baggili and F. Breitinger, Anti-forensics: Furthering
digital forensic science through a new extended granular taxonomy,
Digital Investigation, vol. 18(S), pp. S66–S75, 2016.

[5] K. Eckstein and M. Jahnke, Data hiding in journaling file systems,
Proceedings of the Fifth Digital Forensic Research Workshop, 2005.

[6] K. Fairbanks, An analysis of Ext4 for digital forensics, Digital In-
vestigation, vol. 9(S), pp. S118–S130, 2012.

[7] S. Garfinkel, Anti-forensics: Techniques, detection and countermea-
sures, Proceedings of the Second International Conference on Infor-
mation Warfare and Security, pp. 77–84, 2007.

[8] R. Harris, Arriving at an anti-forensics consensus: Examining how
to define and control the anti-forensics problem, Digital Investiga-
tion, vol. 3(S), pp. S44–S49, 2006.

[9] V. Holen, Reserved ext2/ext3/ext4 inodes (www.vidarholen.net/
contents/junk/inodes.html), 2012.

[10] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas and L.
Vivier, The new Ext4 filesystem: Current status and future plans,
Proceedings of the Linux Symposium, vol. 2, pp. 21–33, 2007.

110 ADVANCES IN DIGITAL FORENSICS XIV

[11] A. McDonald and M. Kuhn, StegFS: A steganographic file system
for Linux, Proceedings of the Third International Workshop on In-
formation Hiding, pp. 463–477, 1999.

[12] S. Piper, M. Davis, G. Manes and S. Shenoi, Detecting hidden data
in Ext2/Ext3 file systems, in Advances in Digital Forensics, M.
Pollitt and S. Shenoi (Eds.), Springer, Boston, Massachusetts, pp.
245–256, 2005.

[13] M. Rogers, Anti-forensics, presented at Lockheed Martin, San
Diego, California, September 15, 2005.

[14] The Grugq, The art of defiling: Defeating forensic analysis, pre-
sented at Black Hat USA, 2005.

[15] C. Thuen, Understanding Counter-Forensics to Ensure a Suc-
cessful Investigation, Department of Computer Science, Univer-
sity of Idaho, Moscow, Idaho (pdfs.semanticscholar.org/d5b6/
b658d9178dbcdf33e095a53c45b4f7a43fc8.pdf), 2007.

[16] T. Ts’o, Android will be using ext4 starting with Gingerbread,
Blog Entry (thunk.org/tytso/blog/2010/12/12/android-will-
be-using-ext4-starting-with-gingerbread), December 12,
2010.

[17] T. Ts’o, Ext4 filesystem tree, Kernel.org git repositories (git.
kernel.org/pub/scm/linux/kernel/git/tytso/ext4.git),
2018.

[18] D. Wong, Ext4 Howto, Ext4 Wiki (ext4.wiki.kernel.org/index.
php/Ext4_Howto), 2015.

[19] D. Wong, Ext4 Disk Layout, Ext4 Wiki (ext4.wiki.kernel.org/
index.php/Ext4_Disk_Layout), 2016.

	ANTI-FORENSIC CAPACITY ANDDETECTION RATING OF HIDDENDATA IN THE Ext4 FILESYSTEM
	Abstract
	Keywords
	1. Introduction
	2. Background
	2.1 Anti-Forensics
	2.2 Ext4 Filesystem Layout

	3. Evaluation Methodology
	4. Hiding Methods Based on Previous Research
	4.1 File and Directory Slack Space
	4.2 Null Directory Entries
	4.3 Partition Boot Sector
	4.4 Superblock: Slack Space
	4.5 Superblock: Reserved Space
	4.6 Superblock: Backup Copies
	4.7 Group Descriptor Table: Slack Space
	4.8 Block Group Descriptor: Reserved Space
	4.9 Inode Table: Reserved Inodes
	4.10 Inode: Reserved Space

	5. New Hiding Methods
	5.1 Block Bitmap: Slack Space
	5.2 Inode Bitmap: Slack Space
	5.3 Inode: Slack Space/Extended Attributes
	5.4 Inode: Nanosecond Timestamps
	5.5 Group Descriptor Table: Backup Copies
	5.6 Group Descriptor Table: Growth Blocks
	5.7 Extent: Persistent Preallocation
	5.8 Uninitialized Block Groups

	6. Conclusions
	Acknowledgement
	References

