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Abstract. The number of cases involving Child Sexual Abuse Material
(CSAM) has increased dramatically in recent years, resulting in signif-
icant backlogs. To protect children in the suspect’s sphere of influence,
immediate identification of self-produced CSAM among acquired CSAM
is paramount. Currently, investigators often rely on an approach based on
a simple metadata search. However, this approach faces scalability lim-
itations for large cases and is ineffective against anti-forensic measures.
Therefore, to address these problems, we bridge the gap between digi-
tal forensics and state-of-the-art data science clustering approaches. Our
approach enables clustering of more than 130,000 images, which is eight
times larger than previous achievements, using commodity hardware and
within an hour with the ability to scale even further. In addition, we eval-
uate the effectiveness of our approach on seven publicly available forensic
image databases, taking into account factors such as anti-forensic mea-
sures and social media post-processing. Our results show an excellent
median clustering-precision (Homogeinity) of 0.92 on native images and
a median clustering-recall (Completeness) of over 0.92 for each test set.
Importantly, we provide full reproducibility using only publicly available
algorithms, implementations, and image databases.

Keywords: CSAM · clustering · metadata · EXIF · digital image
forensics · data science · anti-forensic · source camera identification

1 Introduction

Today, investigators are faced with a growing volume of Child Sexual Abuse
Material (CSAM) cases [36] and the data involved often reaches hundreds of
thousands of CSAM instances [11, 41]. Although low in frequency, CSAM cases
with an initial suspicion of actual sexual child abuse are the highest priority for
investigators. In these cases, it is critical to identify evidence of actual sexual
child abuse as quickly as possible to protect children from continuing harm.
With respect to digital forensics, the detection of such evidence is primarily the
identification of self-produced CSAM among acquired CSAM. This is preferably
done on the crime scene, as suggested by the Computer Forensics Field Triage
Process Model (CFFTPM) introduced by Rogers et al. [42].

https://www.unibw.de/digfor
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In contrast, most CSAM cases originate from automated reports based on
hash-known CSAM uploaded to a Electronic Service Provider (ESP), such as the
CyberTipline reports. In 2022, more than 1.5 million CyberTipline reports were
tracked in the US alone, translates into incomprehensible 4.7 CSAM uploads per
1,000 population [37], flooding digital forensic laboratories. Although these cases
have no initial suspicion of actual sexual child abuse, there is a non-negligible
overlap between suspects possessing CSAM on the one hand and committing
hands-on sexual abuse on the other, as noted by Bissias et al. [7].

Investigators are fully aware of this problem and the demanded triage [11, 22,
42] has become a fact for CSAM cases, due to limited digital forensic resources
and despite the ethical considerations of overlooking victims in CSAM cases,
as the lesser of two evils, as pointed out by Casey et al. [11]. However, the
investigators still lack adequate technical and conceptual support. Therefore,
they search for CSAM captured by a camera model used by the suspect [38],
which is time consuming, insufficiently reduces the amount of data, and is futile
in the presence of anti-forensic measures.

Contributions and organization of paper With this paper we leverage the inves-
tigator’s traditional approach and contribute further steps towards an efficient
and effective screening of CSAM for self-produced CSAM. Our contributions are
as follows.

We show that the inherent value of the traditional approach is that it can
be confirmed by any person in court and avoids technical discussions, but, it
struggles with large image sets and fails in the presence of anti-forensic mea-
sures (Section 2). Therefore, we present our screening concept, which retains the
advantages, but can be applied to very large image sets (more than 100,000 im-
ages), is resilient to anti-forensic actions, and reduces the required expert time
(Section 3).

Our key contribution is the translation of a complex digital forensic problem
into a format compatible with advanced data science tools, which is by no means
obvious and includes the selection of metadata as the best-suited data input and
the development of a custom distance metric tailored to the problem domain
(Section 4). Subsequently, we implement a proof of concept based on the open-
source tools UMAP and HDBSCAN, specifically selected to suit our use case
(Section 5).

This way, we accomplish a significant breakthrough by successfully clustering
more than 130,000 images, surpassing the previous limitations of clustering sets
of more than 10,000 images, as we show in our evaluations (Section 6). We
perform our clustering in less than 17 minutes once metadata is available or in
less than 50 minutes including all steps on commodity hardware and, as we show
empirically, scales linearly with the number of images, allowing even larger image
sets to be clustered. We evaluate the effectiveness of the clustering on the basis
of seven publicly available image databases with respect to the source camera
and achieve an excellent median Completeness and good Homogeneity of more
than 0.95 and 0.71, respectively, even in the presence of anti-forensic measures.
Our approach is able to cluster images after post-processing by social networks,
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based on their software stack, with an excellent median Completeness of 0.97,
but with a low Homogeneity, of less than 0.30.

Finally, we set our approach in context to the related work in Section 7 and
conclude our paper in Section 8.

2 The traditional procedure

We begin our explanation by looking at the final step in the forensic process,
the presentation of the results in court, which demonstrates the value of the
traditional approach, before pointing out its problems.

The value of the traditional procedure When a digital forensic investigation is
completed, the results are often reported in a form suitable for non-technical
target groups in courts [10]. Therefore, every fact presented in the court must be
explained in a way that is understandable to an ordinary person. In our use case
of correlating CSAM images to actual sexual abuse by a suspect, a sample of the
traditional procedure is as follows: suppose digital forensic analysis reveals two
images on the suspect’s devices that are presented in court. One image clearly
shows the suspect (e.g., the image contains his face), who is wearing a T-shirt
with flashy pattern and a bruise on the thumb. The second image shows sexual
child abuse conducted by a person without revealing the face, but in a T-shirt
with the same flashy pattern and with the same bruise on the thumb.

This is how investigators and prosecutors traditionally proceed [25], linking
images based on their actual content until a connection to the suspect is estab-
lished. This brings digital evidence back into the real world and hence avoids
technical discussions in court. Consequently, anyone in a court is able to judge
whether a suspect can be considered guilty. But before a prosecutor can present
such evidence in court, the images that link a crime to a suspect must be found
in sets containing hundreds of thousands of images.

The problem of the traditional procedure Eventually, an investigator is interested
in evidence for sexual child abuse (ESCA) by the suspect, which is a set of images,
which we denote as IESCA and is a subset of all images of a CSAM case we
define as I = {i1, i2, ..., in}. We divide the set I into two subsets, ICSAM which
contains all instances of CSAM, and IP which contains all personal images of
the suspect, such as vacation images. Some of these personal images identify the
suspect, which we denote as IID. Consequently, the set IESCA contains CSAM
images that are also personal images, as there is some link to images that identify
the suspect. In all we consider the sets

IESCA = {x ∈ IP | ∃x.x ∈ ICSAM ∧ ∃x.x ∈ IID}
IP ⊆ I IID ⊆ IP

ICSAM ⊆ I



4 S. Klier and H. Baier

Obviously, the identification of I is a standard task in digital forensics (e.g.,
due to known magic bytes in the common file type headers). Furthermore, the ex-
traction of its subset ICSAM can be achieved for known CSAM by hash databases
(using both cryptographic and perceptual hashes) and is increasingly supported
by artificial intelligence approaches for yet unknown CSAM [25, 39]. But due to
their case-specific and vague definition IP and its subset IID are not generically
extractable and neither is IESCA. For example, an identifying image may not
show the suspect’s face but rather moles that can be verified with a physical
examination of the suspect.

Therefore, investigators approximate IP roughly by searching for images that
were taken with a camera model known to be used by the suspect based on
easily and quickly extracted image metadata, such as the Make and Model fields
of theExifstandard [12, 38, 45]. However, this approach has some major issues:
(i) It fails if none of the fields are set, e.g., due to anti-forensic measures in
the form ofExifremover tools that are easily available and usable. (ii) Obtaining
the knowledge of the cameras used by the suspect is labor intensive and hardly
exhaustive. (iii) It still yields too many images for an investigator to detect
subtle clues in the content, as this approach is only moderately discriminatory
for popular camera models.

3 Machine Learning based screening

Our goal is to substitute the simple metadata search applied by investigators
today to address the issues discussed in Section 2, but not to replace the review.
Simply put, enable investigators to review potential evidence of actual sexual
child abuse first.

Fig. 1: Clusters of case images and boundary con-
ditions of our approach

Therefore, we propose a
two-phase approach, as shown
in Figure 1. First, all images
must be divided into packages
based on a sort criterion, as
represented by the boxes; this
will be the focus of this paper.

Next, these packages need
to be prioritized for review by
an investigator (as indicated
by the left-to-right arrow) based on additional information, such as hash-based
CSAM detection, which represents known CSAM (black exclamation mark) and
AI classification, which represents unknown CSAM (black bolt). To find poten-
tially self-produced CSAM right away, clusters containing unknown CSAM and
images identifying the suspect (first package) must first be reviewed. On the
contrary, clusters containing hash-known and AI-detected CSAM will be given
a lower priority. This may seem counterintuitive at first, but simply finding
CSAM is no longer the challenge; our goal is to find evidence of actual sexual
child abusefast.
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This process must work within the constraints shown at the bottom of Fig-
ure 1. Due to time constraints and the limited number of experts available, the
time spent on a case by an expert must be minimized. Therefore, we consider a
case to be a black box, as any insight into the case must be elaborated. Further-
more, we expect a case to contain at least 100,000 images, and thus the screening
must scale well to very large image sets. To make matters worse, we may also
be confronted with anti-forensic measures. Consequently, we address each of the
three main issues of the traditional approach pointed out in Section 2.

4 Clustering concept

We will now focus on the first step of sorting images into packages, for which we
use a clustering approach, as it is superior to classification for the given use case.
Subsequently, we turn to formulating our problem in a way that is understood
by tools of the data science community, which includes adequate data input and
the development of a problem specific distance metric. Finally, we present the
metrics on which we will evaluate our approach.

4.1 About clustering

According to Bouveyron et al. [8] the general goal of clustering is to find meaning-
ful groups of data. Typically, the data in these groups will be internally cohesive
and separated from one another based on a discriminating property. Hence the
purpose is to find pairwise distinct groups whose members have something in
common that they do not share with members of other groups. Unlike classifi-
cation, clustering does not require a training set, is unsupervised, and operates
without knowledge on existing classes, which is advantageous for our constraints.
However, the disadvantage is that the clusters are not labeled and therefore need
to be given meaning in the subsequent prioritization phase.

A clustering function cluster in general compares members of the set of all
images I and yields a set of clusters C, that is the members of C are depicted
as the different packages in Figure 1:

C = cluster(I) = {IC1 , IC2 , ..., ICn}

For 1 ≤ k ≤ n, a cluster is inhabited by |ICk
| images. The data science commu-

nity offers many clustering approaches as open-source software, e.g. the cluster-
ing module of scikit-learn3. Although translating a problem from digital forensics
to data science is challenging, it enables us to use the most sophisticated tools
available for clustering and concentrate mostly on the digital forensics part of
our research.

3 https://scikit-learn.org/stable/modules/clustering.html

https://scikit-learn.org/stable/modules/clustering.html


6 S. Klier and H. Baier

4.2 Adequate data input

First, we need to select the discriminating property for clustering, which in digital
forensics is usually the source camera or model. The sensor pattern noise (SPN)
(also referred to as Photo Response Non-Uniformity (PRNU) or simply camera
fingerprint) in different variations is widely used to determine the source camera
of an image and has been successfully used for image clustering, for example,
by Marra et al. [30] and Lin and Li [27], who clustered nearly 10,000 and 16,000
images, respectively. However, extracting the SPN is computationally expensive,
as recently demonstrated by Bernacki [5], who found that the average time to
compute the SPN on commodity hardware is in the range of 45-140 seconds,
depending on the method. As we aim for a screening approach with an input
of more than 100,000 images the computation of the SPNs, which would need
approximately 52 days4, is unbearable.

Therefore, we propose to use image metadata as the cheapest discriminatory
feature available. The most commonly known type of metadata for users and in-
vestigators alike is Exchangeable Image File Format (EXIF) [12]. EXIF includes
the aforementioned Make and Model fields that directly refer to the capturing
device, but also fields pointing to, e.g., a location based on GPS data. However,
the metadata saved in images is not completely standardized and is not limited
to EXIF [15]. Therefore, the metadata fields that can be extracted from an im-
age set are unknown beforehand. This makes it impossible to select significant
fields in advance, a problem also encountered by Mullan et al. [33, 34], who in
turn resorted to quantifying the field-value pairs they encountered.

With this approach Mullan et al. [33] achieved a classification accuracy of 0.61
for the identification of iPhone models and a much higher value of 0.80 for iOS
versions, respectively, which confirmed their assumption that for smartphones
the constantly updating software stack, incl. the operating system and imaging
apps interfere with source model identification. However, we aim at finding re-
lated images rather than images from the same model, and hence appreciate the
impact of the software stack as, e.g. it reflects user habits and time. But, the
approach of quantifying the number of set field-value pairs will fail in the pres-
ence of anti-forensic measures. Therefore, we propose to extend the approach by
taking into account all metadata with their concrete content.

Therefore, we let the extracted metadata of an image ij ∈ I be mij . We
model the metadata element mij as a set of field-value pairs

mij = {(f1, v1j ), (f2, v2j ), ..., (fl, vlj )}.

Note that the fields in mij depend on the fields extracted from the entire im-
age set I. Therefore, the values of the metadata element mij are empty if the
corresponding field is not set in the image ij . We denote the actual number of
fields set in the image ij by |mij |, which is as unknown as the contents of the
field-value pairs.

4 45∗100,000
60∗60∗24 ≈ 52, 08
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4.3 Distance metric
Fortunately, this level of uncertainty is unproblematic for general-purpose clus-
tering algorithms, as they are designed to be applicable to any kind of data.
However, to work, they need a metric that computes the so-called distance be-
tween two data elements on which the clustering results are based. Many general-
purpose distance metrics are available, such as Euclidean or Jaccard, but to be
able to incorporate the knowledge we have about our particular use case, we de-
fine our own. The two most important factors in our data is the actual content,
but also the number of fields set (i.e. |mij |).

We consider the actual content of the metadata by the agreement between two
metadata elements as defined in Equation (1) which is the number of identical
field-value pairs. Therefore, agreementserves to measure the match between the
two metadata elements as a non-negative integer.

agreement(mix ,miy ) = |mix ∩miy |. (1)

However, the maximum possible agreement depends on the number of fields
actually set (=|mij |), which can vary significantly between two images, even if
they are related. This is true not only if anti-forensic measures have been applied
to the images, but also if, for example, the GPS has been disabled while one of
the images was taken. Therefore, we normalize the agreement with respect to
the minimum number of fields set in the metadata elements.This means that if
there are only a few fields in a metadata element, the absolute agreement is low,
but the relative agreement is actually high. Accordingly, the distance function
for our clustering is

dist(mix ,miy ) = 1−
agreement(mix ,miy )

min(|mix |, |miy |)
. (2)

4.4 Evaluation metrics for the clustering
Despite the adherence to our general constraints presented in Section 3, we
evaluate the results of our clustering in terms of efficiency and effectiveness
in Section 6. While efficiency is measured in terms of practical runtime (in our
setting on commodity hardware), we evaluate effectiveness based on ground truth
labels as provided by forensic image databases with respect to the source camera
and software stack (source camera, including the image capture app and post-
processing, e.g., by Facebook).

Since we are clustering, it makes no sense to use any of the well-known clas-
sification metrics, such as accuracy, precision or the F1 score [43]. Therefore, we
use evaluation metrics that are well established in the data science and clustering
community:
1. ARI: The Adjusted Rand Index (ARI) is the standard metric to determine

the accuracy of a clustering algorithm [18]. The ARI is adjusted for chance
and bounded between [−1, 1]. A score of 0 indicates the result achieved by
a random approach, and a score of 1 implies complete accordance to the
ground truth classes.
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2. COMP: The Completeness (COMP) is a suitable metric for effectiveness in
the given use case, as it measures how well a clustering keeps items of the
same class together [43], and is thus the clustering counterpart to recall. A
Completeness of 1 indicates a perfect outcome which means that items with
a certain discriminative property are actually assigned to the same cluster.
Thus, related images will be reviewed together for high completeness scores.
We aim at a Completeness of 0.90 or higher.

3. HOM: The Homogeneity (HOM) is a second suitable metric for effectiveness
in our use case, as it measures how well a clustering separates items of
different classes [43], and thus is the clustering counterpart to the precision.
A Homogeneity of 1 indicates a perfect outcome which means that every
cluster is inhabited by items of one class only. Therefore, the investigator
only needs to review related images. On the other hand, a low Homogeneity
score means that an investigator needs to review more images than necessary,
but evidence is preserved.

4. REJR: The clustering can refuse to assign elements to a cluster; therefore, we
compute a Rejection Rate (REJR) which is the number of rejected elements
divided by all elements. An investigator must review these images to preserve
evidence.

In general, we consider the evaluation metrics COMP and HOM (as pro-
posed by Rosenberg and Hirschberg [43]) to be more important than ARI and
REJR because, for example, investigators should find images taken by the same
individual camera in the same cluster (as measured by COMP) and, if possible,
only by that specific camera (as measured by HOM).

5 Implementation

Our proof of concept is based on Python and on open source software of the
data science community, extracted metadata and the proposed distance metric
dist (see Equation (2)). All parts of our implementation are open, and available
from our cloud storage5.

Metadata extraction For our implementation we extract the metadata with
ExifTool6 because it is open source, well known in the digital forensic commu-
nity, can easily be used in the field, is updated regularly by a strong community
and provides machine-processable output in the form of a CSV file. Additionally,
it extracts metadata from a plethora of fields, such as Extensible Metadata Plat-
form (XMP), ICC profiles, information about the encoding process, and many
more, not just EXIF, as the name suggests. However, any other tool for meta-
data extraction can be used that yields field-value pairs, but the distance metric,
especially the intersection of its agreement calculation (see Equation 1), must be
implemented appropriately.
5 https://cloud.digfor.code.unibw-muenchen.de/s/AICSEC_

ScalableImageClustering
6 version 12.54 and execute with the arguments -rb,https://exiftool.org/

https://cloud.digfor.code.unibw-muenchen.de/s/AICSEC_ScalableImageClustering
https://cloud.digfor.code.unibw-muenchen.de/s/AICSEC_ScalableImageClustering
https://exiftool.org/
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Reducing the dimensionality From a large image set, significantly more than 100
unique metadata fields can be extracted, as shown in Table 2, so the problem is
highly dimensional. To boost the clustering performance [3], we first reduce the
dimensionality of the problem using UMAP [32], an open source tool compatible
with the well-known scikit-learn. UMAP takes the high-dimensional input data
and generates, based on the custom distance metric dist (see Equation (2)), an
embedding in a lower dimension. With the dist metric we have full control over
what being related means to UMAP, but it also means that it is impossible to
identify which metadata proved to be the most discriminating.

We implement the agreement part of the dist metric (see Equation 1) based
on numerical and string equality. This means, for example, that a close location
as represented in GPS metadata will not be counted as an agreement , because
the string '16.682329, 64.781043' of the GPS Position field fails to be string
equal to '16.682339, 64.781258', though being very close. The same is true
for other fields, as well, be it the position of the thumbnail saved in the header
or simply the file size. Therefore, more profound implementations of agreement
are possible, but they exceptionally increase the execution time.

Otherwise, the results of UMAP are highly influenced by the parameter
n_neighbors which indicates how many nearest neighbors UMAP should ex-
pect. This value is usually tuned to a specific problem in the range from 2 to
100. However, as we aim for an approach that is generic and applicable to any
image set without prior knowledge of its structure, we keep this parameter fixed
in the center of its range (i.e. a value of 50) throughout our evaluation in Sec-
tion 6. Additionally, we initialize UMAP with a fixed seed7 and thus, UMAP
yields repeatable results, but this setting reduces the runtime efficiency.

The result of UMAP is an embedding of the given data in two-dimensional
space, so we have Cartesian coordinates that we can visualize, as shown in Fig-
ure 4, and already reveal clusters perceivable by human perception. Note that
we do not draw a coordinate system because the coordinates themselves have no
meaning, only the distances between each point have.

Clustering Next, we use the low-dimensional embedding of our data as input for
HDBSCAN [9, 31] which finally assigns clusters to our images. The HDBSCAN
algorithm is a density-based, hierarchical clustering method, that provides a
hierarchy from which a simplified tree of significant clusters can be constructed.
We make use of HDBSCAN as it is density-based, which means that clusters
can have any form or size. In contrast to the best-known clustering algorithm,
k-means, extensive knowledge of the data, such as knowing how many sources
are involved, is unnecessary, which is important given the black-box constraint.
Additionally, HDBSCAN prefers to reject data from clustering instead of being
wrong, which enables investigators to review borderline images separately.

Similarly to UMAP, HDBSCAN has a parameter, i.e. min_cluster_size,
which highly influences its results and indicates how many images in one cluster
are expected. Therefore, we set this value accordingly to n_neighbors (i.e. a
7 so called random_state, set to 42
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value of 50), throughout our evaluation in Section 6. In contrast, to UMAP,
we use HDBSCAN with its default metric (i.e. Euclidean), as we transformed
our problem with our custom distance metric to Cartesian coordinates. Finally,
HDBSCAN assigns a label from 0 to |C| − 1 to the images, indicating to which
cluster a image belongs or −1 if the image was rejected from the clustering.

6 Evaluations

We now discuss the image databases used for our evaluations, which includes
their metadata composition. We then evaluate runtime efficiency, source camera
clustering, and source software stack clustering, all of which were conducted on
a regular laptop8. Finally, we sum up the limitations of our approach.

6.1 Image databases for verification

The image test sets for our proof of concept are based on seven publicly available
forensic image databases. The ground truth in terms of the source cameras and
the social media post-processing are known, respectively. We give a summary of
the databases used in Table 1, where the term native refers to images that are
available as stored by the source camera, and images of the social media category
have been post-processed by a social media service.

Of course, these databases are not a perfect fit for the intended use case, but
evaluating our approach under controlled conditions is a necessary intermediate
step before challenging real-case data.

In total, we have 48,471 native images from 343 unique devices and 41,950
images post-processed via social media for our tests available. Each database
contains at least two devices of the same model to test if an approach can
distinguish devices even if they are of the same model. Finally, we report what
types of devices are included. Most databases primarily contain images from
smartphones (SP) and digital cameras (DC), but some databases also include
images from drones (unmanned aerial vehicles, UAV), action cameras (AC), and
tablets (TAB).

To obtain as many images as possible for a large-scale test, the IMAGINE
database was included, although it is not yet published. However, it has been
announced and used by Bernacki et al. [6] and is publicly available. It is also the
database with the largest variety of device types.

The PrnuModernDevices (PrnuMD) database, proposed by Albisani et al. [2],
focuses on images captured in different modes as offered by modern smartphones.
Therefore, every device was used to capture images in its native and bokeh mode.
The latest smartphone model included is from 2019 (Apple iPhone11) and, as
such, is the most recently published one of all databases. The PrnuModernDe-
vices database is the smallest of all and contains only about 25 native images
per device.
8 i7-1165G7 CPU, 32 GB RAM, SSD, Windows 11
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Table 1: Overview of the image databases used, including year of publication, device
types and the number of native, social media post-processed and total images, as well
as the number of devices and models available.
database published device types native images social media total devices models
IMAGINE not yet SP, DC, AC, UAV 2,465 0 2,465 66 59
PrnuMD 2021 SP 550 0 550 22 17
FODB 2021 SP 3,851 19,255 23,106 27 25
SOCRatES 2019 SP 9,745 0 9,745 102 58
HDR 2018 SP, TAB 5,415 0 5,415 23 21
VISION 2017 SP, TAB 11,732 22,695 34,427 35 29
DIDB 2010 DC 14,713 0 14,713 68 24
Total 48,471 41,950 90,421 343

The subsequent recent database is the Forchheim Image Database (FODB),
proposed by Hadwiger and Riess [17]. Every incorporated device was used to
capture the same scenes under the same conditions. This means that each of the
27 images has the same content and each device contributes the same number of
images. Furthermore, each image was post-processed using Facebook, Instagram,
WhatsApp, Telegram, and Twitter, respectively.

In contrast, the SOCRatES database, proposed by Galdi et al. [13], has been
created from submissions of the smartphone owners themselves. Most impor-
tantly, this introduces heterogeneity in the data, e.g. due to different habits or
software versions. The smartphone owners followed a simple guideline to capture
the images that i.a. instructed them to capture 50 images of the blue sky or an-
other uniformly colored surface (so-called flat images) and 50 images of any kind
of scene. This means that there are approximately 100 images available for each
device, 50 of which were taken under nearly identical conditions and content.

Next the HDR database, as proposed by Al Shaya et al. [1], focuses on images
captured in High Dynamic Range (HDR) or Standard Dynamic Range (SDR)
mode. This database also includes shaky images, and about half of the available
images are flat images.

The VISION database, proposed by Shullani et al. [44], offers native images
(and videos that are not considered for this paper) from portable devices in their
native state (incl. flat images), as well as post processed by social media. With a
native image to device ratio of 335, VISION offers more native images per device
than any other included database.

The Dresden Image Database (DIDB) from Gloe and Böhme [16] was pub-
lished 2010 and is the oldest database that we included and offers only images
from digital cameras. The Dresden Image Database (DIDB) is no longer avail-
able at the published address, but we were able to obtain a copy (which we
provide via our cloud service9), though not identical to the original DIDB, as
devices and images are missing. With a device-per-model ratio of 2.83, the DIDB
contains more devices per model than any other included database.

9 https://cloud.digfor.code.unibw-muenchen.de/s/DIDB

https://cloud.digfor.code.unibw-muenchen.de/s/DIDB
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6.2 Metadata analysis

First off, we show the results of our ExifTool-based metadata extraction from
the images of each database in Table 2. The native column shows that there
are a minimum of 168 (VISION database) and a maximum of 999 (IMAGINE
database) that can be extracted from the set of native images in each database.
In total, we find 1,304 unique metadata fields across all databases. The most
unique fields of native images can be extracted from the database with the most
diverse device types, i.e. IMAGINE.

Table 2: Overview of the num-
ber of extracted unique metadata
fields by image type. Total refers
to the number of unique fields over
all databases.

database native removed
Exif

social
media

IMAGINE 999 99 -
PrnuMD 288 174 -
FODB 189 74 59
SOCRatES 335 131 -
HDR 195 86 -
VISION 168 46 62
DIDB 395 32 -
Total 1,304 296 69

For the next column removed EXIF
we consider the number of unique fields
that remain after the removal of allEx-
iffields. Unsurprisingly, the removal ofEx-
ifinformation reduces the number of ex-
tractable metadata fields tremendously, but
not completely, as at least 32 (DIDB) and
at most 174 (PrnuMD) metadata fields are
still available. In total, 296 non-EXIF meta-
data fields are present across all databases.
For example, these fields contain techni-
cal metadata (e.g. ChromaticAdaptation,
ConnectionSpaceIlluminant) and are usu-
ally not deleted to remain private because
they are used to display an image correctly.
The most unique non-EXIF fields can be extracted from the database with the
newest devices, i.e. PrnuMD.

However, as the last column in Table 2 shows, the worst effect in terms of ex-
tractable metadata is due to post-processing by social media applications, which
not only removes most of the metadata but may even change it, as observed by
the IPTC [19].

"Create", "Modify", "Access", "SourceFile", "^File", "Directory"

Fig. 2: Regexes to exclude fields that would leak the database structure.

Due to the sheer volume, we are not able to understand the meaning of each
of the 1,304 fields extracted, but fortunately, this is unnecessary, since we are
only interested in the patterns we can detect through our clustering approach.
However, for our proof of concept, we need to exclude some metadata fields
that would leak the unnatural structure of the databases into our results, which
mainly refers to the location of the images on the runtime system, the various file
timestamps, and the file names. Therefore, we excluded any field that matches
any of the regexes shown in Figure 2. However, when clustering an image set
from a real case, this metadata is valuable and should not be excluded.
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6.3 Runtime efficiency

In all, we performed 37 runs containing between 550 and 138, 892 images to eval-
uate the runtime efficiency which must be differentiated between the metadata
extraction phase and the clustering phase.

In general, the time needed to extract the metadata scales linearly with the
number of images and the size of their headers and depends mostly on the speed
of the storage. For a large-scale test, we created a real-life-sized test set of 138, 892
images containing every native and post-processed image from each database,
plus a copy of every native image with removed Exif information. Extracting
the metadata for these 138, 892 images took 33 minutes on our runtime system,
which translates into a processing speed of about 70 extractions per second.

After the metadata extraction phase, the clustering phase consists mainly of
computing the distances between the images. UMAP and HDBSCAN approx-
imate the pairwise distances with a nearest-neighbor approach and therefore
avoid computing the distances for all possible n·(n−1)

2 pairs. Figure 3 shows the
empirical results for each set of tests with respect to the number of images in-
cluded and the time required for the clustering, as well as a linear trend line
(R2 = 0.86).
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Fig. 3: Clustering times of test sets (blue) and linear
trend line (red).

Although the scaling com-
plexity of our clustering can
be generally described as lin-
early dependent on the num-
ber of images, it also depends
on the difficulty of the prob-
lem. For example, the four
test sets of approximately
50, 000 images each take be-
tween 260 and 560 seconds,
almost a twofold difference,
while containing the same
number of images. These test
sets contain the native images
of all databases with differ-
ent levels of anti-forensic mea-
sures (see Section 6.4 for de-
tails). However, there is no obvious correlation between the amount of anti-
forensic measures applied, the number of metadata fields extracted, the hetero-
geneity of the data, etc. and the time required for clustering.

In summary, our approach applied to a real case-sized test set requires less
than 17 minutes for the clustering phase, along with the 33 minutes for meta-
data extraction, for a total of 50 minutes for both steps. As a key result in terms
of runtime efficiency, our metadata-based approach is able to cluster more than
130,000 images, well over eight times more than any previously proposed ap-
proach [21, 24, 26, 27, 30, 40], in less than an hour on commodity hardware, and
is expected to scale linearly with the number of images.
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6.4 Source Camera Clustering

Table 3: Results of the clustering evalu-
ated to the source camera of an image with-
out anti-forensic measures.

test set REJR ARI HOM COMP
IMAGINE 0.1927 0.5642 0.7797 0.9957
PrnuMD 0.5800 0.3399 0.4683 1.0000
FODB 0.0104 0.9292 0.9778 0.9789
SOCRatES 0.0923 0.8108 0.9323 0.9769
HDR 0.0669 0.6916 0.9863 0.8221
VISION 0.0934 0.7039 0.9585 0.8420
DIDB 0.0642 0.3055 0.7152 0.6619
ALL 0.0735 0.5790 0.9008 0.8642
median 0.0829 0.6353 0.9166 0.9206

Because investigators usually look at
the source camera of an image to find
related images, we evaluate the results
of our clustering against the known
source cameras of the images.

Each test set contains every native
image of the corresponding database,
while the ALL test set contains the
native images of all databases. We
first explain the results per database
when no anti-forensic measures were
applied; the results are shown in Ta-
ble 3. We then apply anti-forensic ac-
tions to an increasing number of im-
ages and explain the results based on the median of our metrics, as shown in
Table 4.

Fig. 4: The low-dim. embedding of the FODB. The colors indicate images belonging
to a specific source camera.
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Results for native images While the results vary considerably from database
to database, the Completeness is > 0.8 (except for the obsolete DIDB), the
Homogeneity is > 0.7 (except for PrnuMD), and the Rejection Rate is < 0.1
(except for PrnuMD and IMAGINE). In the following, we present an example
of an exceptional successful result by discussing the results for the FODB, and
then explain the reasons and implications for the weak clustering performance
of DIDB, PrnuDB, and IMAGINE.

Figure 4 shows the complete low-dimensional embedding of the FODB. The
dots represent the images contained in the FODB, and the colors indicate to
which source camera they belong to. Overall, we can see clear and coherent
clusters with some errors. For example, images from a Google Nexus 5 (orange)
are split into two clusters, while images from the two Huawei P9lite devices (light
and dark brown) are clustered together. Interestingly, the two Samsung Galaxy
A6 devices (red and yellow) are well separated due to different software versions.
A more quantitative overview of the clusters with respect to their source cameras
is shown as a heat map in Figure 5.

Fig. 5: Assignments of images from a specific source camera to a cluster for FODB.

The columns show the source cameras, the rows show the clusters, and the
last row shows the rejected images. The lighter the color of the box, the more
images are assigned (see the scale on the right). We can see that most columns
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and rows (except the last one) have only one yellow box, which means that most
source cameras have all their images assigned to exactly one cluster, which is an
almost perfect outcome.

Fig. 6: Section of the low-dim. embedding of the
DIDB. The colors indicate the images belonging to
a specific source camera. Shown here: all four devices
of the Nikon CoolPix S710 DC.

In contrast, we will now
illustrate an extraordinarily
bad result using the example
of DIDB, for which we show a
section of its low-dimensional
embedding in Figure 6. The
figure shows the images from
four source cameras of the
same Nikon digital camera
model. The clustering ap-
proach produces two clusters
from the low-dimensional em-
bedding and also rejects some
images. This effect occurs for
several models of the DIDB
and is reflected in low ARI,
Homogeneity, and Complete-
ness. Although the devices of
old digital camera models are
indistinguishable by their metadata, a fine-tuning of the used clustering param-
eters, which are too subtle here, could at least prevent the splitting into two
clusters and thus improve the result in terms of Completeness.

On the other hand, the parameters used are too coarse for the PrnuMD and
IMAGINE databases, which contain very few images per device; PrnuMD and
IMAGINE have a ratio of 25 and 37 images per device, respectively. Thus, these
databases score almost perfectly on Completeness, but at the cost of a high rejec-
tion rate, low Homogeneity and ARI. Figure 7 shows the heatmap of IMAGINE’s
clustering, with several boxes per row reflecting the high Completeness but low
Homogeinity.

In summary, the median ARI of 0.63 across all test sets is too low for the
identification of the source camera. However, our clustering achieves a median
Completeness and Homogeneity of 0.92, effectively keeping images from the same
source camera together while separating them from others and is therefore suf-
ficiently effective for our sorting phase, as desired.

Table 4: Median metrics achieved across all test
sets.

percentage of images
with removed Exif

median
REJR

median
ARI

median
HOM

median
COMP

0% 0.0829 0.6353 0.9166 0.9206
5% 0.0534 0.3245 0.7179 0.9547
10% 0.0253 0.3246 0.7184 0.9594
100% 0.0102 0.2755 0.7133 0.9909

Results in the presence of
anti-forensic measures Using
the same test sets, we again
evaluate against the source
camera of the images, but this
time apply anti-forensic mea-
sures to 5%, 10%, and 100%
of the images in each test set
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Fig. 7: Assignments of images from a specific source camera to a cluster for IMAGINE.

by removing their Exif information. Note that the corresponding native images
are not part of the test sets. Table 4 shows the median value of each metric
achieved across all test sets and detailed results are shown in the Appendix (see
Table 6).

The median Completeness for test sets without anti-forensic measures is 0.92
and increases with the introduction of anti-forensic measures to 0.99, while the
rejection rate decreases. This is counterintuitive at first, but can be explained by
Homogeneity and the ARI. The median ARI drops from 0.63 to less than 0.33,
while the median Homogeneity drops from 0.92 to less than 0.73. In particular,
the achieved ARI is really bad, indicating that the clustering is no longer able
to distinguish between the different devices.

However, this means that our clustering will group images from devices that
could be the source of images with removed Exif information, which is exactly
what we want. In Figure 8 we illustrate this effect using two clusters of the
SOCRatES test set with 10% of images with removed Exif information as an
example. The left cluster contains images from six devices and the right cluster
contains images from three devices.

Let us assume that all images with Exif information removed from Device 173
(magenta in Fig. 8) are self-produced CSAM. In this case, knowing that these
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Fig. 8: Section of the low-dim. embedding of SOCRatES. Native images are marked
by an asterisk, images with removed Exif are marked by a circle.

images are related, an investigator would carefully review all 500 images from the
left cluster and would be presented with every image from Device 173, including
every image with removed Exif information. This is a significant improvement,
as an investigator would normally have to review all 9, 745 images or rely on the
Make and Model fields and miss the self-produced CSAM altogether.

6.5 Source Software Stack Clustering

We now evaluate images from FODB and VISION that were post-processed by
social media for the source device and the social media type, which is effectively
the software stack that generated the image. The results obtained are shown in
Table 5.

Table 5: Results of the clustering evalu-
ated by social media type and to the source
camera of an image.

social media
type REJR ARI HOM COMP

FODB
telegram 0.0000 0.0483 0.2779 0.9668
instagram 0.0000 0.0330 0.1839 0.9303
whatsapp 0.0000 0.0572 0.2770 0.9683
twitter 0.0000 0.1401 0.4353 0.9834
facebook10 0.0000 0.0288 0.1879 0.9623
median 0.0000 0.0483 0.2770 0.9668

VISION
facebook high 0.0000 0.0545 0.3089 1.0000
facebook 0.0000 0.2706 0.6178 1.0000
whatsapp 0.0000 0.0543 0.2993 1.0000
median 0.0000 0.0543 0.2779 0.9683

Obviously, the clustering is unable
to distinguish the different source de-
vices, as indicated by the extremely
low ARI across all test sets, which
was expected due to the detrimen-
tal effect of social media on metadata
(see Table 2). However, the images
from a source camera that were post-
processed with a specific type of social
media are reliably clustered, as indi-
cated by a COMP of above 0.93 across
all software stacks.

On the other hand, the medium
HOM indicates that the clusters con-
tain images from several source de-
vices that were post-processed with
the same social media, which we illus-
trate with a section of the low-dimensional embedding of the FODB in Figure 9.
The large cluster in the lower left corner shows concentrated images of Facebook
from different source devices. Interestingly, the images of some devices are dis-
tinguishable by our clustering approach (small clusters on the top and right) be-
cause some metadata survived the social media post-processing. Therefore, even
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if the remaining metadata is insufficient to cluster the images by their source
devices, they can be successfully clustered by social media type with respect to
the source device and, therefore, be reviewed together.

Fig. 9: Section of the low-dimensional embedding of FODB’s social media images.
Colors indicate belonging to a device and the shape the social media type.

6.6 Summary of Limitations

As discussed in the preceding subsections, there are several limitations to our
approach at the moment. Of course, if there is only a limited number of metadata
available, the clusters will be undifferentiated, as observed for the old cameras of
the DIDB, for images that have been post-processed by social media or images
with removed Exif data. Furthermore, the metadata extraction at the moment
is based on the output of ExifTool which may not provide all metadata available
in the images, and the used string equality is only a coarse abstraction of the
similarity it measures. Despite these limitations, the biggest challenge is the
proper determination of the clustering parameters.
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7 Related Work

In 2011, image metadata was used by Kee et al. [23] for image authentication
and source model identification in traditional digital cameras. Kee et al. focused
on the EXIF headers and other technical metadata, such as Huffman coding
and quantization tables. They quantified the number of fields set in certain
areas of theExifheaders, rather than analyzing the actual data stored. Kee et al.
showed that 62% of cameras and 99% of brands had a unique signature in their
experiments based on 2.2 million images downloaded from Flickr, demonstrating
for the first time the efficiency and effectiveness of metadata-based approaches.

This approach was applied to Apple smartphones by Mullan et al. [33], who
assumed that the widely varying software stacks of smartphones posed a chal-
lenge to identify the source camera based on metadata. Mullan et al. omitted the
Huffman coding and used the quantization tables and the signature of theExif-
header to show that the approach actually identifies the software stack rather
than the smartphone model. Since we are not primarily interested in the exact
identification of a specific source device, model, or brand, we value the identifi-
cation of the software stack as it is also a meaningful relationship of the images.
Mullan et al. achieved an accuracy of 0.82 for the classification of the iOS version
and 0.65 for the classification of the smartphone model. Mullan et al. [34] also
used this approach to classify the make of a previously unseen camera model.

Unlike these previous works, our approach uses the actual content of the
metadata, since counting the number of set fields fails in the presence of anti-
forensic measures characterized by metadata deletion. Mullan et al. [34] also
point out that image metadata has received little attention so far because it is
often claimed to be easily manipulated. In this paper, we show that, while the
complete removal ofExifinformation makes the identification of a specific source
camera precarious, it still allows the identification of related images.

In addition, Mullan et al. [34] highlights the open set problem, as it is impos-
sible to have a generic, up-to-date, or even case-specific database of devices and
models at hand. This is a reality that was also noted by Gloe [14] and picked up
by Lorch et al. [28], who proposed an approach to prevent silent classification
failures. Since we do clustering instead of classification, we completely avoid this
problem, which is also pointed out by Marra et al. [30].

Marra et al. [30] clustered a subset of images from the DIDB based on their
SPN. SPN based approaches have been established by Lukas et al. [29] and
receive the most attention in the digital forensics community for identifying an
image source due to their accuracy. But fingerprint extraction is computationally
expensive, as we show in Section 4.2, making it an inappropriate choice for
a screening approach. Consequently, Marra et al. clustered a relatively small
image set, which totaled 9, 538, and estimated that the scaling of their clustering
runtime efficiency is quadratic (O(|I|2)) which makes the application in a real
case impractical.

However, they report an ARI of 0.821 for their largest test set, which is based
on the DIDB with 39 devices from ten models, which is significantly higher than
the ARI achieved by our metadata-based approach for the DIDB (i.e. 0.3065).
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Unfortunately, other performance metrics are not available for comparison. Re-
cent studies [2, 4, 20] have shown that SPN-based approaches are generally not
suitable for images captured by modern smartphones, as they may be subject
to extensive and instantaneous post-processing, such as background blurring,
putting doubt on their accuracy today.

8 Conclusion and Future Work

No one knows how much of the CSAM encountered in investigations is self-
produced and therefore documents sexual abuse of children by the suspect; we
only know how much we find. The digital forensics research community focuses
on identifying source devices or models with high accuracy, while sophisticated
approaches to screen large data sets are also desperately needed. While there is
value in accuracy, it is not the most important metric for a screening approach.
Most important is the scalability to enormous data sets while keeping related
evidence together, as measured by Completeness.

Therefore, we propose a clustering approach that utilizes cost-effective meta-
data, as a first step toward truly scalable screening for self-produced CSAM
among acquired CSAM. Although this is only a first step, our approach is able
to successfully cluster more than 130,000 images in less than an hour on a reg-
ular laptop while keeping related images together even in the presence of anti-
forensic measures. Thus, our approach is a major improvement over the basic
Make/Model-based search used by investigators today.

In our future work, we will address that currently, the quality of the cluster-
ing is dependent on the fit of the clustering parameters to the problem. Since
our boundary conditions necessitate that a case is a black box, we must tune the
parameters at runtime based on internal clustering metrics that do not rely on
a known ground truth, such as the Silhouette Coefficient. This implies that the
clustering must be repeated multiple times to adjust parameters, which is com-
putationally expensive and may require a surrogate optimization approach [35].

Despite that, after the first successful evaluation of our clustering approach
we will target more realistic data sets and also intend to include movies. We are
confident that a metadata-based clustering will serve as an ideal foundation for
the next step in our screening process, prioritization.
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A Effectiveness results in presence of anti-forensic
measures

In Table 6 we present our detailed results of the effectiveness of our approach,
if anti-forensic activities are used. The discussion of the results is given in Sec-
tion 6.4.

Test Set REJR ARI HOM COMP
5% of images with removedExifvalues

IMAGINE 0.0832 0.3394 0.6920 0.9951
PrnuMD 0.1364 0.3095 0.5052 0.9333
FODB 0.0052 0.5447 0.7892 0.9724
SOCRatES 0.0503 0.3870 0.7640 0.9880
HDR 0.0467 0.6859 0.8902 0.9188
VISION 0.0291 0.2643 0.7087 0.9273
DIDB 0.0646 0.1857 0.5181 0.9448
ALL 0.0565 0.2237 0.7271 0.9645
median 0.0534 0.3245 0.7179 0.9547
10% of images with removedExifvalues

IMAGINE 0.0592 0.3927 0.7144 0.9990
PrnuMD 0.1000 0.3586 0.5563 0.9428
FODB 0.0254 0.5500 0.8040 0.9622
SOCRatES 0.0000 0.2905 0.7331 0.9909
HDR 0.0124 0.7422 0.9131 0.9348
VISION 0.0165 0.2644 0.6988 0.9329
DIDB 0.0252 0.1669 0.5064 0.9565
ALL 0.0405 0.2221 0.7224 0.9653
median 0.0253 0.3246 0.7184 0.9594
100% of images with removedExifvalues
IMAGINE 0.0637 0.3632 0.7056 0.9982
PrnuMD 0.1073 0.1555 0.3811 0.9659
FODB 0.0086 0.7092 0.8665 0.9740
SOCRatES 0.0118 0.2972 0.7440 0.9916
HDR 0.0205 0.7457 0.9021 0.9474
VISION 0.0000 0.2537 0.6615 0.9902
DIDB 0.0000 0.1806 0.5071 0.9947
ALL 0.0084 0.2441 0.7210 0.9922
median 0.0102 0.2755 0.7133 0.9909

Table 6: Results of the clustering evaluated to the source camera of an image with
anti-forensic measures applied.
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