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Abstract. In digital forensics the Computer Forensics Field Triage Pro-
cess Model (CFFTPM) addresses use cases, where an immediate on-site
processing of digital evidence is necessary to impede ongoing severe crim-
inal offences like child abuse, abduction or extortion. For instance in case
of Child Sexual Abuse Material (CSAM) an instant in situ digital foren-
sics investigation of seized devices may reveal digital traces to identify
incriminated pictures produced by the suspect himself. In order to pro-
tect the victims from further violation the fast and reliable identification
of such self produced CSAM files is of utmost importance, however, it
is a non-trivial task. In this paper we propose an efficient and effective
clustering method as part of the CFFTPM to identify self-produced in-
criminated images on-site. Our concept extends the classical hash-based
identification of chargeable data and makes use of image metadata to
cluster pictures according to their source. We successfully evaluate our
approach on base of a publicly available image data set and show that
our clustering even works in the presence of anti-forensics measures.
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1 Introduction

Crimes related to CSAM exhibit different levels of offences. For instance the
study of Bouhours and Broadhurst [1] reveals that 11.5% of offenders possess-
ing CSAM and 18.4% of offenders distributing CSAM engage in the production
of CSAM, too. Furthermore, Bissias et al. [2] provide a survey of law enforce-
ment information and state that 9.5% of offenders arrested for the distribution
of CSAM over P2P networks offended children sexually offline. Additionally, the
study of Gewirtz-Meydan et al. [3] states that 93% of CSAM production victims
are family members or acquaintances of the offender. The systematical review
of Cale et al. [4] synthesises empirical studies from the past decade investigating
CSAM production and distribution. A key result of their review is a crucial over-
lap between child sexual abuse on the one hand and the production of CSAM on
the other. Hence missing evidence of CSAM production during a digital foren-
sic investigation leads to an ongoing physical abuse of involved children with a
non-negligible probability.
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The fast detection of CSAM production in order to protect children in the
suspect’s sphere of influence from (further) sexual abuse is hence an important
issue. As a consequence applying triage to CSAM investigations needs further
attention. In digital forensics the CFFTPM due to Rogers et al. [5] addresses use
cases, where an immediate on-site processing of digital evidence is essential. In
case of CSAM an instant inspection of seized devices may reveal digital traces
to identify incriminated pictures produced by the suspect himself and hence
gives a pointer to a still ongoing physical abuse. However, the fast identification
of self-produced CSAM is an important, yet difficult issue in a digital forensic
investigation.

While this problem is well-known in the digital forensic community there is
no lightweight technical solution provided. Already back in 2009 Casey et al. [6]
state that to concentrate during investigations on the actual instances of CSAM
is not sufficient anymore. Actually Casey et al. [6] advice to concentrate on
CSAM that has been ”knowingly possessed” and to mitigate the risk of missing
vital evidence by training investigators and relativizing by the risk delayed inves-
tigations impose. A lightweight technical support for the investigator, however,
is still missing.

To sum up the instant identification of self-produced CSAM among acquired
CSAM must become more prominent during a CSAM investigation. In this pa-
per we propose a lightweight, clustering-based approach using metadata of the
images under examination (IUE) to identify yet unknown, self-produced CSAM.
The approach is efficient and hence lightweight in the sense that it can easily be
applied to seized material on-site as it runs on common hardware (with respect
to computing and storage power) and utilises computationally cheap extractable
metadata.

Based on the extracted metadata we provide a pair-wise similarity score
used to build the clusters. As a consequence the clustering does not comprise
a learning phase and effectively separates files on base of their metadata with
respect to the source of the files (i.e. the device used to produce the pictures).
The clustering outcome results in a high-dimensional data problem. In order to
provide a visualisation of a given picture data set in form of a 2-dimensional
graph we make use of the well-known and open-source library UMAP [7].

We successfully evaluate our approach using the publicly available database
The Forchheim Image Database (FOIDB) due to Hadwiger et al. [8]. The eval-
uated approach offers a visualisation of the IUE to an investigator in the field
which takes the source of an image into account. Hence we show the suitability
of our concept to reduce the risk of missing evidence of actual child abuse when
triage is applied to a CSAM case.

The rest of the paper is organised as follows. In Section 2 we introduce foun-
dations of our approach, that is the CFFTPM, picture metadata, and clustering
using UMAP. Then we present related work to our approach in Section 3 fol-
lowed by the presentation of our concept and our prototypical implementation
in Section 4. In Section 5 we provide experimental results using the FOIDB to
prepare the actual evaluation of our approach in Section 6 in terms of the classi-
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cal errors false-positive and false-negative, respectively. We conclude our paper
in Section 7 and point to future work.

2 Foundations

We present in this section the foundations necessary to follow our approach. After
introducing the CFFTPM in Section 2.1, we explain in Section 2.2 the relevant
picture metadata used in our concept. We close our foundation presentation with
a short introduction of the UMAP library in Section 2.3.

2.1 Computer Forensics Field Triage Process Model

The aim of the CFFTPM due to Rogers et al. [5] is to provide an on-site or field
approach for circumstances where a traditional digital forensics approach is not
suitable (e.g. the transportation to a lab and the search of the entire system takes
too long in the respective case). This includes circumstances where children are
at risk of being sexually abused. The CFFTPM foci are to:

1. Find usable evidence immediately;
2. Identify victims at acute risk;
3. Guide the ongoing investigation;
4. Identify potential charges;
5. Accurately assess the offender’s danger to society; and
6. Protect the integrity of the evidence for further analysis.

We concentrate on the triage phase of the CFFTPM, which is defined as: “A
process in which things are ranked in terms of importance or priority. Essentially,
those items, pieces of evidence or potential containers of evidence that are the
most important or the most volatile need to be dealt with first.”

For our purposes the child pornography section of the CFFTPM is of special
importance as [5] states: “The highest priority should obviously be given to
actual instances of child pornography on the drive.” Consequently, we provide
guidance in our approach how CSAM or activities to acquire/distribute CSAM
can be detected efficiently and effectively.

2.2 Metadata

The classic definition of metadata is ”data about data” [9]. Metadata can be
classified by their purpose in the categories: descriptive metadata (e.g. com-
ments, thumbnails), preservation metadata (e.g. hash sums), rights metadata,
structural metadata (e.g. directory) and for our purposes most importantly tech-
nical metadata [9]. Most digital cameras save numerous technical metadata in
their images based on the Exchangeable Image File Format (EXIF) [10] as part
of a JPEG File Interchange Format (JFIF) [11] file. The EXIF standard defines
numerous tags that point to the source of an image explicitly (e.g. Make, Model)
or implicitly (e.g. Compression, ImageWidth).



4 S. Klier and H. Baier

However, JFIF and EXIF enable digital camera manufacturers to define cus-
tomized tags while the storage of technical metadata is not even limited to EXIF,
naming Extensible Metadata Platform (XMP) [12] as an alternative. Therefore,
the metadata that can actually be derived from an image is elusive. Nonetheless
it is stored and does not need to be calculated, just retrieved and is consequently
computationally cheap.

2.3 Clustering with UMAP

A classic approach for the visualisation of high-dimensional data is Multidimen-
sional scaling (MDS) [13] which is based on a pair-wise similarity score. MDS
has a time complexity of O(n3), where n is the number of elements in the data
set. This cubic run time dependency makes MDS unsuitable for real life IUE.

The state-of-the-art competitor for the visualisation of high-dimensional data
at the moment is UMAP [7]. Its empirical run time efficiency is by far the best
of the applicable approaches. UMAP offers visualisation of high dimensional
data by calculating similarity scores in the high-dimensional space, initialising
a low-dimensional graph and resembling the clusters of the high-dimensional
space in the low-dimensional graph. UMAP achieves this by calculating similarity
scores in the low-dimensional space based on a t-distribution trying to maximise
respectively minimise the similarity score in the low-dimensional space depending
on the affiliation of the points to a cluster in the high-dimensional space.

UMAP offers the calculation of similarity scores in the high-dimensional space
based on a custom metric, but it operates exclusively on the data type float,
which is not sufficient for our purposes as metadata includes additional data
types like e.g. strings. Therefore, we precompute the high-dimensional similarity
scores and only facilitate UMAPs capabilities of embedding the data into the
low-dimensional space for visualisation.

3 Related work

In the first part of this section we discuss related work that has facilitated meta-
data of images to deduce the source of an image in the past. The second part
of this section discusses state-of-the-art approaches to the Source Camera Iden-
tification (SCI) or Source Model Identification (SMI) problem based on image
processing techniques.

Using metadata, primarily EXIF, to deduce the source camera of an image and
correlating the finding with cameras used by a suspect is a established procedure
[14] [15] used by investigators and is well supported by common forensic tools.
Investigators can filter or correlate images by certain EXIF tags (like model,
make or serial number). However, this approach is not sufficient as it fails if
these tags are not set (e.g. deleted by EXIF remover tools), have been tampered
or are not significant (e.g. for common smartphone models). Therefore, a view on
metadata besides EXIF has been used for image authentication and identification
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of the source model in traditional cameras by [16]. This approach is also useful
for smartphones as shown by [17] although it will identify the software stack
rather than the smartphone model that captured the image.

Image processing techniques have been applied with success to the SCI or SMI
problem in the past. Most attention has been drawn to approaches based on
sensor pattern noise [18] [19] [20] [21] which is unique per camera. SCI has
been proposed based on lens radial distortion [22], as well. These approaches are
computationally expensive and even the efficient approach of [23] needs about
45s per image to calculate a fingerprint based on sensor pattern noise on up to
date hardware.

Both classes of proposed approaches expect an investigator to put remark-
able effort into the preparation of a image set for classification. For example, an
investigator needs to prepare a labeled image set for training or has to elaborate
EXIF tags of interest. This is knowledge is hard to gain and probably incom-
prehensive anyways which leads to an open set problem as identified by [24].
[25] proposes to reject images from cameras which are not part of the prepared
set in order prevent silent failure, at least. Hence, these approaches allow an
investigator to support or refute a hypothesis about the source camera/model
of certain images but do not enable an investigator to form such an hypothesis
on a real life image set in the first place.

4 Clustering concept and its prototype

We first present in Section 4.1 the theoretical foundations of our approach fol-
lowed by the technical details of our prototypical proof of concept in Section 4.2.

4.1 Clustering concept

An investigator at a crime scene is working on a set of IUE. We model this by the
set P consisting of n picture files as input, i.e. P = {P1, P2, ..., Pn}. The investi-
gator’s goal is to assign a picture (i.e. an element of P ) to the respective source,
that is the corresponding camera or smartphone. We model the set of sources
by the set of cameras C = {C1, C2, ..., Ci} supposedly used by the suspect. We
remark that our clustering approach solely expects the set P as input.

Let Pi ∈ P be a picture file and Mi its extracted metadata, that is the set of
metadata elements is M = {M1,M2, ...,Mn}. We model the metadata element
Mi ∈ M as an array of length l, where each entry of the array Mi is a field-value
pair. The set of all metadata fields F available from the IUE is defined as

F = {f |(f, v) ∈ ∪M} = {f1, f2, ..., fl}

Hence our representation of a metadata element Mi is

Mi = ((f1, vi1), (f2, vi2), ..., (fl, vil))
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where possibly values of a metadata element is empty due to the missing field
in the corresponding picture file Pi. Actually we denote by |Mi| the number of
fields present in the metadata set element Mi.

We next define our similarity function, which we call s and which expects two
metadata set elements as input. The goal of the similarity function is to enable
a clustering based on the evaluation of the metadata entries. More precisely let
Mx,My ∈ M be two metadata arrays of the picture files Px, Py ∈ P , respectively.
In order to define the similarity function s(Mx,My), we first need two additional
parameters:

1. First the agreement is the number of identical field-value pairs contained in
both Mx and My, that is it is equal to the number of field-value pairs in the
intersection of Mx and My. We denote the agreement by agr and define it
as

agr(Mx,My) = |Mx ∩My|. (1)

Please note that this requires the presence of a field and an identical field
value in both metadata arrays to score for the agreement. The agreement
serves to measure the match between both metadata arrays as an absolute
number.

2. Second the specificity denoted by spec is the minimum of the two numbers
of field-value pairs present in Mx or My, i.e.

spec(Mx,My) = min(|Mx|, |My|). (2)

The specificity serves to normalise the absolute agreement in our similarity
score. The reason is that in case of only few fields set in a metadata array,
the absolute agreement may be low, however, the relative one may be high.
Actually we are interested in the second one as our practical results show.

The similarity of Mx,My is essentially the normalised agreement of Mx and
My, i.e. s(Mx,My) = agr(Mx,My)/spec(Mx,My) and thus a real number in the range
[0, 1]. However, we also want to be robust against anti-forensic measures which
are usually characterized by deleting metadata from an image which metadata
in turn appears as a sub-array of other images from the same source. In real
life this metadata sub-array might show some deviation (e.g. comments added),
hence, we introduce a heuristic threshold of 2%

s(Mx,My) =

{
1, if | Mx \My| < 0.02 · |F | or | My \Mx| < 0.02 · |F |
agr/spec, else

(3)
To separate clusters, we introduce the pair-wise dissimilarity based on the

similarity function in the obvious way, i.e. diss(Mx,My) = 1−s(Mx,My). Finally
we organise the dissimilarity scores in an (n × n)-matrix D, where the element
in the x-th row and y-th column of D is equal to diss(Mx,My), i.e.

D = D1≤x≤n,1≤y≤n Dx,y = 1− s(Mx,My). (4)
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For instance the matrix element D5,3 holds the dissimilarity metric of image
P5 to image P3. Furthermore all diagonal elements Di,i = 0.

Finally the dissimilarity matrix D is passed to UMAP in order to find a 2-
dimensional visualisable embedding of P represented by its corresponding set of
metadata.

4.2 Proof of Concept

This section provides an overview of our proof of concept1. It consists of the fol-
lowing components. First as IUE data set our approach is applied to FOIDB [8],
an image database designed for ranking forensic approaches to the SCI prob-
lem. FOIDB offers 143 scenes taken by 27 smartphone cameras (that is for
each scene all cameras were used under the same condition). All pictures of the
FOIDB are available as saved by the camera (referred to as original) as well
as post-processed by Facebook, Instagram, Telegram, Twitter and WhatsApp.
The FOIDB includes indoor and outdoor scenes, day and night, close-up and
distant, and natural and man-made scenes. The FOIDB is suitable for our proof
of concept, because the original images contain untampered metadata as saved
by the camera. Another advantage of the FOIDB is the wide variety of models
included and the possibility to expand our approach to images post-processed
by social media applications in the future.

Second the metadata of the IUE has been extracted into a CSV file with
ExifTool 12.422 in binary mode. Exiftool does not only extract EXIF metadata
from a plethora of manufacturers, as the name suggests, but also other meta-
data as XMP, ICC profiles, information about the encoding process and many
more. ExifTool has been chosen as it is well-established in the digital forensic
community, very comprehensive, yields machine processable outputs and could
be easily used in the field.

Third our approach is implemented in Python 3.10 with pandas 1.4.2 and
numpy 1.12.5. The visualisation is generated with bokeh 2.4.3.. Furthermore we
make use of UMAP as available in the Python package umap-learn 0.5.33 for
the clustering. UMAP is being initialised as

UMAP(n_neighbors=100, metric=’precomputed’, random_state=42).

n_neighbors indicates how much nearest neighbors UMAP should expect, this
value is usually set to a value in the range from 15 to 100. As we expect that
many images origin from one camera we have set the value accordingly. As we
pass the matrix D with precomputed distances to UMAP we force UMAP not
to calculate the distances between the given data with its built-in mechanism by
setting metric to precomputed. Setting the random_state to a constant value
results in a fixed initialisation and consequently repeatable results.

1 The used metadata and source code is available at
https://cloud.digfor.code.unibw-muenchen.de/index.php/s/xq2jtbqpEnTdNEZ

2 https://exiftool.org/
3 https://pypi.org/project/umap-learn/
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Finally the metadata containing CSV file is loaded via pandas and is being
preprocessed as follows:

1. The field Directory is being dismissed, as the directory structure of the
FOIDB would leak the belonging of a picture to a certain camera.

2. The fields FileAccessDate, FileInodeChangeDate, FileModifyDate, FileName,
FilePermissions, CreateDate, DateTimeOriginal and ModifyDate are dis-
missed because of similar reasons.

3. The values of all Width and Height fields are swapped if Width > Height

5 Experimental results

We apply our prototype as described in Section 4.2 on the image set FOIDB. The
experiments in this section are conducted on an ordinary laptop (HP EliteBook
G3, 16GiB RAM, i7-7500U@2.70GHz) with a runtime of less than 150s for the
3,851 images in the FOIDB serving as IUE. The ordinary runtime environment
simulates the lightweight on-site infrastructure of a digital forensic investigator.
The metadata has been preprocessed as described in Section 4.2, which took us
less than 45s on our commodity hardware.

The experimental results have been computed in terms of the common clas-
sification metrics:

FN Images from one device in different clusters (false negatives).

FP Images of different devices in one cluster (false positives).

We now present our two experimental settings. First Section 5.1 shows the
successful clustering of the original images of the FOIDB. Then in Section 5.2
we show that we can reliably cluster even in case of anti-forensic measures.

5.1 Clustering the original FOIDB images

In the first experiment we applied our approach on all original images of the
FOIDB in order to explore the general capability for clustering the images from
a source point of view.

Two figures have been generated for the achieved clustering. Fig. 1 shows the
achieved clustering as perceived by an investigator. While fig. 2 shows the same
clustering, with colored data points indicating their true belonging to a certain
device and circled4 clusters, for evaluation purposes.

As shown in fig. 2 three devices are affected by an error of type FN and
three clusters with a total of six devices are affected by FP. Eighteen devices
have been clustered correctly.

4 circle size is arbitrary
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Fig. 1. Visualization of the FOIDB original images as perceived by an investigator.

5.2 Clustering FOIDB after anti-forensic actions

The second experiment we conducted aimed at exploring the capabilities of our
clustering approach in the presence of anti-forensic actions on the images of
FOIDB. From all original images of the FOIDB we defined the images 0140 and
0142, of every device as incriminated. We removed the EXIF metadata from
these incriminated images via ExifTool. Therefore, the IUE did not contain the
untampered versions of the incriminated images and, therefore, depicts the worst
case for a metadata based approach when a suspect deletes metadata and is not
in the possession of the corresponding original image. In this case the popular
approach to look forMake orModel in the EXIF metadata would fail completely.
Again, two figures have been generated for the achieved clustering. Fig. 3 shows
the clustering as perceived by an investigator, incriminated images are marked
with an asterisk.

Fig. 4 shows the same clustering for evaluation purposes. As shown in 4 three
devices are affected by an error of type FN and three clusters with a total of
fourteen devices are affected by an error of type FP.
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Fig. 2. Visualization of the FOIDB original images for evaluation.

6 Evaluation

Errors of type FN impose the risk to miss evidence of CSAM production, while
errors of type FP impose the risk of false accusations and reduce the efficiency
of the approach. The risk of FN is realized when incriminated images, which
have been produced by the suspect, are separated from images pointing to the
suspect and in turn are deferred for analysis later on or even dismissed. Errors
of type FP are less severe as long as an investigator keeps in mind that this
approach does not prove anything.

Evaluation of FN errors in fig. 2: The two distinct clusters of FN-1 originate
from a Google Nexus 5 (device 21). The metadata of these images differ in fact
considerably which is dedicated to the HDR+ mode some images have been
taken with.

The two distinct clusters of FN-2 originate from a BQ Aquaris X (device
22) and have considerably different metadata for an unknown reason.
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Fig. 3. Clustering after removing EXIF metadata of certain images (marked with as-
terisk) as perceived by an investigator.

The two distinct clusters of FN-3 originate from a Sony Xperia E5 (device
13). The images of this device have little metadata set, and even few changes
due to two different scene capture types lead to different clusters.

Evaluation of FP errors in fig. 2: The two sub clusters of FP-1 originate from an
Apple iPhone 7 (device 17) and an Apple iPhone 8+ (device 19). These iPhones
took the images while operating on different software versions, however, sharing
many equal field-value pairs, specially those related to the ICC profile.

The cluster of FP-2 originate from a LG G6 (device 06) and LG G3 (device
04). The images of the LG G6 hold considerably more metadata than those of
the LG G3. Whereas the metadata of some images of the LG G3 are recognized
as sub sets of images originating from the LG G6 which tempts our approach
to cluster them very close together.

The cluster of FP-3 originate from two different Huawei P9lite (device 23
and 25) devices of the same model. The metadata differs only slightly due to
different software versions of the two devices.
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Fig. 4. Clustering after removing EXIF metadata of certain images (marked with as-
terisk) for evaluation.

The FOIDB also includes images of two Samsung Galaxy A6 (device 15 and
16, red and yellow data points) devices. Those have been clustered far apart
due to considerable deviation of the metadata stemming from different software
versions.

Evaluation of cluster C1 in fig. 4: The cluster C1 is clearly distinct from other
clusters and contains every image originating from the Samsung Galaxy S4 (de-
vice 18) including the incriminated images with removed EXIF metadata and
therefore depicts a perfect outcome.

Evaluation of C2 in fig. 4: The cluster C2 is clearly distinct from other clusters
and contains every image originating from the two Samsung Galaxy A6 devices
(device 15 and 16) including the incriminated images with removed EXIF meta-
data. The two devices of the same model are distinguishable inside the cluster
and the incriminated images have been clustered to the correct device. In this
experiment the two devices of the Samsung Galaxy A6 can be distinguished by



Towards CSAM triage 13

the MCCData (Samsung specific) field which is set by device 16 but not by
device 15.

Evaluation of C3 in fig. 4: The cluster C3 contains images of six devices and is
showing a ring of sub-clusters formed around some incriminated images in the
middle (fig. 5 shows a zoomed view on C3 ). The metadata of the incriminated
images in the middle is a subset of the metadata of the surrounding images and
therefore glues these more or less unrelated clusters together. The surrounding
clusters which form the ring also show some overlap between the devices because
of the same reason. Even though this clusters is affected by an error of type P2
this is helpful, as an investigator is instantly confronted with those images that
have undergone anti forensic actions and gets a clue of possible sources of these
images without facing a false classification. In this case it might be useful to redo
the clustering after handling the incriminated images in the middle separately
(e.g. with one of the approaches mentioned in section 3).

Fig. 5. Zoomed view on C3.
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Hence, our approach works as expected and confirms the findings of [17] that
the metadata of images taken by smartphones is highly depending on the soft-
ware stack. However, we expect this approach to be helpful in a triage situation
though it is limited in its capabilities by design.

7 Conclusion and Future Work

Our first approach to a metadata based clustering with the aim to quickly iden-
tify the production of CSAM is promising. Even in the presence of anti forensic
actions every incriminated image is in a cluster with other images from its orig-
inating device and a maximum number of six out of 27 devices per incriminated
image are suggested in less than five minutes, with no special preparatory work
of an investigator required.

Right now, the approach does not take full advantage of the information
that is buried in the metadata and might yield better results when applying
some fuzzy equality to certain field-value pairs (e.g. file size, file name). At
the moment the extracted metadata is not curated which makes the approach
lightweight but leads to unintentionally weighing information that is represented
in the metadata more than once (e.g. several fields for resolution). The runtime
could be reduced by exchanging the pair-wise calculation (O(n2) ) of similarities
with a nearest neighbor approximation algorithm.

More experiments with other databases, including those with classical digital
cameras, should be conducted to verify the results. Furthermore, the aspect of
software stack needs further research. This aspect will likely enforce images that
have been shared via social media etc. to be clustered together which could be
an advantage but will need cautious interpretation of an investigator. Particu-
larly, our approach does not technically prove anything and does not facilitate
any information that is concealed to a human investigator. However, it relieves
the mental load on a human investigator by reducing the dimensionality of the
problem and reducing the amount of images that need to be reviewed. Our ap-
proach could also lead to an improvement of privacy aspects if personal images
are only reviewed if they are related to CSAM.

References

1. B. Bouhours and R. Broadhurst, “On-line child sex offenders: Report on a sample
of peer to peer offenders arrested between july 2010-june 2011,” Available at SSRN
2174815, 2011.

2. G. Bissias, B. Levine, M. Liberatore, B. Lynn, J. Moore, H. Wallach, and J. Wolak,
“Characterization of contact offenders and child exploitation material trafficking
on five peer-to-peer networks,” Child abuse & neglect, vol. 52, pp. 185–199, 2016.

3. A. Gewirtz-Meydan, W. Walsh, J. Wolak, and D. Finkelhor, “The complex experi-
ence of child pornography survivors,” Child Abuse & Neglect, vol. 80, pp. 238–248,
2018.



Towards CSAM triage 15

4. J. Cale, T. Holt, B. Leclerc, S. Singh, and J. Drew, “Crime commission processes
in child sexual abuse material production and distribution: A systematic review,”
Trends and issues in crime and criminal justice, no. 617, pp. 1–22, 2021.

5. M. K. Rogers, J. Goldman, R. Mislan, T. Wedge, and S. Debrota, “Computer
forensics field triage process model,” Journal of Digital Forensics, Security and
Law, vol. 1, no. 2, p. 2, 2006.

6. E. Casey, M. Ferraro, and L. Nguyen, “Investigation delayed is justice denied: pro-
posals for expediting forensic examinations of digital evidence,” Journal of forensic
sciences, vol. 54, no. 6, pp. 1353–1364, 2009.

7. L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold approximation
and projection for dimension reduction,” arXiv preprint arXiv:1802.03426, 2018.

8. B. Hadwiger and C. Riess, “The forchheim image database for camera identification
in the wild,” in International Conference on Pattern Recognition, pp. 500–515,
Springer, 2021.

9. J. Riley, “Understanding metadata,” Washington DC, United States:
National Information Standards Organization (http://www. niso.
org/publications/press/UnderstandingMetadata. pdf), vol. 23, 2017.

10. “Exchangeable image file format for digital still cameras: Exif version 2.32,” stan-
dard, Camera & Imaging Products Association, 2019.

11. “Jpeg file interchange format (jfif), version 1.02,” standard, International Organi-
zation for Standardization, May 2013.

12. “Graphic technology — extensible metadata platform (xmp) specification — part
1: Data model, serialization and core properties,” standard, International Organi-
zation for Standardization, February 2012.

13. J. B. Kruskal, “Multidimensional scaling by optimizing goodness of fit to a non-
metric hypothesis,” Psychometrika, vol. 29, no. 1, pp. 1–27, 1964.

14. M. J. Sorrell, “Digital camera source identification through jpeg quantisation,” in
Multimedia forensics and security, pp. 291–313, IGI Global, 2009.

15. A. S. Orozco, D. A. González, J. R. Corripio, L. G. Villalba, and J. Hernandez-
Castro, “Techniques for source camera identification,” in Proceedings of the 6th
international conference on information technology, pp. 1–9, 2013.

16. E. Kee, M. K. Johnson, and H. Farid, “Digital image authentication from jpeg
headers,” IEEE Transactions on Information Forensics and Security, vol. 6, no. 3,
pp. 1066–1075, 2011.

17. P. Mullan, C. Riess, and F. Freiling, “Forensic source identification using jpeg
image headers: The case of smartphones,” Digital Investigation, vol. 28, pp. S68–
S76, 2019.

18. J. Lukas, J. Fridrich, and M. Goljan, “Digital camera identification from sensor
pattern noise,” IEEE Transactions on Information Forensics and Security, vol. 1,
no. 2, pp. 205–214, 2006.

19. T. H. Thai, F. Retraint, and R. Cogranne, “Camera model identification based on
the generalized noise model in natural images,” Digital Signal Processing, vol. 48,
pp. 285–297, 2016.

20. D. Freire-Obregón, F. Narducci, S. Barra, and M. Castrillón-Santana, “Deep learn-
ing for source camera identification on mobile devices,” Pattern Recognition Let-
ters, vol. 126, pp. 86–91, 2019. Robustness, Security and Regulation Aspects in
Current Biometric Systems.

21. S. Bharathiraja, B. Rajesh Kanna, and M. Hariharan, “A deep learning framework
for image authentication: An automatic source camera identification deep-net,”
Arabian Journal for Science and Engineering, pp. 1–13, 2022.



16 S. Klier and H. Baier

22. K. S. Choi, E. Y. Lam, and K. K. Y. Wong, “Automatic source camera identifi-
cation using the intrinsic lens radial distortion,” Opt. Express, vol. 14, pp. 11551–
11565, Nov 2006.

23. J. Bernacki, “Digital camera identification by fingerprint’s compact representa-
tion,” Multimedia Tools and Applications, pp. 1–34, 2022.

24. T. Gloe, “Feature-based forensic camera model identification,” in Transactions on
Data Hiding and Multimedia Security VIII (Y. Q. Shi and S. Katzenbeisser, eds.),
(Berlin, Heidelberg), pp. 42–62, Springer Berlin Heidelberg, 2012.

25. B. Lorch, F. Schirrmacher, A. Maier, and C. Riess, “Reliable camera model identi-
fication using sparse gaussian processes,” IEEE Signal Processing Letters, vol. 28,
pp. 912–916, 2021.


