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The generation of synthetic human mobility scenarios is often realized through data-driven or rule-based
approaches. They work in a fire-and-forget principle and provide limited support to induce controlled activities
in simulated scenarios. However, including controlled preset activities in the generation phase enables the
creation of mobility scenarios that include a-priori known outliers or key events. Such mobility test datasets
might be used in outlier detection for machine learning algorithms or for inducing non-typical mobility, where
models do not exist or are too complex to construct. In this work we propose an activity-based scheduler to
include controlled preset key events in the scheduling process of daily human mobility scenarios. Further, with
our rule-based approach we can synthesize new activities of a target region even when initial data is unavailable
or missing. In addition we propose a hierarchical methodology to iteratively add activities according to their
number of constraints and provide a publicly available Python-based implementation. Our validation shows

that our approach is able to integrate non-typical behavior in typical mobility scenarios.

1 INTRODUCTION

Contemporary mobile devices such as smartphones,
smart wearables, GPS navigation systems or Internet
of Things devices are able to determine a device’s
position in real time. By storing the device’s cur-
rent position over long time periods, human individ-
uals wearing or using these devices can be tracked in
a very convenient way. The resulting human-based
geospatio-temporal movement is referred to as hu-
man mobility (Barbosa et al., 2018; Castiglione et al.,
2015).

Geospatial datasets of human mobility are bound
to specific regions and describe a specific pattern ac-
cording to the used modes of transportation. There-
fore, the transferability to other regions and modes is
limited (Luca et al., 2021), hence a researcher needs
to gather or synthesize new data for the target re-
gion fitting to his use case. Current data-driven ap-
proaches, e.g., machine learning (ML)-based solu-
tions like (Bosche et al., 2012; Drchal et al., 2019),
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still need a representative dataset in the training phase,
which on the other hand is often acquired from mobil-
ity surveys and custom-acquired tracking data of the
target region. On the other hand, these datasets of-
ten suffer from weaknesses, which render their use
in practice difficult to impossible. For instance, if a
dataset is anonymized, proprietary (e.g., with respect
to a closed format or high costs), unlabeled, unreal-
istic, unsuitable for the individual use case (i.e., the
dataset represents an incorrect mobility pattern for
the respect application) or in the worst case not com-
plete (Aschenbruck et al., 2010).

Applying human mobility models is a convenient
way to generate synthetic data on a large scale, where
the other options fail due to spatial restrictions (e.g.,
creating tracking data of a large area or collecting
data from a restricted area), resource limitations (e.g.,
limited in time or funding) or legal constraints (e.g.,
real human mobility data is considered personal data,
which is restricted by privacy laws under the Eu-
ropean Data Regulation (European Parliament and
Council, 2016)).

The human mobility models describe typical be-
havior, e.g., according to a training dataset or to pre-
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defined rules. On the other hand, when individuals
decide to alter their normal behavior, it might not be
considered in these models. For instance, from the
psychological forensics perspective, criminal behav-
ior is hard to model as criminals adapt to their envi-
ronment by changing their actions to elude prosecu-
tion, as described by Holmes and Holmes (Holmes
and Holmes, 2008). From another view, in machine
learning algorithms the outliers describe disparate
data that opposes the data from the trained models,
i.e. anomalies in a controlled environment. In the
scope of our work, we define all non-typical behavior
as the key events to be integrated in a mobility dataset.
Contemporary mobility frameworks are able to cre-
ate synthetic mobility data, but we identified a limited
support to integrate customized key events. Thus, we
propose in this work a methodology to address this
gap.

The rest of this paper is structured as followed. In
the subsequent Section 2 we discuss the current state
of the art in modeling human mobility and the asso-
ciated activity schedulers. Further, we review in Sec-
tion 2.2 on previous work done on intra-day activity
schedulers and discuss strengths and weaknesses of
available mobility frameworks regarding the injection
of preset activities and identify a research gap on inte-
grating controlled key events. Based on the review of
related work we suggest a methodology in Section 3
and thus our attempt in closing this gap. We validate
our method by providing a possible implementation
in Section 4.1 using Python 3.10 and validate against
predefined requirements from Section 3.3. Finally, we
discuss our results and derive possible future work in
Section 5.

2 RELATED WORK

In this section we present related work to our ap-
proach. We screen the online databases of the four
largest IT publishers IEEE Xplore, ACM Digital Li-
brary, Elsevier Science Direct and Springer Link and
two scientific search engines Google Scholar and Re-
searchGate between years 2010 and 2022. Our re-
sult is that activity-based models are often designed
in integrated systems, hence a data scientist may pro-
vide variable initial settings, but the systems feature
limited means to inject static activities (i.e. the key
events) in the activity planning phase at the agent’s
individual level.
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2.1 Modeling Human Mobility and
Activity Schedulers

One intuitive approach to model human mobility of
single individuals is the use of activity-based models
as a bottom-up approach for simulating human deci-
sions in a resource-limited environment (Castiglione
et al,, 2015). According to Zheng et al. (Zheng
et al., 2013) agent-based models are often rooted on
activity-based models, where agents are autonomous
individuals that may include their past experiences in
future decisions, e.g., using reinforced learning algo-
rithms. Agent-based models are a common choice
within the research community to simulate human
mobility of small groups up to complete populations
concurring in a joint environment with limited re-
sources, e.g., temporal and spatial constraints.

The models are often implemented in integrated
systems, i.e. the system gradually adapts to changes
without user intervention. For instance, the authors
Luca et al. identify in their work (Luca et al., 2021)
missing control in solutions based on deep learning.
Thus, the systems offer limited means to induce con-
trolled activities and therefore force agents’ behaviors
to be adapted accordingly. Further, these models are
data-driven and rely on high amounts of representa-
tive data obtained from the target region matching the
desired use case.

The review on human mobility models by Sol-
maz and Turgut in 2019 (Solmaz and Turgut, 2019)
determined a need in creating scenario-specific and
realistic human mobility models. According to their
work, available intra-day mobility models mainly fo-
cus on creating typical behavior, e.g., in a sleep-
work-leisure cycle as in the Working Day Movement
Model (Ekman et al., 2008). Modeling non-typical
behavior, i.e. inducing scenario-specific activities in
available models, are currently not in focus of current
research, although Ekman et al. (Ekman et al., 2008)
determined a general research trend towards scenario-
specific models. These models might be used to gen-
erate mobility datasets simulating the usage of a wide
range of devices and vehicles, according to the current
mode of transportation.

Activity schedulers are used to plan and execute
activities from a set of possible activities, where ac-
tivities represent the coarse choices of an individual.
This can be performed on a daily basis according to
the individual’s current needs and desires. For in-
stance, if one individual’s need is to buy groceries,
then an activity scheduler would search for grocery
stores in the near vicinity according to his desires.
In most cases, humans start using different modes
of transportation to their destination, and again ac-
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cording to their desires. After choosing an activity,
a scheduler would then calculate the estimated time
slot of the activity and executing it, considering any
changes in the environment, e.g. traffic jams may af-
fect the travel time or alternate faster routes may be
the better choice. In most mobility frameworks, an
intra-day activity scheduler is often combined using
a microscopic mobility models to generate the track-
ing data at high spatial and temporal resolutions, e.g.
applying routing mechanisms in a vehicular road net-
work (Castiglione et al., 2015).

2.2 Agent-Based Systems

An example of an agent-based framework is SimMo-
bility created by Adnan et al. (Adnan et al., 2015) us-
ing multiple modes of transportation. This framework
is integrated and consists of different sub-models to
simulate a range of complex context-aware decisions
and mobility at different time steps in a demand-and-
supply paradigm. Changes in one of the sub-models
are propagated to the others sub-models. Due to it’s
system design, it is not intended to adapt the schedul-
ing process to integrate further preset activities.

The open-source project MATSim (Horni et al.,
2016) is an agent-based modeling framework to ef-
ficiently simulate a wide range of use cases of intra-
day activities, using different modes of transportation.
The scheduler employ a set of different strategies in
a optimization problem setting, even when the initial
data is not complete, as agents automatically adapt to
find better solutions. Due to it’s design, it provides a
method to interfere with the daily activity planning,
but as induced activities might not provide an opti-
mal solution it may not be selected and is not suitable
including preset activities in the scheduling process.

Another tool is the work by Bosche et al. (Bosche
et al., 2012). Their tool creates synthetic data based
on statistical properties of origin-destination pairs on
travel surveys. While their synthetic approach resem-
bles the statistical properties of real data, it does not
provide means to inject preset data, individual behav-
iors and event-based delays, e.g., roadblocks.

The authors Drchal et al. introduced in their
work (Drchal et al., 2019) an activity-based sched-
uler applying various strategies to select and plan a set
of intra-day activities, similar to the mid-term model
of the SimMobility (Lu et al., 2015) framework. In
detail, the authors (Drchal et al., 2019) select a set
of possible next activities, calculate the estimate du-
ration and travel time. From the given set of ac-
tivities they choose the one with the highest attrac-
tiveness, according to the statistical properties of real
data. Although, the scheduler needs real data to train

the model, it can be used to generate additional data
outside the training area, supposing that the sub-area
is an adequate representative of the complete simu-
lated area.

The authors Al-Kuwari and Wolthusen describe
in their work (Al-Kuwari and Wolthusen, 2010) that
the geospatial forensic analysis of confiscated de-
vices rarely have a complete tracking dataset available
and forensic experts need to manually reconstruct the
tracks. Therefore, they introduce a multi-modal trace
reconstruction algorithm by applying different modes
of transportation, i.e. mobility models and recon-
structing data using a probabilistic approach. While
this approach focuses on modeling mobility between
two positions, it does not provide means to integrate
additional activities.

In our review we could not find any method to
adapt the scheduling process for mobility activity-
based models and thus integrating preset activities in
the activity planning phase. Thus we suggest a pos-
sible approach in the following Section 3 where we
attempt to close this research gap.

3 METHODOLOGY

We suggest in the following a method to extend avail-
able mobility models to integrate preset activities in
the generation process. We contribute to close the
research gap and propose a method which integrates
a set of static key events and models additional syn-
thetic events around them. The resulting set of preset
and generated activities for each agent is then the ba-
sis for generating synthetic human mobility at a mi-
croscopic level.

In detail, we discuss the scheduling order in Sec-
tion 3.1 using a hierarchical approach. Next, we de-
scribe the scheduler using the intermediate activity
model to iteratively generate further activities in free
time slots in Section 3.2. In Section 3.3 we define
the attributes and constraints of activities needed to
be considered for the intermediate activity model. Fi-
nally, we discuss how an agent’s individual preference
might be considered in scheduling additional activi-
ties in Section 3.4

3.1 Model Activity Order

Activities describe coarse tasks, which differ in the as-
pects when, where and how they can be executed and
therefore have several constraints, i.e. how flexible
they are in the scheduling process. The constraints
can be described in time (e.g., working and service
hours), space (e.g., swimming activities can only be
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performed at public swimming pools, at home or at a
public lake) and type (e.g., transport activities highly
depend on the available modes of transport). A ran-
dom scheduler may produce activity plans that could
exclude vital activities, e.g., work activities can be
primary planned during working hours at predefined
days of the week.

Therefore, we propose that activities should be
scheduled according to their importance and/or by
the degree of constraints, similar as in the ILUTE
Model (Salvini and Miller, 2005). To simplify the
scheduling, we use a numerical scoring to aggregate
different constraints. Thus, activities with more con-
straints are scheduled with higher priority than activ-
ities with fewer constraints. Using preset activities
as key events in activity plans are non-optional and
should always be scheduled first, that is before adding
other activities. This concept can also be further ex-
panded to adjust to customized scheduling strategies
and adapting the scoring, e.g., prioritizing activities in
certain situations.

3.2 Intermediate Activity Model

To include preset activities, we adapt the schedul-
ing process in using higher-constrained activities and
schedule other lower-constrained activities in be-
tween, similar as in the intermediate stop location
model (Castiglione et al., 2015) and name it accord-
ingly: intermediate activity model. The intermediate
stop model is originally used to simulate additional
stops in a tour between two successive points. Thus,
additional stops (or activities) are detours where the
destination is usually a work place, school or a return
home location.

Activity Time Windows. According to Castiglione
et al. (Castiglione et al., 2015), one possibility to de-
termine when activities should be scheduled, is the
use of time windows. This time window specifies
a time slot where additional activities and the corre-
sponding trips might be generated. Preset activities in
general might not start and end at fixed time periods
and therefore a scheduler needs to dynamically adapt
the time windows according to the actual starting and
ending times of consecutive activities. When new ac-
tivities are added to the activity plan, the scheduler
adjusts the time window accordingly.

3.3 Attributes of Activities

Inserting additional activities between two successive
activities according to the intermediate stop model
forces a scheduler to be context-aware. This may
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cover the previous scheduled activities (e.g., reason-
ing chains), the mode of transport utilized in this tour
(e.g., for mode chains modeling (Song et al., 2021)),
the potential activities that might be chosen as inter-
mediate stops in this time window (e.g., constrained
by working and service hours), estimated travel times
to reach the next destination, constraints placed on
the environment (e.g., limiting the number of agents
per area) and the agent’s profile (i.e. his desires and
needs). In the following, we describe the minimal
necessary attributes for using the intermediate stop
model inside a scenario.

Each activity A consists at least of a duration d,
timestamps ¢ at a starting point p; and ending p,
point and an activity type class. Further we assume
that each activity has the following constraints and at-
tributes: Exclusivity, chain of reasoning, physical and
time constrains, labels. In the following, we define
the given constraints and attributes.

Exclusivity. At any time ¢, there is at most one ac-
tivity assigned and therefore we can exclude that more
than one activity is performed simultaneously, i.e. we
can define an injective function f : T +— P witht € T
and A C P, where T is the complete set of timestamps
and P the activity plan containing all scheduled activ-
ities A. If an activity consists of a set of sub-activities,
then these sub-activities should consider the tempo-
ral and spatial boundaries of it’s parent, i.e. start-
ing and ending times and positions. With this defi-
nition, we can order all available activities according
to their starting times (or ending times) and conclude
that two consecutive activities A; and A;1; do not con-
tain any additional activities in between or overlap-
ping each other. Based on the previous definitions, we
can now insert additional activities in the time win-
dow between two consecutive activities as depicted in
Figure 1, i.e. after the activity A; and before the activ-
ity Ay 1.

Chain of Reasoning. The integration of new activi-
ties in a given time slot may induce several problems.
Any new activity Ay, that is not in the close vicinity
of the previous activity, may induce additional activ-
ities, e.g., creating a transport activity (I and III in
Figure 1) according to the available modes of trans-
port to reach a destination. Any newly added activity
should contain sufficient time for an agent to reach
the consecutive activity with any available modes of
transportation.

Physical and Time Constraints. Human mobility
in general is not without limitation. According to
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Figure 1: Intermediate tour model: A new activity A,,,, can
be inserted between the given activities A; and A;;1 having
a fixed time gap. The scheduler needs to consider potential
transport activities from A; to Apey (I) and from Ae to Ajy g
(IID). The step in II can be repeated to recursively add more
activities until either the time gap or the agent’s needs are
exhausted.

the mode of transportation or the activity, some ar-
eas or paths might not be accessible for specific time
slots. For instance, shopping centers may have time
restrictions and individuals are not permitted to enter
this area outside service hours. Further, the choice
of transport also influences variables like travel time
(e.g., limited by speed limits), route choices (e.g.,
choosing routing alternatives during a traffic conges-
tion) and path choices (e.g., in general vehicles travel
on a directional network). This rule set should be ex-
tended to match the desired use case and is therefore
not complete.

Labels. Any activity contains a description (e.g., a
label) about the type of activity. This is not only
needed by an algorithm to properly recognize it’s
type, but also include some level of documentation
for the data scientist to reproduce the results. Appro-
priate descriptions might influence how, where and
when activities are planned and executed. For in-
stance, according to the chain of reasoning, some ac-
tivities are dependent on previous decisions and labels
aid to properly identify them.

3.4 Modeling Agent Preferences

Each agent has his own desires and needs, therefore
we must consider that some agents might have pref-
erences or restrictions in their choices of the activity
type and mode of transportation. It depends, accord-
ing to Castiglione et al. (Castiglione et al., 2015) on
variables like income, social statuses, individual ac-
cessibility and availability to use different modes of
transport and demographic data. This list should be
extended to fit the current use case.

The agent’s preferences might influence how,
when and where activities are scheduled and thus lim-
iting the choices for a scheduler. For instance, de-
pending on the agent’s occupation, we find different

time windows when a certain work might be sched-
uled, e.g., night-shifts. Going further, we may iden-
tify, that the workplace is always performed at known
location in contrast to maintenance works for the gen-
eral public, where workers respond to house calls and
constantly change their work place. Therefore, each
activity type class should be modified to fit the agent’s
need in adding or changing the corresponding param-
eters, e.g., work hours differ for each agent, but are
fixed.

4 VALIDATING THE
METHODOLOGY

Although the suggested methodology might be scaled
up to be used in a multi-agent system, it does not di-
rectly affect other agents. In addition, comparing the
resulting dataset with real data or other models is lim-
ited, as key events might describe non-typical behav-
ior. In this section we present a Python-based imple-
mentation and validate our methodology as presented
in Section 3 to include preset activities for simulating
a human mobility scenario.

4.1 Implementing the Activity
Scheduler

The outline of the implementation approach of
scheduling intra-day activity plans is depicted in Fig-
ure 2. It consists of a preparation phase, where the
system cleans and transforms the input data to be pro-
cessed in the next steps. During the next phase, the
system synthesizes the population, i.e. we define for
each agent their preferences and needs. In a daily cy-
cle, the activities are hierarchically scheduled accord-
ing to the model order as defined in Section 3.1. Each
daily cycle ends in a simulation phase at the micro-
scopical level by generating the actual tracks. Regular
logical checks at different phases assure that sched-
uled activities are conform with the requirements as
defined in Section 3.3. In the following we go into
more detail for each of the implementation steps.

Activity Preprocessing Phase. In this preprocess-
ing step, the scheduler identifies the type of the preset
key events, the starting and ending locations and the
timestamps at these locations. This phase is mainly
associated with data cleaning and transforming user
input data and creates activities to be processed in the
next steps.
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activtity
preprocessing
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synthesizing
population

logical checking
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preset activities

intermediate
activity model
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executing
activity plan

logical checking

next day

Figure 2: This chart describes the program flow of injecting
preset activities. After preparing the preset data in a prepro-
cessing phase, the population is synthesized in a consecu-
tive step. In a daily cycle, the program schedules the preset
activities and gradually plans additional activities according
to their degree of constraints. Logical checks are executed
at different phases to minimize logical discrepancies in the
insertion of (preset) activities. In the last step, the activity
plan is executed using microsimulation models

Synthesizing Population. In this intermediary step,
we synthesize the population by creating agents, hav-
ing their own desires and preferences. Here we de-
fine the needed global information like fixed locations
(e.g., home position or workplace), when and how ac-
tivities are scheduled by adjusting the initial settings
for each agent. In this step, a data scientist can easily
create different profiles for each agent.

Adding Preset Activities. On a daily basis, all pre-
set activities are scheduled for the associated agents.
Between two consecutive preset activities, we calcu-
late the respective time window, where additional ac-
tivities might be scheduled. As long as the time win-
dow is greater than a given threshold, we can itera-
tively plan new activities. The threshold is a combina-
tion of a minimum duration of an activity and the rel-
ative travel times between the activities, as described
in the intermediate activity model.

Intermediate Activity Model. The intermediate
activity model describes how additional activities are
consecutively generated between two given activities.
We implemented this model as described in Algo-
rithm 1, where new activities are iteratively added.
Given the two consecutive activities A; and A; 1 and
a potential new activity Ay, a scheduler generates a
transport activity from the previously added activity
Aprey to this new activity Ay, and plans a transport
activity from the newly generated activity to the last
activity A;+1. The new activity is only added if both
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travel times and the duration of the activity do not ex-
ceed the time window. The last transport activity is
only of importance, if we can not create additional
activities, i.e. the time window is too small for new
activities to be added or there are global settings that
do not permit creating more. In this case, we can ex-
ecute the transport activity.

Aprev — Ai;

while A, < o do
generateTransport (Aprey, Anew);
generateActivity(Anew);
planTransport(Ayey,Air1);
Agap < adaptTimeWindow();
Aprev — Anew;

end

executeTransport (Aprev,Ait1);

Algorithm 1: Inserting intermediate activities Apey in a
given time window Agg;, of activities A; and A; .

Microsimulation Mobility Model. We used the
python OSMNX library to download and extract
the paths, points of interest and nodes of the
OpenStreetMaps (OSM) database (Open Street Map,
2023). This framework also provides useful data
cleaning methods, e.g., connecting street ends at in-
tersections or calculating travel times between nodes.
The concept of nodes are used in OSM to represent a
multitude of things, but we are only interested in those
representing connections in paths, e.g., intersections,
curved ways or stop-points and edges represent sub-
paths, e.g., parts of a road. The routing of agents on
a network is implemented as a weighted Dijkstra al-
gorithm, where simulated travel times are the edges’
weights between two nodes.

Logical Checking. To ensure that activities do not
contain logical faults, we define a global set of rules
prior generating new activities. The rule set can also
be used to check for any human error prior integrating
preset activities to the system during the preparation
phase. In our system design, we included the follow-
ing attributes from Section 3.3: ordered set, exclusiv-
ity and chain of reasoning.

As preset activities might describe non typical be-
havior, we did not include checks for preserving any
time and physical constraints and individual prefer-
ence, e.g., entering restricted areas after service hours.
However, those attributes are considered as rules in
the planning of new activities.

4.2 Validation

Therefore, to ensure that the implementation from
Section 4.1 of our proposed methodology (see Sec-
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tion 3) provides the intended results, we validate the
resulting dataset of one agent against the requirements
from Section 3.3.

We provided our implementation with a set of
fixed preset activities as our key events and generated
additional activities around these activities. Consider-
ing that preset activities might represent any activity
combinations of non-typical daily behavior, e.g., hav-
ing a day off from work and performing other activi-
ties, we decided to randomize the preset dataset with a
high variety of activity combinations. The methodol-
ogy was implemented on a Windows 11 Pro (Version
21H?2) running on Intel Core 19-12900H with 64GB
RAM using Python 3.8.11, OSMNX library version
1.1.1.

The Preset Activity Dataset. This dataset contains
randomized activities, where the location during an
activity does not change, i.e. the agent starts and ends
the activity at the same location an no further track-
ing data is generated during his activity. Usually, the
transition between two consecutive activities is mod-
eled as a transport activity, given that the next activity
is not at or in the near vicinity. We restricted our test
data to be generated in a urban area of Munich, Ger-
many with approximately 11km?. Further we adjusted
the agent’s profile, so that sleeping and at home activ-
ities are scheduled at the same location(, i.e. a physi-
cal constraint). To simulate a time constraint, we de-
fined that sleeping activities can only be scheduled be-
tween 19:30 and 9:00 hours. The activities shopping
and work activities should only be scheduled between
8:00 and 20:00 hours. The simulation order for the
activities are: work as mandatory (highest scoring),
sleep and shopping as restricted (medium scoring),
walk and at home as unrestricted (lowest scoring).

Results. A sample intra-day activity plan contain-
ing preset and simulated activities is described in Ta-
ble 1, where preset activities are labeled with the pre-
set’ tag in the simulation order column. Other labels,
e.g., mandatory or restricted, describe the simulation
order for this particular activity. Further, we identify
that each activity complies with our requirements:

* ordered set all activities are ordered according to
their starting/ending times.

* exclusivity at all times, we identify at most one
single activity scheduled.

* chain of reasoning between two consecutive non-
transport activities, there is always a transport ac-
tivity, if not scheduled at the same location, which
is always true in our sample.

¢ physical constraints all at home and sleeping
activities are scheduled at the same location, i.e
(48.18286, 11.52519).

* time constraints sleeping (entry 3) is scheduled
between 22 and 9 hours and shopping (entry 13)
is scheduled between 8 and 20 hours. We want to
point out that the entry 11 is a preset activity and
therefore not bound to this time constraint.

S CONCLUSION

In this paper we identified the research gap, that
the current state-of-the-art activity-based models on
intra-day human mobility do not contain a possibility
to adapt the scheduling process to include preset ac-
tivities with fixed timestamps and locations. Having
preset activities allows data scientists to injecting key
events and thus provide a control mechanism in the
generation of activity plans, which then may be used
in a next step to generate customized geospatial data.

To close this gap, we proposed a methodology
based on activity-based models to address this prob-
lem and defined the requirements for these preset ac-
tivities, i.e. ordering, exclusivity, chain of reasoning
and aware of time and physical constraints according
to the agent’s individual preferences. To validate our
methodology we created a Python-based implemen-
tation using the OSMNX framework for integrating
OpenStreetMaps. We purposed a hierarchical-based
intermediary activity model to add new activities ac-
cording to their degree of constraints, as described
in Section 3.1. As preset activities might represent
any combination of typical and non-typical behavior,
we included a randomized set of preset activities and
showed that the resulting set also complies with our
requirements in Section 4.2.

Although our proposed methodology is able to in-
tegrate predefined activities in the scheduling process,
it is limited to non-transport preset activities that start
and end at the same location. For integrating prede-
fined transport activities that contain different starting
and ending positions, we may need to consider the
reason behind this transport activity, i.e. what agent’s
need is met by this preset transport activity. This
might possibly trigger implicit activities needing to be
added and adapting the scheduling order, e.g., a trans-
port activity between home and work location would
implicate activities to be performed at home and at
work. As the integration of transport activities is not
trivial, we propose future work in further closing this
research gap.
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Table 1: A sample test dataset containing preset and simulated activities from one agent in a 24 hour window. The activities
have physical and time constraints when and where they may be scheduled. Further, we identify that our requirements are

met in the generated activities, i.e. ordered set, exclusivity and chain of reasoning as described in Section 3.3.

Entry | Sim. order | Activity type | Start Time | End Time Start (lat, lon) End (lat, lon)
1 preset home 17:34:14 19:35:40 | (48.18286, 11.52519) | (48.18286, 11.52519)
2 restricted transport 19:35:40 19:35:40 | (48.18286, 11.52519) | (48.18286, 11.52519)
3 restricted sleep 19:35:40 | 02:53:24 | (48.18286, 11.52519) | (48.18286, 11.52519)
4 unrestricted transport 02:53:24 | 02:53:24 | (48.18286, 11.52519) | (48.18286, 11.52519)
5 unrestricted home 02:53:24 05:12:36 | (48.18286, 11.52519) | (48.18286, 11.52519)
6 unrestricted transport 05:12:36 | 05:13:59 | (48.18286, 11.52519) | (48.18469, 11.53327)
7 unrestricted walk 05:13:59 | 07:03:00 | (48.18469, 11.53327) | (48.18469, 11.53327)
8 unrestricted transport 07:03:00 07:08:47 | (48.18469, 11.53327) | (48.18418, 11.49277)
9 unrestricted walk 07:08:47 11:20:24 | (48.18418, 11.49277) | (48.18418, 11.49277)
10 unrestricted transport 11:20:24 11:25:34 | (48.18418, 11.49277) | (48.18286, 11.52519)
11 preset sleep 11:25:34 12:30:24 | (48.18286, 11.52519) | (48.18286, 11.52519)
12 unrestricted transport 12:30:24 12:34:36 | (48.18286, 11.52519) | (48.18005, 11.49265)
13 unrestricted shopping 12:34:36 13:15:54 | (48.18005, 11.49265) | (48.18005, 11.49265)
14 unrestricted transport 13:15:54 13:20:28 | (48.18005, 11.49265) | (48.18286, 11.52519)
15 preset home 13:20:28 17:16:49 | (48.18286, 11.52519) | (48.18286, 11.52519)
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