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Approximate matching is a well-known concept in digital forensics to determine the similarity between
digital artifacts. An important use case of approximate matching is the reliable and efficient detection of
case-relevant data structures on a blacklist (e.g., malware or corporate secrets), if only fragments of the
original are available. For instance, if only a cluster of indexed malware is still present during the digital
forensic investigation, the approximate matching algorithm shall be able to assign the fragment to the
blacklisted malware. However, traditional approximate matching functions like TLSH and ssdeep fail to
detect files based on their fragments if the presented piece is relatively small compared to the overall file
size (e.g., like one-third of the total file). A second well-known issue with traditional approximate
matching algorithms is the lack of scaling due to the ever-increasing lookup databases. In this paper, we
propose an improved matching algorithm based on transformer-based models from the field of natural
language processing. We call our approach Deep Learning Approximate Matching (DLAM). As a concept
from artificial intelligence, DLAM gets knowledge of characteristic blacklisted patterns during its training
phase. Then DLAM is able to detect the patterns in a typically much larger file, that is DLAM focuses on
the use case of fragment detection. Our evaluation is inspired by two widespread blacklist use cases: the
detection of malware (e.g., in JavaScript) and corporate secrets (e.g., pdf or office documents). We reveal
that DLAM has three key advantages compared to the prominent conventional approaches TLSH and
ssdeep. First, it makes the tedious extraction of known to be bad parts obsolete, which is necessary until
now before any search for them with approximate matching algorithms. This allows efficient classifi-
cation of files on a much larger scale, which is important due to exponentially increasing data to be
investigated. Second, depending on the use case, DLAM achieves a similar (in case of mrsh-cf and
mrsh-v2) or even significantly higher accuracy (in case of ssdeep and TLSH) in recovering fragments of
blacklisted files. For instance, in the case of JavaScript files, our assessment shows that DLAM provides an
accuracy of 93% on our test corpus, while TLSH and ssdeep show a classification accuracy of only 50%.
Third, we show that DLAM enables the detection of file correlations in the output of TLSH and ssdeep

even for fragment sizes, where the respective matching function of TLSH and ssdeep fails.
© 2023 The Author(s). Published by Elsevier Ltd on behalf of DFRWS All rights reserved. This is an open
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1. Introduction

Digital forensics comprises the analysis and interpretation of
digital artifacts. One of the biggest challenges facing digital forensic
investigation is coping with the vast number of files to be pro-
cessed. Hashing algorithms have become an indispensable part of
computer science, since the computed hashes can be used as
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unique identifiers to compare digital artifacts. For traditional
cryptographic hashes, such as MD5 and SHA-2, even changing a
single bit already alters the hash value significantly due to their
diffusion property (intended for one-way functions), which ob-
scures the relationship between the input and its corresponding
hash value. Cryptographic hashes are therefore unsuitable for
recognizing similar artifacts. Fuzzy hashing, on the other hand,
breaks the cryptographic diffusion and thus establishes a rela-
tionship between the original file and its corresponding hash.
Through approximate matching, the similarity of two fuzzy hashes
can be determined.

The concept of approximate matching is not limited to tradi-
tional fuzzy hashes. In the image domain, similar approaches based
on neural networks to extract meaningful features from images are
used for image retrieval (Liu et al., 2016; Zhao et al., 2015) or
detecting illegal content (Apple Inc, 2021; Struppek et al., 2022).

A recent survey by Singh (2021) shows that 65% of digital
forensic investigators are actively using fuzzy hashes during their
investigation processes. Fuzzy hashing is primarily used to identify
related documents, but they are also used in other contexts which
are based on similarity search. Examples are data loss prevention
(G€obel et al., 2021), IoT device identification (Charyyev and Gunes,
2020; G€obel et al., 2022a,b), genome sequencing (Healy and
Chambers, 2011) or biometric template protection (Ong et al.,
2014). However, one main application for fuzzy hashes remains
malware detection and analysis (Diaz, 2020; Lazo, 2021), for
example, as used in Google's VirusTotal (Shiel and O’Shaughnessy,
2019).

Traditional approaches compute similarity scores between
fuzzy hashes to identify shared fragments of different files. How-
ever, such similarity scores are limited in their expressiveness and,
as shown by G€obel et al. (2022a,b), frequently fail to detect shared
fragments or even state misleading similarities between files. The
fact that fuzzy hashes translate bytes into computable strings
makes them especially interesting for processing on the bases of
machine-learning techniques. With our approach, which we call
Deep Learning Approximate Matching (DLAM), we aim to bridge
recent advances in deep learning and fuzzy hashing and demon-
strate large performance improvements for the task of fragment
detection by combining both concepts.

More specifically, we introduce a transformer-based (Vaswani
et al., 2017) approach to detect parts of file fragments in their
corresponding fuzzy hashes. We empirically show that DLAM im-
proves fragment detection in fuzzy hashes produced by the most
commonly used algorithms ssdeep (Kornblum, 2006) and TLSH

(Oliver et al., 2013), whereas traditional similarity measures fail to
detect the fragments. In contrast to state-of-the-art fuzzy hashing
algorithms and previous deep learning approaches, DLAM consis-
tently classifies the fragments with an accuracy of over 90% on
multiple tested file types, namely JavaScript, PDF and XLSX.

We point out to restrict our evaluation on approximate match-
ing schemes, which are actually used and provide an executable
implementation. In summary, we make the following
contributions:

� We introduce Deep Learning Approximate Matching, or DLAM
in short, that combines efficient fuzzy hashing algorithms with
transformer-based models from natural language processing.

� We show that DLAM is superior to the most common conven-
tional approximate matching schemes ssdeep and TLSH and
evenworks for small fragment sizes where traditional similarity
measurements fail completely.

� We further demonstrate that DLAM achieves comparable results
to state-of-the-art multi-resolution fuzzy hashing algorithms,
2

such as mrsh-v2 and mrsh-cfin the case of fragment
detection.

� We provide the complete source code of DLAM on GitHub:
https://github.com/warlmare/DLAM.
2. Background and related work

In the following, we introduce the basics of fuzzy hashing,
including TLSH and ssdeep as conventional fuzzy hashing algo-
rithms on which our DLAM approach is based. We further describe
the characteristics of transformer networks, which build the
foundation of our machine-learning approach.

2.1. Fuzzy hashing and approximate matching

Fuzzy hashing was first introduced in the mid-2000s in order to
perform altered document and partial file matching by Kornblum
(2006). Generally, fuzzy hashing algorithms H are functions that
compute a dense hash representation H(x) of a file x. The goal is to
provide similar hashes, which are also called digests, for similar
inputs: H(x)z H(y)⇔ xz y. This property distinguishes them from
traditional cryptographic hashes for which small input changes
lead to strong output changes, also known as cryptographic diffu-
sion or avalanche effect. Then a similarity function sim(H(x), H(y)) is
applied, which computes the similarity between two files x and y
based solely on their fuzzy hashes. This procedure of assessing the
similarity of artifacts or patterns is known as approximate match-
ing. Approximate matching algorithms all work in a three-step
manner: they first select features from a digital artifact and
generate a hash digest from these features, which then can be
compared to other hashes in a third step. As for the comparison
step, there are threeways inwhich current algorithms achieve their
goal: either based on plain byte, syntactic or semantic commonal-
ities. The matching mechanism is chosen based on the digital
artifact that must be processed. As an example, malware de-
velopers often obfuscate their payload deliberately to prevent
detection. Benign files might have been further compressed or
rearranged through software, which makes it hard to distinguish
between obfuscated malware and benign files.

To deal with these issues, approximate matching research has
come up with two approaches: The first approach is to create new
algorithms that are more resilient and attest the similarity on a
more granular level (Azarafrooz and Brock, 2018). The other
approach is to pre-process the artifacts before hashing them and
focusing on selected parts that hold vital information (Shiel and
O’Shaughnessy, 2019). With our work, we propose a third option
and detect shared commonalities in fuzzy hashes using machine
learning approaches. We note that Microsoft pursues a similar di-
rection (Lazo, 2021). However, this direction has so far only barely
been formalized in academic research. Fig. 1 illustrates the differ-
ences in the approaches of fragment detection of conventional
approximate matching in Fig. 1a and our proposed DLAM in Fig. 1b.

Overall, the combination of fuzzy hashes and machine learning
is still in its early stages. Raff et al. (2018) first proposed to train
neural networks for malware detection from raw byte sequences.
However, training networks with sufficient capacity on entire files
is time- and resource-consuming. Peiser et al. (2020) used simple
feed-forward neural networks to detect malware in JavaScript files
through static analysis based on features computed by fuzzy
hashing algorithms and compared their results with conventional
JavaScript malware classifiers, none of which rely on fuzzy hashes.
The authors showed that simple models, trained on a small dataset
with only 5000 samples, already achieved a high detection accu-
racy. However, Peiser et al. (2020) limited their investigation to

https://github.com/warlmare/DLAM


Fig. 1. Fragment detection through conventional approximate matching and through DLAM. In conventional approximate matching, the exact fragment that needs to be detected
has to be extracted first in a costly operation. Through DLAM, models are trained to perceive the fragment as a common denominator and classify files based on its presence.
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JavaScript malware detection and only trained their models on
JavaScript files that either contained malware or did not.

In our work, we take a more holistic view and contextualize the
fusion of deep learning and digital forensics based on fuzzy hash-
ing. We further evaluate our approach on a set of different file types
by injecting synthetic fragments into real-world files. We use real-
world files and synthetic fragments because they allow us to study
the influence that the total fragment content in a file has on the
classification accuracy. Malware samples rarely come with the in-
formation how much malware is contained in a sample.

Throughout this paper, DLAM is used in combination with the
fuzzy hashes TLSH and ssdeep, which we now introduce in more
detail. However, we emphasize that DLAM is, in principle, also
compatible with other fuzzy hashing algorithms.

Raff and Nicholas (2018) explained that LZJD could be suitable
particularly for the application of machine learning. They highlight
the metric space and kernel properties of the Jaccard distance that
LZJD inherits.

TLSH (Trend Micro Locality Sensitivity Hash) is a hashing algo-
rithm first presented by Oliver et al. (2013). It is specifically
intended for malware detection and clustering. TLSH scans the byte
code of a file with a sliding window and combines 5 bytes at a time
into a unit using the Pearson hash function (Pearson, 1990), a fast
non-cryptographic hashing procedure. These units are then map-
ped into an array of so-called buckets. Next, the digest body, a
hexadecimal string, is constructed from the array of buckets by
dividing it into 3 distinct quartiles q1, q2 and q3. The first three
bytes of the hash are the digest header, which primarily consists of
checksums, and forms together with the body a 70-character
hexadecimal string. The final TLSH hash is a fixed-length string
with 72 characters. To compare two hashes, TLSH calculates an
approximation to the hamming distance between two digest
bodies. The relation of two artifacts is expressed through a distance
score between 0 (very similar) and 1000 (not similar).

ssdeep was introduced by Kornblum (2006). The algorithm
breaks a file up into pieces using a rolling hash function, which
hashes an input in a sliding window approach. Then, a non-
cryptographic hash function is used to hash every piece that has
been created by the rolling hash function. These smaller hashes are
concatenated and form the hash signature for the whole input file.
To compare two hashes, a distancemeasure is used that determines
3

the correlation between the two hashes. The similarity is indicated
by a score between 0 (not similar) and 100 (very similar). As the
produced hashes can vary in size, the final hash contains infor-
mation about the total size at the beginning of the hash. Even
though the overall hash is variable in its length, the size is bounded
to 148 encoded characters.

2.2. Language processing with transformers

To perform similarity analyses on fuzzy hashes, we interpret the
binary strings as a language representation and process these
strings using transformer networks. Since their introduction in
2017 by Vaswani et al. (2017), transformers are the dominating
architecture for natural language processing and are even
increasingly used for image processing (Dosovitskiy et al., 2021a).
Unlike previous state-of-the-art models for sequence modeling,
transformers rely on the attention mechanism and remove the
recurrent components of previous approaches, such as LSTMs
(Hochreiter and Schmidhuber, 1997) and GRUs (Cho et al., 2014).
More specifically, they rely on the multi-head self-attention
mechanism, which enables the models to process different repre-
sentations at different positions by running an attention mecha-
nism several times in parallel.

The multi-head attention mechanism consists of three learned
matrices: queries Q, keys K, and values V. The attention A is

computed by the dot-product A ¼ QKTffiffiffiffi
dk

p , where dk is a scaling factor

based on the dimension of keys. The attention output is then
computed by the weighted sum Att(Q, K, V) ¼ softmax(A) $ V, with
the attention weights computed by the softmax function and V
representing the input sequence. In other words, the softmax of the
attention softmax(A) is weighing the importance of the tokens in
the input sequence to the task at hand. Since detecting relations
between different positions in the hashes is essential for fragment
detection, transformers are a natural architecture choice for this
task.

Transformers usually need large amounts of data to be trained
on. Therefore, pre-training plays a crucial role in their performance.
Devlin et al. (2019) proposed bidirectional encoder representations
from transformers (BERT), a masked language model, which
introduced a novel pre-training procedure. To train the masked
languagemodel, randomly selectedwords in the input sequences of
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the training corpus are masked out. The model then has to predict
the masked word based on its surrounding context. A pre-trained
model can then be fine-tuned for other NLP tasks with only a sin-
gle additional output layer added.

After demonstrating impressive results in natural language
tasks, the transformer architecture has been transferred to other
domains as well. These include computer vision with vision
transformers (Dosovitskiy et al., 2021b), speech recognition with
convolutional-augmented transformers, called conformers (Gulati
et al., 2020), and reinforcement learning with decision trans-
formers (Chen et al., 2021). With our work, we take the application
range of transformers one step further and combine them with
fuzzy hashing algorithms to improve approximate matching.

3. Transformer-Boosted approximate matching

In machine learning assisted common fragment detection, the
model should learn what constitutes a regular file and what con-
stitutes a file containing a particular element we want to detect. In
this work, we introduce DLAM to improve the detection behavior of
traditional fuzzy hashing algorithms. Our approach consists of two
steps. For each input file x to check, we first compute a dense hash
representation H(x) using a fuzzy hash algorithm H. The fuzzy
hashes serve in this case as an intermediate representation of the
files and can be seen as an input pre-processing step. The hashes
reduce the complexity and length of the original files and make
them processable by deep learning models.

We investigate supervised fragment detection, which comes
down to a binary classification of files to predict if some fragment is
present in an input file. The hashes and binary labels, which indi-
cate whether a fragment was hidden in the input file or not, are
then provided to a deep learning model, in our case a transformer,
for training. Since the hashes are in a byte string representation,
they are tokenized and interpreted as a sequence to train the
model. Because the order of the bytes is crucial to the classification
task, we added a simple absolute positional encoding to the
sequence to indicate the sequence order to the transformer model
after tokenizing the hash strings.

As stated in Section 2.1, ssdeep produces hashes of variable
length. As Fig. 2b illustrates, all hashes produced by ssdeep are
padded with zeros to unify the length of the hashes, allow parallel
training of the models, and apply attention masking to train the
transformer model. Attentionmasking is used to prevent the model
from attending to the padding tokens and only paying attention to
the informative tokens of the hash values. As different training
samples have different sizes, masking out the padding tokens
prevents the model from overfitting the training data and pre-
dicting the appearance of the fragment based on the number of
padding tokens.

3.1. Experimental protocol

In the following, we will describe the experimental setting we
used to evaluate our approach. The pipeline for our experiments is
visualized in Fig. 3.

Fuzzy Hashing Algorithms: In our experiments, we focus on
ssdeep and TLSH, as both are widely used and form the de-facto
standard for malware detection. As such, they are both part of
Google's VirusTotal, Maltego and other actively used virus detection
platforms. Thanks to the fact that transformers can process inputs
of arbitrary length, our approach is also applicable to fuzzy hashes
of arbitrarily length, such as those generated by sdhash or
mrsh-v2 (mrsh-cf is currently unable to provide its fuzzy hashes
as readable strings). However, multi-resolution hashes are many
times longer than TLSH and ssdeep, which are limited in their
4

maximum length. This potentially unlimited length is a drawback
when processing fuzzy hashes by machine learning. In their paper,
Peiser et al. (2020) also apply a simple feed forward network to the
sdhash algorithm, which is also theoretically unbounded in length.
However, they use themethod of count vectorization, whichmeans
that important information such as the relative position of the
segments, which we consider crucial, is lost and therefore abandon
the approach adopted by Peiser et al. (2020).

The feature extraction pipeline for both fuzzy hashes ssdeep

and TLSH is visualized in Fig. 2. According to Peiser et al. (2020),
when using a rolling-window approach for tokenizing the fuzzy
hashes produced by TLSH, the classification accuracy is increased
with a feed-forward network. In our experiments, the rolling-
window approach did not influence the classification accuracy
with a transformer. However, to ensure comparability to Peiser
et al. (2020), we still used a rolling-window approach for tokeniz-
ing the fuzzy hashes produced by TLSH.

Contrary to the findings of Peiser et al. (2020), who used a
similar rolling window approach on ssdeep for training their feed-
forward network as well, we could not confirm that such an
approach improved the classification performance of the feed-
forward models when working with ssdeep. Therefore, we
applied a simple per-char integer encoding on the ssdeep hash, as
can be seen in Fig. 2b. We also removed the chunk size and colons
from the ssdeep hashes, for both of the model architectures.
During our experiments, we noticed that the retention of these
elements leads to a worse classification accuracy by the models.

Testbed: The test environment in which all our tests were
conducted is as follows. We use a virtual machine equipped with
16x Intel Xeon Platinum 8280 CPU @ 2.70 GHz, 2 � 16 GB DDR4-
3200 RDIMM ECC, 800 GiB SSD, Ubuntu 21.10 Linux 5.13.0e40-
generic x86_64. In addition, three Nvidia Tesla V100s with 32 GB
VRAM are used for the training of the deep learning assisted
approximate matching models. All modules for the creation of the
training data as well as the machine learning models and the
evaluation were realized in Python 3.8. Although this setup is quite
extensive, it is still not sufficient when dealing with fuzzy hashes of
variable length.We suggest that this should be looked into in future
research with more powerful hardware.

Data Selection: To investigate the extent to which the classifi-
cation performance of the models depends on the type of input file,
we selected common file types, namely JavaScript, PDF and XLSX,
for training and evaluation. G€obel et al. (2021) showed that the
accuracy of approximate matching indeed varies depending on the
file type. Therefore, we trained and evaluated one model per file
type. Since no single file corpus exists that is big enough to allow for
training and evaluation of models on all file types, multiple corpora
were used. We combined the Govdocs corpus (Garfinkel et al.,
2009), SRILabs JavaScript corpus (Raychev et al., 2016) and the
FUSE corpus (Barik et al., 2015) and used 100,000 samples for each
of the file types. This number of samples per file type represents the
maximum amount of files that could be assembled with a reliable
provenience, meaning that they originate from corpora that have
been screened for duplicates and are balanced in size.

For evaluation of the models, 5000 samples for each file type
from the NapierOne corpus (Davies et al., 2022) were used. For
training and evaluation, only files that were large enough to be
reliably hashed by TLSH were selected. Since the files for training
and evaluation were collected from different sources, the risk of
having duplicate files in the training and test sets is minimal.

Evaluation Metrics: We used various standard metrics for
evaluating our experimental results. We measured the accuracy
(Acc), the false-positive rate (FPR), the true-positive rate (TPR), the
false-negative rate (FNR), and the true-negative rate (TNR).
Regarding the application of our approach in digital forensics for



Fig. 2. Feature extraction and prediction pipeline. On the left, the process for TLSH hashes is depicted as it is used for both models (feed-forward and transformer). On the right, the
process for ssdeep hashes is depicted as it is used for creating embeddings for transformer and feed-forward models.
zus€atzliche Affiliation.

Fig. 3. The three stages of our training and evaluation pipeline.
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malware or sensitive file detection, false-positive and false-
negative predictions are the most relevant performance in-
dicators. False-negative predictions represent all files that a filter
failed to detect. Any false-negative prediction can mean a
compromise of systemswith potentially devastating consequences.
False-positive predictions, in turn, are fatal misclassifications in the
context of malware detection because they impair processes for no
reason and lead to a sustained loss of confidence in the technology
by the users.

Training Setup: The architecture of the transformer model re-
lies on the TinyBERT architecture by Jiao et al. (2020). The model is a
smaller, distilled version of the widely used, pre-trained language
model BERT Devlin et al. (2019). Compared to BERT, TinyBERT
models have significantly fewer number of parameters, which
improves training and inference time noticeably. All our experi-
ments were implemented in the deep-learning framework PyTorch
(Paszke et al., 2019). We note that a single GPU, as, for example,
5

provided by Google Colab for free, is sufficient to train our models
on 100,000 files in 20 min. Training onmore powerful, data-center-
grade GPUs, e.g., an NVIDIA A100 GPU, can speed up the training
time significantly. Furthermore, training can also be scaled across
multiple GPUs, allowing for larger batch sizes to accelerate the
training process even more. Adaptive sampling strategies to create
a representative subset of available data might also be used to
reduce the effective number of samples in the training data.

Following the original TinyBERT architecture, our transformer
encoder model has 12 attention heads and 4 hidden layers. The
intermediate feed-forward layer size in the encoder is 1200. The
dimensionality of the encoder and pooling layers is 312. This model
has a sufficient size for our purposes, as it needs less training data
than larger transformers. We further initialized our model with
pre-trained weights trained on a natural language task and found
that it boosts the performance even if fine-tuned on abstract hashes
compared to training a randomly initialized model from scratch.



Fig. 4. Classification results of DLAM with a transformer model for all PDF files that carry an to-be-detected fragment within them. The blue bars symbolize false negatives, while
the yellow ones symbolize true positives. The height of each bar is proportional to the size of the to-be-detected fragment within the file. There are 2500 bars in each graph. The red
line in Fig. 4a symbolizes the so-called ssdeep-break-off. It corresponds to the minimum amount of relation that ssdeep can conventionally approximately match.
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The output layer is a standard feed-forward layer with two output
neurons.

For comparison reasons, we also trained a simple feed-forward
neural network, whose architecture was inspired by the work of
Peiser et al. (2020). The model consists of three fully-connected
layers, followed by batch normalization layers (Ioffe and Szegedy,
2015) and ReLU activations. It also contains a dropout layer with
dropout probability p ¼ 0.125 after the first block.

We trained all networks using the Adam optimizer (Kingma and
Ba, 2015) with a fixed learning rate of 10�3, a batch size of 1024
tokenized hashes for our transformer model (TinyBERT), and a
smaller batch size of 512 for the feed-forward network. We further
used 15% of the training data as a validation set and performed early
stopping, meaning that we stopped training after the validation
loss started to increase. We then used a standard cross-entropy loss
function for optimization:

LCE ¼ �
Xn
i¼1

yi$logðbyiÞ:

Here, yi 2 0, 1 denotes the ground-truth binary indicator if the
corresponding file contains a to-be-found fragment, and byi2½0;1�
denotes the predicted probability of yi ¼ 1. We emphasize that the
model could also be designed with a single output and optimized
with a binary cross-entropy loss. However, by designing the model
for multi-classification, we could easily extend it for additional
classes, if necessary.

For each of the three file type settings, the models were trained
on 85,000 files and evaluated on 5000 files. This is visualized in
Fig. 3. Note that the training and evaluation files come from
6

different datasets. Into half of the training and evaluation files, a
distinct fragment in the shape of a randomly generated byte
sequence was inserted. Even though the same randomly generated
byte sequence was used for creating all the files containing a
fragment, the specific elements that were copied were chosen at
random. In addition, the inserted fragment could occupy between
1% and 99% of the original size of the file.

To investigate how traditional fuzzy hashes perform the
approximate matching task without the help of machine learning,
the common fuzzy hashing algorithms ssdeep, TLSH, mrsh-cf,
and mrsh-v2 were used to compare each evaluation file with the
entire randomly generated to-be-found fragment sequence. If their
resulting similarity scores were greater than zero, they were
considered a positive prediction. If the similarity score was zero,
this was considered a negative prediction.
3.2. Experimental results

We now want to empirically investigate the following research
questions:

Q1: Can DLAM detect file fragments more precisely than tradi-
tional approximate matching?
Q2: Does the type of file containing the fragment affect detec-
tion with DLAM?
Q3: Does DLAMwith transformer networks perform better than
with simple neural networks?
Q4: Can DLAM compensate for weaknesses in conventional
approximate matching with fuzzy hashing?
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Q1: DLAM meets accuracy of state-of-the-art fuzzy hashing
algorithms.We state our experimental results, which compare our
DLAM approach to common and state-of-the-art fuzzy hashing
algorithms in Table 1. The table includes the accuracy, false-positive
rate, true-positive rate, false-negative rate, and true-negative rate
in percentage. While ssdeep and TLSH on their own completely
fail in detecting the files with injected fragments for all file types,
the state-of-the-art hashing algorithms mrsh-cf and mrsh-v2 are
still able to reliably identify the fragments in most cases. This is
especially interesting since the files to be classified have the same
length as the fragment, which in theory is an easy setting for
ssdeep and TLSH as was shown by Martínez et al. (2020). Unlike
ssdeep and TLSH, mrsh-cf and mrsh-v2 are multi-resolution
hashes, which can map many more features into the hashes. As a
result, the length of the hashes is not limited to a maximum size,
which increases accuracy for similarity matching since less infor-
mation about the files is lost.

As for the deep learning approaches, our approach is on par with
the feed-forward model of Peiser et al. (2020) for JavaScript files,
but significantly outperforms the feed-forward model on PDF and
XLSX files by 15.24% and 3.56%, respectively. Our transformer-based
approach generally performs better when using the hashes of
ssdeep than with using the TLSH hashes. The superiority of
ssdeep over TLSH for approximate matching with real-world file
types was also pointed out by G€obel et al. (2022a,b).

Our approach also outperforms the state-of-the-art multi-res-
olution fuzzy hashing functions mrsh-cf and mrsh-v2 on the
JavaScript files. While the accuracy of the approach of Peiser et al.
(2020) is 18.2% lower than the state-of-the-art hashes, the accu-
racy of our approach is only 2.96% below the mrsh-cf hash on PDF
files. On XLSX files, the transformer-based DLAM approach even
outperforms the mrsh-cf hash and achieves an accuracy of 97.36%.
This is especially interesting since our transformer-based approach
enables fragment detection based on fuzzy hashes like ssdeep and
TLSH, which scale much better than the mentioned multi-
resolution hashes with only moderate accuracy losses when using
DLAM. As mentioned at the beginning, ssdeep and TLSH are used
for malware detection in practice. Their short length means that
they map large amounts of data to a fraction of the disk space that
mrsh-v2-hashes would take up for the same data.

Fig. 4a and b show the false negatives (as blue bars) and the true
positives (yellow bars). The height of the bars represents the
Table 1
Comparison of our results for fragment detection in JavaScript (JS), PDF, and XLSX files for
forward (FF) and transformer (TF) models (right side). Whereas traditional similarity me
approaches significantly increase the performance and are even more accurate than state-
files. We highlighted the best 3 accuracy values for each file type.

Traditional Fuzzy Hashing

mrsh-cf MRSH-v2 ssdeep T

JS Accuracy (%) 81.54 67.38 50.02 5
TPR (%) 0.63 0.83 0.00 0
FPR (%) 0.00 0.05 0.00 0
TNR (%) 1.00 0.95 1.00 1
FNR (%) 0.37 0.17 1.00 1

PDF Accuracy (%) 97.3 95.44 50.04 4
TPR (%) 0.95 0.93 0.00 0
FPR (%) 0.00 0.02 0.00 0
TNR (%) 1.00 0.98 1.00 1
FNR (%) 0.05 0.07 1.00 1

XLSX Accuracy (%) 96.78 88.22 52.54 5
TPR (%) 0.94 0.77 0.05 0
FPR (%) 0.00 0.00 0.00 0
TNR (%) 1.00 1.00 1.00 0
FNR (%) 0.06 0.23 0.95 0
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proportion of the fragment in the total file. In both figures, the
accumulation of blue bars in the left half of the graphs shows that
the smaller the proportion of to-be-found fragment in a file, the
higher the risk of a false-negative classification by the model.

With ssdeep, the model detects the to-be-found fragments in
the hashes much more consistently, even for small fragment sizes.
The red line in Fig. 4a is an approximation of the minimum amount
of similarity that two files need to have in common, in order for
ssdeep to approximately match them. G€obel et al. (2022a,b)
discovered that between 9% and 13% was the minimum amount
of common content that two randomly generated files of size
2048 KB needed to possess in order for ssdeep to find any relation.
Even though this minimum was never confirmed for PDF files
specifically, our experimental results support this theory.

The fact that almost 87% of all false negatives have a smaller
fragment than 13% means that the smaller the fragment, the less
likely it is to be classified correctly. The false negatives in Fig. 4b are
more widespread and cannot primarily be attributed to a small
fragment size, as for ssdeep in Fig. 4a. G€obel et al. (2022a,b) stated
that TLSHwas less precise than ssdeepwhen tested on various file
types in their needle in a haystack test case. An observation that we
could confirm with our tests. The classification accuracy of any
model was consistently lower for TLSH than that of ssdeep. Our
experiments show that working consciously with DLAM and
ssdeepwithin these boundariese only classifying files with to-be-
found content of more than 13% e even leads to a higher classifi-
cation accuracy than with mrsh-cf or mrsh-v2.

Q2: DLAM reliably detects fragments for all file types. Our
results in Table 1 further illustrate that the accuracy with which
DLAM detects fragments in files seems to be more stable in face of
different file types. Using a feed-forward network leads to highly
fluctuating accuracy values for each file type. The same can be seen
for the multi-resolution hashes. Even though their accuracy is very
high on PDF and XLSX files, there is a high loss of accuracy on
JavaScript files, indicating that the file types have a high impact on
the performance of state-of-the-art fuzzy hashes. Our transformer-
based DLAM approach, on the other hand, is much more stable and
the accuracy for the fragment detection is consistently above 90%
for all three file types when using ssdeep hashes. It, therefore,
offers higher reliability in its predictions for different domains than
fuzzy hashing algorithms on their own.

Q3: Transformers outperform simple neural networks for
traditional similarity-based fuzzy hashing algorithms (left side) and DLAMwith feed-
trics fail for the fixed-sized fuzzy hashes generated by TLSH and ssdeep, our DLAM
of-the-art fuzzy hashing algorithms with variable hash sizes for JavaScript and XLSX

DLAM (Ours)

LSH ssdeep (FF) TLSH (FF) ssdeep (TF) TLSH (TF)

0.02 92.70 82.08 92.70 87.90
.00 0.86 0.75 0.86 0.84
.00 0.01 0.11 0.01 0.08
.00 0.99 0.89 0.99 0.92
.00 0.14 0.25 0.14 0.16

9.98 79.10 78.42 94.34 82.60
.00 0.75 0.74 0.93 0.83
.00 0.16 0.17 0.04 0.17
.00 0.84 0.83 0.96 0.83
.00 0.25 0.26 0.07 0.17

1.17 93.80 90.28 97.36 90.74
.03 0.89 0.89 0.96 0.92
.04 0.01 0.08 0.01 0.11
.96 0.99 0.92 0.99 0.89
.97 0.11 0.11 0.04 0.08
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fragment detection. As can be seen in Table 1, our DLAM approach
with ssdeep consistently outperforms the neural networks with
TLSH hashes. Using TLSH, the model produces more false-
negatives than with ssdeep, as can be seen in Fig. 4b and a. The
results in Table 1 also show that a combination of transformers and
ssdeep consistently outperforms all approaches that are based on
simple feed-forward networks. So choosing a more complex ar-
chitecture with a much higher number of parameters pays off in
this case.

However, even if feed-forward networks perform worse than
transformer models in most cases, they still achieve a decent per-
formance. Consequently, for applications with limited computa-
tional power available or to speed up inference time, feed-forward
networks might still be a reasonable architecture to choose.

Q4: DLAM increases the robustness whenworking with fuzzy
hashes. One way to degrade the performance of traditional fuzzy
hashes is to concatenate the same file multiple times before feeding
them into the algorithms. We show that our DLAM approach
strongly increases the detection robustness of fuzzy hashes. We
concatenated the same file a pre-defined number of times and then
calculated the hashes for the composed file. Table 2 states our re-
sults and illustrates that DLAM can indeed compensate for the
known low resilience against repetitive content.

As also shown in previous research (G€obel et al., 2022a,b), the
similarity scores of ssdeep and TLSH could be lowered to 0 when
comparing a single instance of a file with another file that consisted
of multiple concatenations of the first one. In the case of TLSH, a 16-
fold concatenation of the same 5000 bytes was sufficient to lower
the similarity score to 0, leading to a prediction accuracy of 50%,
which comes down to random guessing in a binary prediction
problem. However, our results further show that TLSH, in combi-
nation with a transformer network, is still able to detect files with
injected fragments and benign files with higher accuracy than
mrsh-cf and mrsh-v2 in face of a repetition. These results also
indicate that there is much more information present in TLSH

hashes than can be processed by simple similarity measurements.
4. Discussion and limitations

With this work, we demonstrated the large potential that lies in
the combination of traditional fuzzy hashing algorithms and recent
advances in deep learning. For the task of supervised fragment
detection, our DLAM approach achieves accuracy values close to
those of multi-resolution fuzzy hashes. Furthermore, the fuzzy
hashes ssdeep and TLSH used in combination with DLAM are far
more scalable due to more effective compression procedures. For
example, an unbounded mrsh-v2 hash compresses 68xworse than
a ssdeep hash bounded to 148 bytes in length. With our DLAM, a
comparatively small hash length can then still be classified with
high accuracy, comparable to conventional approximate matching
Table 2
Prediction accuracy for fragment detectionwith traditional fuzzy hashing algorithms with
DLAM approach combining ssdeep and TLSHwith a transformer network. Per row, 5000
and 99% of fragment bytes within them. All files were concatenated according to the respe
10 test runs.

Multiplication factor Traditional Fuzzy Hashing

mrsh-cf MRSH-v2

x 1 97.54 76.13
x 2 92.19 74.37
x 4 91.99 72.67
x 8 91.69 76.47
x 16 91.49 73.73
x 32 88.21 71.11
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with mrsh-cf and mrsh-v2. For the supervised fragment detec-
tion in JavaScript, DLAM achieves even higher accuracy values than
all state-of-the-art mrsh-cf and mrsh-v2. Furthermore, DLAM
also increases the resilience against file repetition, where ssdeep

and TLSH alone fail to provide meaningful similarity scores.
Based on our empirical results, we recommend combining

DLAM with ssdeep over TLSH, since ssdeep's weaknesses can be
narrowed downmuchmore precisely. Similarities smaller than 13%
are no longer safely detectable and should therefore be avoided
when classifying with DLAM and ssdeep. TLSH, on the other hand,
is generally less precise, and possible false predictions are much
more difficult to predict. A way to overcome the limitations of
ssdeep with regard to smaller similarities could lie in the work of
Shiel and O’Shaughnessy (2019) on improving file-level fuzzy
hashes for malware variant classification. Section-level hashing
means that digital artifacts are not hashed and compared in their
entirety, but only in sections. By compartmentalization e dividing
the digital artifacts into equally sized blocks and hashing each one
e a much more granular search for possible similarities can be
performed. So one input file is no longer represented by a single
hash but by multiple ones, each representing the exact same
amounts of bytes.

We limited our analyses to algorithms that produce hashes with
a fixed-sized (TLSH) or a maximum length (ssdeep). Other algo-
rithms, such as mrsh-v2, produce large hashes with potentially
infinite lengths. Since multi-resolution hashes can theoretically
have any length, transformers that can process inputs of any length
are applicable in theory. Peiser et al. (2020) were able to process,
sdhash which produces a limitless hash with a bag of words
approach. However, this has the disadvantage that all positional
information onwhere sequences are located in a hash is lost.Which
is why it was not adapted for mrsh-v2 in this work.
4.1. Practical application

The main practical applicability of this work is illustrated here
once againwith an example. DLAM can be understood as a building
block to gain significantly more visibility in the context of incident
response or endpoint detection and response. As Lazo (2021) de-
scribes, files can be hashed on endpoints and these hashes are
matched by the EDR solution with known hashes, i.e., malware
IOCs. DLAM now enables the targeted training of machine learning
networks to detect specific malware signifiers in fuzzy hashes (i.e.,
ransomware, adware, etc.). Until now, this required either a large
number of cryptographic hashes, whichmust cover all polymorphic
forms of a malware, or fuzzy hashes, which can only express a
shared content with known malware files by the similarity score.
However, this is rather unreliable as the shared content might just
be coincidental noise. With DLAM, machine learning models can be
trained to classify files based only on specific malware sequences in
variable (mrsh-cf and mrsh-v2) and fixed (ssdeep and TLSH) hash sizes, and our
files with a file size of 5000 bytes were created. Half of them contained between 1%
ctivemultiplication factor and then had to be classified. The results are averaged over

DLAM (Ours)

ssdeep TLSH ssdeep (TF) TLSH (TF)

50.0 50.0 91.09 94.94
50.0 50.0 81.68 93.57
50.0 50.0 63.56 93.25
50.0 50.0 53.55 93.07
50.0 50.0 53.55 93.95
50.0 50.0 50.0 93.59
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the fuzzy hashes. The models are trained to distinguish between
benign files and malware. Our results show that this is already
possible with the common fuzzy hashes ssdeep and TLSH. How-
ever, this is all the more impressive as these two hashing algo-
rithms produce very short hash strings on which DLAM can be
trained. Applied onto ssdeep and TLSH, DLAM can achieve clas-
sification accuracies that match and even surpass those of fuzzy
hashing algorithms that are unlimited in length (like mrsh-cf and
mrsh-v2). As Lazo (2021) has shown, an approach like DLAM can
be used to discover a previously unknown strand of malware
altogether.

5. Conclusion and future work

The goal of our work is to open up the research on machine
learning and fuzzy hashes to the broader scientific community.
With deep learning approximate matching, or DLAM in short, it is
now possible to contextualize a promising fusion of the two
research areas of deep learning and digital forensics based on fuzzy
hashing. Our application of transformer models in this context
leads to higher classification accuracy than other current ap-
proaches. More precisely, we empirically demonstrated that
applying DLAM to efficient standard fuzzy hashes, such as ssdeep
and TLSH, creates a powerful application that rivals the best-
performing fuzzy hashes mrsh-v2 and mrsh-cf in terms of su-
pervised file fragment detection. By adjusting the size of the
inserted fragment and the file type, we were able to show the
impact of these two factors, both of which are important when
using DLAM in practical applications for data loss prevention or
malware detection. The full potential that DLAM offers for digital
forensics and cybersecurity becomes even more apparent, recalling
that, ssdeep and TLSH are very compact and many times smaller
than multi-resolution hashes. This paper proves that machine
learning is a powerful enabler that enhances the practical appli-
cations of fuzzy hashes well beyond the approximate matching.

As was explained previously, we could not apply DLAM
(Transformer) on fuzzy hashes with potentially unlimited length
due to hardware constraints. This does not mean that future
research should shy away from exploring this area, we leave the
realization open for future research.

Another interesting avenue is to extend DLAM beyond the bi-
nary classification of anomalies, which we explored in this work.
We expect DLAM to also improve results for unsupervised fragment
and outlier detection, content retrieval, and multi-class file classi-
fication based on fuzzy hashes, but leave the empirical proof for
future work.
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